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Preface

In the post-genomic era, a holistic understanding of biological systems and pro-
cesses, in all their complexity, is critical in comprehending nature’s choreography
of life. As a result, bioinformatics involving its two main disciplines, namely, the
life sciences and the computational sciences, is fast becoming a very promising
multidisciplinary research field. With the ever-increasing application of large-
scale high-throughput technologies, such as gene or protein microarrays and mass
spectrometry methods, the enormous body of information is growing rapidly.
Bioinformaticians are posed with a large number of difficult problems to solve,
arising not only due to the complexities in acquiring the molecular informa-
tion but also due to the size and nature of the generated data sets and/or the
limitations of the algorithms required for analyzing these data. Although the
field of bioinformatics is still in its embryonic stage, the recent advancements
in computational and information-theoretic techniques are enabling us to con-
duct various in silico testing and screening of many lab-based experiments before
these are actually performed in vitro or in vivo. These in silico investigations are
providing new insights for interpretation and establishing a new direction for
a deeper understanding. Among the various advanced computational methods
currently being applied to such studies, the pattern recognition techniques are
mostly found to be at the core of the whole discovery process for apprehending
the underlying biological knowledge. Thus, we can safely surmise that the on-
going bioinformatics revolution may, in future, inevitably play a major role in
many aspects of medical practice and/or the discipline of life sciences.

The aim of the Pattern Recognition in Bioinformatics (PRIB) conference
is to provide an opportunity for academia, researchers, scientists and industry
professionals to present their latest research in pattern recognition and compu-
tational intelligence-based techniques applied to problems in bioinformatics and
computational biology. It also provides them with an excellent forum to inter-
act with each other and share experiences. The conference is organized jointly
by Monash University, Australia, and the IAPR (International Association for
Pattern Recognition) Bioinformatics Technical Committee (TC-20).

This volume presents the proceedings of the Third IAPR International Con-
ference on Pattern Recognition in Bioinformatics (PRIB 2008), held in Mel-
bourne, October 15-17, 2008. It includes 39 technical contributions that were
selected by the International Program Committee from 121 submissions. Each
of these rigorously reviewed papers was presented orally at PRIB 2008. The
proceedings consists of six parts:

Part 1 Protein: Structure, Function, and Interaction
Part 2 Learning, Classification, and Clustering

Part 3 Bio-Molecular Networks and Pathways Analysis
Part 4 Microarray and Gene Expression Analysis
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Part 5 Data Mining and Knowledge Discovery
Part 6 Applications of High-Performance Computing

Part 1 of the proceedings contains eight chapters on Protein: Structure, Func-
tion, and Interaction. Gromiha et al. propose a method based on a decision tree
for discriminating the stabilizing and destabilizing mutants and predicting pro-
tein stability changes upon single-point mutations. The chapter also includes
methods developed for discriminating thermophilic proteins from mesophilic
ones. In the next chapter by Kumar et al., a new approach to locating the
occurrences of user-defined motifs in a specified order in large proteins and
in nucleotide sequence databases is proposed. Bauer et al. explore the nature
of post-translation modifications (SUMOylation) using non-local sequence and
structural properties, including secondary structure, solvent accessibility and
evolutionary profiles. Hoque et al. combine a genetic algorithm with depth-first
search for the solution of the protein structure prediction problem. Lonquety et
al. present a stability-based analysis of the protein-folding nucleus to increase
the recall and precision of two well-known protein mutant stability prediction
methods. Kato et al. report a dynamic programming algorithm for an up-down
class of antiparallel protein $-sheet, which can also be extended for more general
classes of [(-sheets. In Li et al., the concept of multi-scale glide zoom window
feature extraction is used for predicting protein homo-oligomers. Koizumi et al.
propose a method of searching for and comparing concave structures in protein-
binding sites.

Part 2 of the proceedings contains seven chapters on Learning, Classifi-
cation, and Clustering. Yang et al. propose an hybrid system for analyzing
high-dimensional mass spectrometry data. Medvés et al. propose a modified
Markov clustering algorithm for an efficient clustering of large protein sequence
databases, based on a previously evaluated sequence similarity criteria. Stiglic
et al. present a classification ensemble of decision trees called Rotation For-
est and evaluate its classification performance on small subsets of ranked genes
for 14 genomic and proteomic classification problems. Al Seesi et al. describe a
new inference algorithm, based on tree adjoining grammars, for RNA pseudo-
knot structure identification. Mundra et al. propose to use support vector points
for computation of t-scores for gene ranking. Anand et al. consider two sets of
features based on DNA sequences and their physicochemical properties and ap-
plied a one-versus-all support vector machine with class-wise optimized features
to identify transcription factor family-specific features in DNA sequences. Ji et
al. present a novel protein classifier, the gapped Markov Chain with Support
Vector Machine, that models the structure of a protein sequence by measuring
the transition probabilities between pairs of amino acids.

Part 3 of the proceedings contains six chapters on Bio-Molecular Networks
and Pathways Analysis. Zhao et al. propose a novel discriminative method for
predicting domain—-domain interactions in protein pairs by making use of inter-
acting and non-interacting protein pairs, which improves the prediction reliabil-
ity. Jancura et al. develop an algorithm for dividing protein—protein interaction
networks that combines the graph theoretical property of articulation with a
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biological property of orthology. Ram et al. demonstrate the application of
a Markov blanket learning algorithm to gene regulatory networks, enhanced
further by application of a proposed constraint logic minimization technique.
Chaturvedi et al. model time delayed interactions in gene regulatory networks
using a skip-chain model which finds missing edges between non-consecutive
time points based on protein-protein interaction networks. Zhou et al. propose
a new pattern recognition technique to help represent metabolic networks as
weighted vectors. Ram et al. present an approach for synthetically generating
gene regulatory networks using causal relationships.

Part 4 of the proceedings contains seven chapters on Microarray and Gene
Expression Analysis. Huerta et al. introduce a new wrapper approach to the
difficult task of microarray data gene selection, where a genetic algorithm is
combined with Fisher’s linear discriminant analysis. Wang et al. present a new
heuristic approach for finding near-minimal non-unique probe sets for oligonu-
cleotide microarray experiments. Using a well-known yeast cell cycle data set,
Pittelkow et al. compare a method being used for finding genes following a pe-
riodic time series pattern with a method for finding genes having a different
phase pattern during the cell cycle. Bedo explores the design problem of se-
lecting a small subset of clones from a large pool for creation of a microarray
plate. Nagarajan et al. use two distinct approaches, namely, the classical order
zero-crossing count and the Lempel-Ziv complexity, in identifying non-random
patterns from temporal gene expression profiles. Ooi et al. propose to determine
the theoretical basis for the concept of differential prioritization through math-
ematical analyses of the characteristics of predictor sets found using different
values of the degree of differential prioritization from realistic but toy datasets.
Luo et al. propose a weighted top scoring pair method for gene selection and
classification.

Part 5 of the proceedings contains seven chapters on Data Mining and Knowl-
edge Discovery. Kasturi et al. present an algorithm to identify statistically
significant and conserved discriminative motifs that distinguish between gene ex-
pression clusters. McGarry et al. describe methods to develop a reliable,
automated method of detecting abnormal metabolite profiles from urinary or-
ganic acids, which can be used as GC-MS biomarkers. Girdo et al. have ap-
plied multi-relational data mining methods with hidden Markov models and a
Viterbi algorithm to mine tetratricopeptide repeat, pentatricopeptide and half-a-
tetratricopeptide repeat in genomes of pathogenic protozoa Leishmania. Sehgal
et al. present an enhanced heuristic non-parametric collateral missing value im-
putation algorithm which uses collateral missing value estimation as its core es-
timator and a heuristic non-parametric strategy to compute the optimal number
of estimator genes to exploit optimally both local and global correlations. Han
et al. develop a non-negative principal component analysis algorithm and pro-
pose a non-negative principal component analysis-based support vector machine
algorithm with sparse coding in the cancer molecular pattern analysis of pro-
teomics data. Macintyre et al. have developed a novel clustering algorithm which
incorporates functional gene information from gene ontology into the clustering
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process, resulting in more biologically meaningfull clusters. Meydan et al. try
evolutionary classification methods for selecting the important classifier genes in
hexachlorobenzene toxicity using microarray data.

Part 6 of the proceedings contains four chapters on Applications of High-
Performance Computing. Stamatakis et al. address parallelism issues via a thor-
ough performance study by example of a widely used bioinformatics application
for large-scale phylogenetic inference under the maximum likelihood criterion.
Schréder et al. present an enhanced version of an existing DNA motif search
algorithm tailored to fit on a massively parallel machine. Chen et al. present
a novel approach to accelerate motif discovery based on commodity graphics
hardware. Zhang et al. demonstrate how the PlayStation 3, powered by the
Cell Broadband Engine, can be used as an efficient computational platform to
accelerate the popular BLASTP algorithm.

Many have contributed directly or indirectly toward the organization and
success of PRIB 2008 conference. We would like to thank all individuals and in-
stitutions, especially the authors for submitting the papers and the sponsors for
generously providing financial support for the conference. We are very grateful to
TAPR for the sponsorship and the IAPR Technical Committee (TC-20) on Pat-
tern Recognition for Bioinformatics for their support and advice. Our gratitude
goes to the Faculty of Information Technology, Monash University, Australia,
and also to the Gippsland campus, Monash University, Australia, for supporting
the conference in many ways.

We would like to express our gratitude to all PRIB 2008 International Pro-
gram Committee members for their objective and thorough reviews of the sub-
mitted papers. We fully appreciate the PRIB 2008 Organizing Committee for
their time, efforts, and excellent work. We would also like to thank Jagath
Rajapakse, Program Co-chair, and Raj Acharya, General Co-chair, for their
continuous support and guidance. We sincerely thank Shyh Wei Teng, Local Or-
ganization Chair, for his relentless work in managing various operational issues
and finance matters related to the conference organization. We thank Dieter Bu-
lach for organizing the conference sponsorship and the Publication Co-chair, Sy
Loi Ho, for his hard work in getting the proceedings ready on time. We are also
grateful to Tina Bradshaw, PRIB 2008 secretary, for coordinating all the logis-
tics of the workshop and to Margot Schuhmacher for meticulously maintaining
the PRIB 2008 conference website.

Last but not least, we wish to convey our sincere thanks to Springer for
providing excellent professional support in preparing this volume.

October 2008 Madhu Chetty
Alioune Ngom
Shandar Ahmad
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Sequence Based Prediction of Protein Mutant Stability
and Discrimination of Thermophilic Proteins

M. Michael Gromiha', Liang-Tsung Huang’, and Lien-Fu Lai’

! Computational Biology Research Center (CBRC), National Institute of Advanced
Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building,
2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
michael-gromiha@aist.go.jp
% Department of Computer Science and Information Engineering, MingDao University,
Changhua 523, Taiwan
larry@mdu.edu. tw
3 Department of Computer Science and Information Engineering,

National Changhua University of Education, Changhua 500, Taiwan

Abstract. Prediction of protein stability upon amino acid substitution and
discrimination of thermophilic proteins from mesophilic ones are important
problems in designing stable proteins. We have developed a classification rule
generator using the information about wild-type, mutant, three neighboring
residues and experimentally observed stability data. Utilizing the rules, we have
developed a method based on decision tree for discriminating the stabilizing
and destabilizing mutants and predicting protein stability changes upon single
point mutations, which showed an accuracy of 82% and a correlation of 0.70,
respectively. In addition, we have systematically analyzed the characteristic
features of amino acid residues in 3075 mesophilic and 1609 thermophilic
proteins belonging to 9 and 15 families, respectively, and developed methods
for discriminating them. The method based on neural network could discrimi-
nate them at the 5-fold cross-validation accuracy of 89% in a dataset of 4684
proteins and 91% in a test set of 707 proteins.

Keywords: Protein stability, rule generator, discrimination, prediction, thermo-
philic proteins, neural network, machine learning techniques.

1 Introduction

One of the most important tasks in protein engineering is to understand the mecha-
nisms responsible for protein stability changes affected by single point mutations,
which can be employed for constructing temperature sensitive mutants and used to
identify a wide spectrum of drug resistance conferring mutations. Another related task
is to understand the important factors for the extreme stability of thermophilic
proteins and discriminating them from mesophilic ones.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. ln 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 M.M. Gromiha, L.-T. Huang, and L.-F. Lai

Several methods have been proposed for predicting the stability of proteins upon
amino acid substitutions. These methods are mainly based on distance and torsion
potentials [1,2], multiple regression techniques [3], energy functions [4], contact
potentials [5], neural networks [6], support vector machines, SVMs [7,8], average
assignment [9], classification and regression tool [10], backbone flexibility [11] etc.
Further, it has been reported that the discrimination of stabilizing and destabilizing
mutants is more important than its magnitude in many cases [6]. Most of these
methods used the information from the three-dimensional structures of proteins for
discrimination/prediction. On the other hand, prediction accuracy using amino acid
sequence is significantly lower than that with structural data [12].

Several attempts have been made to understand the factors influencing the stability
of thermophilic proteins using three-dimensional structural information as well as
from amino acid sequence. It has been reported that increase in number of salt bridges
and side chain-side chain interactions [13], counterbalance between packing and
solubility [14], aromatic clusters [15], contacts between the residues of hydrogen
bond forming capability [16,17], ion pairs [18], cation-Tt interactions [19,20], non-
canonical interactions [21], electrostatic interactions of charged residues and the
dielectric response [22,23], amino acid coupling patterns [24], main-chain
hydrophobic free energy [25] and hydrophobic residues [26] in thermophilic proteins
enhanced the stability. In addition, the amino acid sequences of genomes have been
used for understanding the stability of thermophilic proteins. Das and Gerstein [27]
reported that intra-helical salt bridges are prevalent in thermophiles. Fukuchi and
Nishikawa [28] showed that the amino acid composition on protein surface may be an
important factor for understanding the stability. Ding et al. [29] revealed the
preferences of dipeptides in thermophilic proteins for extreme stability. Berezovsky
et al. [30] found that the proteomes of thermophilic proteins are enriched in
hydrophobic and charged amino acids at the expense of polar ones.

In spite of these studies, it is necessary to build a system, which derives stability
rules for any input data and convert them into prediction. In this work, we have
developed a classification rule generator to provide an online service for relating
protein stability changes from the information about the mutated residue, three
neighboring residues and the mutant residue. The rules can be interpreted to
understand and predict protein stability changes upon point mutations. We have
developed a method based on decision tree for discriminating /predicting protein
mutant stability just from amino acid sequence. Using the information of a short
window of seven residues (three residues on both directions of the mutant site) our
method discriminated the stabilizing and destabilizing mutants with an accuracy of
82% and predicted the stability changes with a correlation of 0.70. Further, we have
analyzed the performance of different algorithms, such as Bayes rules, neural
network, SVM, decision trees etc for discriminating mesophilic and thermophilic
proteins. We found that the 5-fold cross-validation accuracy is almost similar in most
of the machine learning algorithms and the accuracy of discriminating mesophilic and
thermophilic proteins using neural networks is marginally better than other methods.
It could discriminate them at an accuracy of 93% and 89%, respectively, for self-
consistency and 5-fold cross-validation tests in a dataset of 4684 proteins.
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2 Materials and Methods

We have used different sets of data for predicting protein stability upon point
mutations, and discriminating mesophilic and thermophilic proteins. Likewise,
different methods have been used for these two studies.

2.1 Datasets

For the study on protein mutant stability, we have constructed a dataset of 1859 non-
redundant single mutants from 64 proteins using ProTherm, the thermodynamic
database for proteins and mutants available on the web [31,32]. We have removed the
duplicate mutants that have same mutated and mutant residues, residue number,
experimental conditions (pH and temperature, T) and AAG values. Further, we
retained only one data (the average value) for the mutants in which AAG are reported
with same T and pH, and different conditions (buffers/ions). We have used five
variables for implementing the discrimination/prediction algorithm: (i) Md, mutated
(deleted) residue, (ii) Mi, mutant (introduced) residue, (iii) pH, (iv) T (°C) at which
the stability of the mutated protein was measured explicitly and (v) three neighboring
residues of the central residue. These attributes have been selected with the balance
between experimental conditions and sequence information.

Zhang and Fang [33] used 4895 mesophilic and 3522 thermophilic proteins for
discriminating them using dipeptide composition. The proteins in each set contain
many redundant sequences and we removed the redundancy using CD-HIT algorithm,
[34] as implemented by Holm and Sander [35]. The final dataset contains 3075
mesophilic proteins and 1609 thermophilic proteins. Further, we have used a test set
of 325 mesophilic and 382 thermophilic proteins belonging to Xylella fastidosa and
Aquifex aeolicus families, respectively. These datasets have the proteins with less
than 40% sequence identity.

2.2 Computation of Amino Acid Composition

The amino acid composition for each protein has been computed using the number of
amino acids of each type and the total number of residues:

Comp(i) = X n/N, )]

where i stands for the 20 amino acid residues; n; is the number of residues of each
type and N is the total number of residues. The summation is through all the residues
in the particular protein.

2.3 Methods for Discrimination and Prediction

We have used decision tree [36] along with adaptive boosting algorithm [37] for
discriminating the stability of protein mutants, and classification and regression tree
(CART) [38] for predicting the stability changes of proteins upon mutations. The
decision tree algorithms can efficiently construct interpretable prediction models by
measuring input variables directly from training data, which is suitable for large
datasets and unknown data distribution. The decision tree has been selected with two
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steps: in the first step, a recursive split procedure builds a tree, named maximum tree,
which closely describes the training dataset and in the second step, the maximum tree
is cut off for finding optimal sub tree. The adaptive boosting algorithm generates a set
of classifiers from the data, each optimized to classify the correct ones that were
misclassified in previous pass. Considering the exploitation of sets of hypotheses with
independent errors it can improve the classification accuracy and reduce the variance
as well as the bias.

We have analyzed several machine learning techniques implemented in WEKA
program [39] for discriminating mesophilic and thermophilic proteins. This program
includes several methods based on Bayes functions, neural networks, logistic
functions, support vector machines, regression analysis, nearest neighbor methods,
meta learning, decision trees and rules. The details of these methods have been
explained in our earlier article [40]. We have analyzed different classifiers and
datasets to discriminate mesophilic and thermophilic proteins.

2.4 Assessment of Predictive Ability

We have used different measures to assess the accuracy of discriminating mesophilic
and thermophilic proteins, and stabilizing and destabilizing mutants. The term,
sensitivity shows the correct prediction of thermophiles (stabilizing mutants), specificity
about the mesophilies (destabilizing mutants) and accuracy indicates the overall
assessment. The agreement between experimental and predicted stability changes has
been assessed with correlation coefficient. These terms are defined as follows:

Sensitivity = TP/(TP+FN) 2)
Specificity = TN/(TN+FP) 3)
Accuracy = (TP+TN)/(TP+TN+FP+FN) 4)

r=[NZIXY - X ZY)I/{[N ZX* - (ZX)’] [N ZY* - ZY)’]}"? (5)

where, TP, FP, TN and FN refer to the number of true positives, false positives, true
negatives, and false negatives respectively; 7 is the correlation coefficient, N, X, and
Y are the number of data, experimental and predicted stability, respectively.

We have performed n-fold cross-validation test for assessing the validity of the
present work. In this method, the data set is divided into n groups, n-1 of them are used
for training and the rest is used for testing the method. The same procedure is repeated
for n times and the average is computed for obtaining the accuracy of the method. We
have carried out 2-fold, 3-fold, 4-fold, 5-fold and 10-fold cross validation tests.

3 Results and Discussion

3.1 Development of Classification Rules

We have developed a system composed of three components, which can sequentially
develop protein sequence information to classification rules along with related
analysis (Figure 1).
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Fig. 1. Flowsheet of the learning process for depicting the relationship between components
and data

The first component constructs a decision tree from the information about the
mutated residue with three neighboring residues and the mutant residue. The mutation
and neighboring residues information have been obtained from ProTherm database
[31,32] and Protein Data Bank [41], respectively. Then the second one converts the
learned tree into an equivalent set of rules, which may discriminate the stabilizing and
destabilizing mutants as well as to explore the underlying concept of experimental
data. The third provides further analyses from different viewpoints to clarify the
characteristics of generated rules.

From the dataset of 1859 mutants, a total of 104 rules were generated. The rule size
of the rule set being about 2 indicates the antecedent of these rules consist of about
two statements on average. Generally, a shorter rule may make the rule easier to
understand and to be examined. We further observed that 1535 samples of the dataset
can match the antecedent of these rules with 175 errors, which showed the accuracy
of 88.6%. It reveals that most samples in the dataset can be correctly inferred by using
the rule set. In Table 1, we have given few examples of rules and their details: (i) if
the mutated residue is Asp, its third neighbor at N-terminal is Glu, and its second
neighbor at C-terminal is Leu, then the predicted stability change will be positive
(stabilizing); we obtained an accuracy 96% in a set of 25 data; (ii) if the deleted
residue is Ser and its first neighbor at N-terminal is Pro, then the predicted stability
change will be negative (destabilizing), which correctly predicted all the 29 data with
an accuracy of 100%; (iii) if the deleted residue is Leu, then the protein will be
destabilizing; this rule is applied to 122 mutants and 115 are predicted correctly
(accuracy 94%).
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Table 1. Confidence measure for 5 rules with high accuracy and sufficient number of data from
a dataset of 1859 non-redundant single mutants

Rule Rule Number Percentage Correctly Accuracy Predicted
size  of of predicted (%) class
data  data (%)

Mutated residue=D, N3=E, C2=L 3 25 1.34 24 96  Stabilizing
Mutated residue=T, C1=V 2 29 1.56 24 83  Stabilizing
Mutated residue=S, N1=P 2 29 1.56 29 100  Destabilizing
Mutated residue=L 1 122 6.56 115 94 Destabilizing
Mutant residue=G 1 66 3.55 62 94 Destabilizing

We have developed a web interface for generating rules for any set of stability data
using wild type, mutant and three neighboring residue information. We have also
provided the related dataset for different tests along with the generated rules on the
web server.

3.2 Prediction of Protein Stability

We have utilized the rules for discriminating the stabilizing and destabilizing mutants
and predicting the stability change upon mutation along with the information about
pH and T. The validity of our approach has been assessed with 4-fold, 10-fold and 20-
fold cross-validation procedures. The 4-fold and 20-fold cross-validation tests yielded
the accuracy of 81.4% and 82.1% for discriminating the stability of protein mutants.
The sensitivity and specificity are 75.3% and 84.5%, respectively [42]. Further, our
method could predict the stability of protein mutants with the correlation coefficient
of 0.70.

The main features of the present method are: (i) it is based on the neighboring
residues of short window length, (ii) it can predict the stability from amino acid
sequence alone, (iii) developed different servers for discrimination and prediction, and
integrated them together, (iv) utilized the information about experimental conditions,
pH and T, and (v) implemented several rules for discrimination and prediction from the
knowledge of experimental stability and input conditions: (i) if the deleted residue is
Ala and the neighboring residues contain Gln, then the predicted stability change will
be negative (accuracy = 97.1%), (ii) if the deleted residue is Glu and its second
neighbor at N-terminal is Met, the mutation stabilizes the protein (accuracy = 100%)
and (iii) if the deleted-residue belongs to Y, W, V, R, P, M, L, I, G, F or C, and the
introduced-residue belongs to T, S, P, K, H, G or A, then the predicted stability change
will be -2.05 kcal/mol (mean absolute error = 1.57 kcal/mol).

We have developed a web server for discriminating the stabilizing and destabilizing
mutants and predicting the stability of proteins upon mutations. The program takes the
information about the mutant and mutated residues, three neighboring residues on both
sides of the mutant residue along with pH and T. In the output, we display the predicted
protein stability change upon mutation along with input conditions (Figure 2). In the case
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Fig. 2. The results obtained for predicting the stability change along with the related informa-
tion of neighboring residues

of discrimination, we show the effect of the mutation to protein stability, whether
stabilizing or destabilizing. Both discrimination and prediction services offer an option for
additional sequence composition information of neighboring residues (Figure 2). The bar
chart shows the number of amino acids of each type. The two pie charts below represent
the percentage of residues according to polarity and the metabolic role of amino acids. The
prediction/discrimination results are available at http://bioinformatics.myweb.hinet.net/
iptree.htm.

In our method, we have used the balance between experimental conditions and
sequence information as features for prediction. These features are different from
other methods, which mainly used contact potentials, 40 different combinations of
mutations, solvent accessibility, secondary structure, average stability value for each
mutation, experimental conditions etc. for predicting the stability. In addition, we
have used different features including the variation of window length along the
sequence and we observed the best performance with the information about mutant
and mutated residues as well as three neighboring residues along the sequence.

We have compared the performance of CART with neural networks (NN) and
support vector machines (SVM) using same features. The ROC curve obtained for the
three methods with 20-fold cross-validation test is shown in Figure 3. We observed

True posilive rate
s & = o o & 5 =
g & 2 & &8 § & 8

&

0
0 01 02 03 0.4 0.5 06 07 08 0.9 1

False positive rate

Fig. 3. ROC curves for CART (thick line), SVM (thin line) and NN (broken line)
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that the performance of CART is the best among all the three methods. The areas under
the curve (AUC) for CART, SVM and NN are 0.83, 0.75 and 0.66, respectively.

3.3 Discrimination of Mesophilic and Thermophilic Proteins

We have computed the amino acid composition of mesophilic and thermophilic
proteins and the results are shown in Figure 4. From this figure, we observed that the
composition of Ala, Leu, Gln and Thr are higher in mesophiles than thermophiles an
opposite trend is observed for Glu, Lys, Arg and Val [43]. These preferences and the
higher occurrence of other amino acids in thermophilic proteins reveal the implica-
tions for protein stability.

—

Amino acid composition (%)
f=2)
1

)
——

LA ,

Ala Asp Cys Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr

Residue

Fig. 4. Amino acid composition in mesophilic (m) and thermophilic (0) proteins

The comparative analysis on the occurrence of Cys, Ile and Val in the structural
homologues of 23 mesophilic and thermophilic proteins [25] showed that the
occurrence of Cys is less in thermophiles than mesophiles. On the other hand, the
occurrence of Val/lle is higher in thermophiles than mesophiles. In addition, it has
been reported that Cys can be replaced by Val/lle to enhance the stability [14].
Interestingly, these trends were reflected in the analysis of amino acid composition.
Further, the charged residues, Lys, Arg and Glu have significantly higher occurrence in
thermophilic proteins than mesophilic ones and the composition of Asp showed a
moderate difference (Figure 4). We have analyzed the composition of charged residues
in the structural homologues of thermophilic and mesophilic proteins and observed that
the thermophiles have more number of charged residues than mesophiles. This result
supports our observation obtained with amino acid sequence analysis.

We have analyzed the performance of different machine learning techniques for
discriminating mesophilic and thermophilic proteins. In this discrimination, we have
used the amino acid composition as the main attributes. We observed that most of the
machine learning methods discriminated the mesophilic and thermophilic proteins
with the accuracy in the range of 84-89% in a set of 4684 proteins. This analysis
showed that there is no significant difference in performance between different
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Fig. 5. Discrimination accuracy in different mesophilic and thermophilic organisms

machine learning methods. Interestingly, the methods neural networks, support vector
machines and logistic functions discriminated mesophilic and thermophilic proteins at
similar accuracy of 89%. The accuracy of identifying thermophilic proteins is 87%
where as that of excluding mesophilic proteins is 96%. The overall accuracy is 89.4%
for distinguishing mesophilic and thermophilic proteins.

The accuracy of discriminating mesophilic and thermophilic proteins in different
families has been analyzed and the results are depicted in Figure 5.

We observed that the proteins in most of the mesophilic families are discriminated
with the accuracy of more than 90%. On the other hand, the accuracy of
discriminating thermophilic proteins showed a vide variation of 65 to 96%. Further
analysis on this family of proteins revealed that the number of proteins in this family
is significantly less (20 proteins) and most of the proteins are showing high sequence
identity with mesophilic proteins. In addition, we have analyzed the discrimination
accuracy of thermophilic (moderate) and hyper (extreme) thermophilic proteins from
mesophilic proteins. Interestingly, we observed that hyper-thermophilic proteins are
discriminated with higher accuracy than moderate thermophilic proteins. The
accuracies of discriminating hyper-thermophilic and thermophilic proteins from
mesophilic ones are, 90% and 73%, respectively.

We have assessed the reliability of the present method by discriminating
mesophilic and thermophilic proteins from different families that are not considered
in the work for training/ testing. We have collected the data of 325 mesophilic and
382 thermophilic proteins from Xylella fastidosa and Aquifex aeolicus families,
respectively. We observed that the present method based on neural networks correctly
identified the thermophilic proteins with the sensitivity of 87.6%. Further, the
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mesophilic proteins are excluded with the specificity of 95.7% and the overall
accuracy is 91.3%. These results demonstrated that our method is performing
extremely well in distinguishing mesophilic and thermophilic proteins.

4 Conclusions

We have developed a rule generator for classifying the stabilizing and destabilizing
protein mutants based on wild type, mutant and three neighboring residue
information. These rules have been effectively used to discriminate the stabilizing and
destabilizing mutants, and predicting the stability of a protein upon point mutation.
Our method could achieve the accuracy of 82% and a correlation of 0.70 for
discrimination and prediction, respectively, just from amino acid sequence. Further,
different machine learning techniques have been analyzed for discriminating the
mesophilic and thermophilic proteins and showed that these proteins are
discriminated with the accuracy of 89%. Our method used simple features and
achieved high accuracy and hence it is suitable for prediction. We suggest that our
method could be effectively used in protein design.
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Abstract. Sequence motifs occurring in a particular order in proteins
or DNA have been proved to be of biological interest. In this paper, a
new method to locate the occurrences of up to five user-defined motifs in
a specified order in large proteins and in nucleotide sequence databases
is proposed. It has been designed using the concept of quantifiers in reg-
ular expressions and linked lists for data storage. The application of this
method includes the extraction of relevant consensus regions from bio-
logical sequences. This might be useful in clustering of protein families
as well as to study the correlation between positions of motifs and their
functional sites in DNA sequences.

Keywords: Regular expressions, protein and nucleotide sequences, se-
quence motifs.

1 Introduction

Research on proteins and DNA has revealed that specific motifs in biological se-
quences exhibit important characteristics [I]. This has spurred the development
of computational methods to search for sequence motifs of biological significance.
Further, the exponential rise in the volume of protein and nucleotide sequences
has necessitated the development of algorithms that are both time and space
efficient to make optimum use of available computational resources. Here, an
efficient method is proposed that locates all occurrences of motifs of biological
interest in a specific order using the concept of quantifiers in regular expressions.
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We refer to motifs that occur in a particular order as ”sequentially separated
motifs”, since they could be separated by intermediate amino acid residues or
nucleotides.

Recent studies have considered sequentially separated motifs as a method
for classifying DNA sequences based on the presence and relative positions
of a few transcription factor (TF) binding sites. These binding sites are of
such importance that several algorithms and online tools are available for their
detection[2],[3],[],[5] . Binding sites are relatively short stretches of DNA, nor-
mally 5 to 35 nucleotides long and occur as consensus regions or well conserved
regions called motifs. It has been established in literature that binding sites are
often found in a well-ordered and regularly spaced manner [6],[7],[S] . In prokary-
otic organisms, the binding sites are located predominantly in the region that
extends about 300 to 600 nucleotides upstream of the transcription start site, in
the promoter regions. However, in eukaryotic organisms, the binding sites, called
cis-regulatory modules (CRMs), usually occur in a fixed arrangement and are
distributed over very large distances. A detailed explanation of eukaryotic pro-
moters can be found in literature [9],[6]. A eukaryotic promoter is considered to
comprise of three CRMs, each having one or more TF binding sites. Since each
CRM has a different function, it will be helpful to have a method that can lo-
cate the distribution of the occurrences of the three CRMs in the order in which
they exist in the sequence. Further, repeated occurrences of CRMs in the DNA
sequence might lead to alternate modes of binding by the same protein, thereby
regulating transcriptional activity. In addition, it may lead distinct proteins to
recognize the identical CRMs occurring at different positions in the sequence.
Also, if the signature motifs for trans-regulatory modules are known, they too
can be detected to achieve a more complete understanding of the the structure
of the gene and its regulation.

Furthermore, sequentially separated conserved motifs have been used to cat-
egorize new and unknown protein structures. For instance, the classification of
T6PP as a member of the haloacid dehalogenase (HAD) superfamily is based
on the presence of three highly conserved motifs that are found in all enzymes
belonging to the HAD family. The three motifs are DXXX(V/T), followed by
(S/T)GX, and finally K(X)6-30)(G/S)(D/S)XXX(D/N), where X denotes a
wild card symbol that can be substituted by any of the 20 amino acids and G/S
signifies the presence of G or S at the particular position in the motif [10],[I1].
The HAD superfamily is further subdivided into three structural groups based
on the length of the sequence between the motifs [I2]. Thus, it can be concluded
that in proteins, the intermediate sequences that separate the sequential motifs
are also biologically significant. The concept of sequentially separated motifs
finds an important application in remote homology detection of proteins. Ho-
mology is generally established by sequence similarity. In the past two decades,
many methods for measuring sequence similarity have been developed. The two
most popular methods are the Smith-Waterman algorithm [I1] and its faster
counterpart, BLAST[I3]. Protein sequence motifs can offer an alternative way
of detecting sequence similarity. By closely studying highly conserved sequence
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motifs, important clues to a protein function might be revealed even if it is not
globally similar to any known protein [I4]. In addition, the sequentially sepa-
rated motifs for most catalytic sites and binding sites are conserved over much
wider taxonomic distances and evolutionary time than the protein sequences
themselves [I5]. Thus, it can be deduced that motifs that are found to occur in a
particular order could represent functionally important regions such as catalytic
sites, binding sites, protein-protein interaction sites and structural motifs.

In view of the biological relevance of sequentially separated motifs, a need is
felt to develop a method that can detect the occurrences of the motifs in large
sequence databases efficiently. The performance of such a method designed to
solve this problem should be judged according to the following criteria:

1. Efficiency: To analyze large nucleotide and proteins sequences (e.g. the hu-
man chromosome 1 contains 240 million nucleotide bases and the proteome
of A. thaliana more than 7,000 protein sequences), the space and time com-
plexity of the method must scale linearly with the sequence length and the
number of sequences. Further, the method should also minimize the num-
ber of iterations and comparisons required to report all occurrences of the
motifs.

2. Flexibility: The motifs should be specified using regular expressions.

3. Accuracy: To identify all locations, including degenerate occurrences and
overlapping occurrences.

4. User-Friendliness: It should be simple to use, platform independent and dis-
play results in an elegant and easily comprehensible manner.

1.1 Existing Algorithms
Two types of pattern matching algorithms are commonly used in biology:

scan for matches. [I6] brought on a series of other software and algorithms,
including PatScan [I7] which searches a dataset for matches against a query
pattern. PatSearch [I8] has added features such as the assessment of the
statistical significance of pattern hits using a Markov chain simulation. The
results of these programs display the entire substring that contains the motif
provided by the user but do not explicitly indicate the individual occurrences
of the motifs. Due to this, the user needs to manually delineate the interme-
diate residues that separate the motifs.

grep-based programs. An example of which is eMOTIF-SCAN, a program
which uses the agrep tool that supports matching and regular expression.
However, it searches only against the eMOTIF database of protein sequence

motifs [19].

The program, Scansite 2.0 [20] searches for up to two motifs and looks for the
occurrences of these motifs in no particular order of arrangement. Motif Scan
[21] searches for motifs against protein profile databases including Prosite [I] and
Pfam [22], and, thus does not provide the users with the option to enter their
own motifs. Though most of the above mentioned programs work efficiently with
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protein sequences, they do not perform well with large sequences. In most cases,
the programs do not execute to completion for very large nucleotide sequences
(150 million bp).

Furthermore, the pattern search present in the PIR database is also extremely
efficient for a single motif (or when a number of motifs can be combined to a
single motif). However, when the specific number of residues between two or
more motifs cannot be identified, two separate PIR pattern searches must be
run and the results compared either manually or through a program written
specifically to obtain the required sequences from the output of the two searches.
This process becomes much more complicated when more than two motifs are
being searched in order in a set of sequences. Finally, in SSMBS, the database of
sequences to be searched for the motif can be specified or uploaded. On the other
hand, in the PIR pattern search, only two options for databases exist if a search
for a user-defined motif must be carried out: UniPotKB and UniRef100. Thus,
when the user wishes to find a number of motifs in order (with an unknown
of large number of residues separating the motifs) in a user specified database,
SSMBS is the only available option.

2 Materials and Methods

2.1 Basic Definitions

If S ={A, C, G, T, U} is the alphabet defined for nucleotide sequences (U for
RNA) and S={A, R, N, D, C,E, Q, G, H, I, L, K, M, F, P, S, T, W, Y,
V} is the alphabet defined for amino acid sequences, then let S, defined over
S, represents the sequence in which the sequentially separated motifs are to be
located. Further, let n = |S| i.e. length of S. Let m be the number of input
sequences.

S[i] denotes the i*" character of S, for i € [1,n]. For i < j <n, S[i,j] denotes
the substring of S starting with the i and ending with the j** character of S.
Thus, the length of S[i,j] isj - 1 + 1.

Let M = { motif;|]1 <14 <5 } be the set of up to five motifs entered by the
user and k = |M]|, i.e. number of motifs, where M is defined over S.

L denotes a linked list whose elements comprise of many other linked lists,
each called L’. I’ contains the starting positions of the occurrences of the M;
such that L = { (8;),(Si+1),---,(Sk) | si is starting position of M;; 1 < s; < n;
1<i<5}

2.2 Use of Quantifiers

Quantifiers, as the name implies, express quantity i.e. how much or how many.
They are used in pattern matching since they allow us to control the amount of
text in a sequence that is to be matched against a pattern. Quantifiers have al-
ready been implemented in several programming languages including JAVA and
Perl and they are an integral part of regular expression matching. In biological
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Sequence A:
TDJ I*\/IOTIFlADYWNCVMUTIFlRAFMDOERMOTIFQFSMSMUTIF%OAH
~

Sequence B:
TDJMOTIFIADYWNCV P\’IUTIFlRAFMDOERMUTIF%FSMSMOTIFQOAH

Sequenc;’ C:
TDJ I‘\’IOTIFlADYWNCVMOTIFlRAFMDOERMOTIF%FSMSMUTIF2OAH
~
Fig. 1. Sequences A, B and C represent the three different query patterns [(.*), (.7) and
(.*7) respectively] used to simultaneously locate the two motifs, motifl (solid block)
and motif2 (grey box) in that order

[MOTIF1)(.+?)[MOTIF2]...MOTIFx]
~ ~~ -
EXPR
Fig.2. FX PR represents the combined query pattern which is formed by appending
the (.%?) quantifier between the k motifs entered by the user

sequences, they can be used to match complex motifs that are defined using
regular expressions.

s a greedy quantifier which tries to match as much text as possible in
the query string. However, ‘7’ is a reluctant quantifier which tries to match as
less text as possible. In this method, ‘minimal matching’ is utilized: the two
quantifiers, ‘¥’ and ‘?” are coupled in the order (.*?7) and appended between the
two motifs motifl, motif2 € M , such that: [motifl](.*?)[motif2]. This enables
the detection of both occurrences simultaneously (Figure [dlc).

This concept can be further extended to simultaneously detect the first oc-
currences of any number of motifs. This can be achieved by appending ‘(.*?7)’
between the motifs to form an expression EXPR as shown in Figure

EXPR suggests that the SSMBS (Sequentially Separated Motifs in Biolog-
ical Sequences) method appends the (.*7) quantifier after every motif till the
k" motif. At the time of execution, the user is asked to specify whether the
sequence file provided contains amino acids or nucleotides. The method exploits
the technique explained above to search for motifs in a defined order in proteins
sequences. However, in case of large nucleotide sequences (>100,000 bp), the
method follows the divide and conquer approach, as outlined in the subsequent
sections.

2.3 Amino Acid Sequences

Let us consider a case in which the user enters five sequentially separated motifs
and a set of 10,000 amino acid sequences. As SSMBS reads each sequence, it
first checks whether there exists, in that sequence, at least a single occurrence
of the five motifs in the order specified by the user. If a match is found, then
it attempts to find all occurrences of the motifs in that particular sequence. If
there does not exist any match, it moves to the next sequence and performs the
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same check. To find all occurrences of the five sequentially separated motifs in
these sequences, SSMBS first simultaneously locates all occurrences of the last
two motifs i.e. motif4 and motif5, followed by occurrences of motif3, motif2 and
finally motifl. An explanation of this procedure for k motifs follows.

Locating all occurrences of k motifs. For k motifs entered by the user (k
< 5), the last two motifs are motif ;) and motif, € M respectively. Let ‘R’
be the set of remaining motifs i.e. motif; to motifx_o € M. The terms ‘last two
motifs’ and ‘R’ hold significance as they divide the method into two fundamental
parts: first, finding all occurrences of the last two motifs and second, finding all
occurrences of the R motifs in desired order. To locate all occurrences of the
last two motifs, the method appends the ‘(.*7)’" quantifier between the motifs
to locate their occurrences simultaneously in the order, (k-1)* motif followed
by the k'™ motif. The matching performed by the method returns the starting
index of motif( ;) and the end index of motif(y). Further, a series of iterations
are performed to extract all occurrences of the two motifs in the specified order.
The procedure of the first step is illustrated in the form of a pseudo code as
shown below:

Pat = [motif(,_1)] (.*?)[motif,], SEQ = S

do {

if(find(Pat)) // returns true if a match is found.

{ start-index-m(;_;) = start(); // returns starting index of m(,_q)
end-index-m; = end(); // returns ending index of my.
start-index-m; = start(matcher (motify,SEQ.substring(start(),end());
// searches for motif; only at the end of the substring.
SEQ.substring(start(),end());

Linked list changes Q);

SEQ = S.substring(start-index-my_;, start-index-my-1)

+ S.substring(start-index-mg41,n) ;

MOTIFxk -« NDRKEMOTIFx_1LVAY MOTIF,AMTEMOTIF,LGL

SEQ

}

else { SEQ = S.substring(start-index-my_1 + 1, n);
MOTIF, _1{NDRKEMOTIF, {LVAYMOTIFxAMTELPMOTIFxLGL

}

} while(no more matches of Pat can be found)

}

The second step begins when no more occurrences of the last two motifs can
be found. In this step, all occurrences of the k motifs are found in the following
order: (k-p)*™ motif (where p = 2,3,...,(k-2)) to 1°* motif. Thus, while searching
for the occurrences of the (k-p)" motif, the method has already obtained all the
occurances of the (k-p+1)*" to k" motifs. All occurrences of (k-p+1)t" to k*™®
motifs are stored as a linked list L’ in the form (start positions of (k-p+1)*", (k-
pH2)B , k*® motifs). To update these ordered sets by appending the
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|: start_index_m-1 start_index_my }L-
L
start_index_mi-, start_index_m

Fig. 3. Linked List appending and changes

L

start position of the (k-p)*™ motif at the beginning of L', it goes on comparing
the end index of the position of the motif being dealt with, which is the (k-
p)"motif, with the first entry of every ordered set. The comparison is made
at every iteration in which a new occurrence of motif_,) is detected. After
successfully attaching the start index of motif_,) to L, the method appends
L’ to L.

For the subsequent iterations of this step, SSMBS retains only those elements
or ordered sets to which the append was carried out successfully. Thus, at every
iteration, the unwanted sets are eliminated, thereby shortening the size of the
linked list L, to be searched in the iterations to follow (Figure []).

2.4 Nucleotide Sequences

Unlike amino acids sequences, nucleotide sequences are very large often com-
prising of millions of bases. Their large size poses a major challenge in locating
sequentially separated motifs because it is a memory exhaustive process. Ac-
cordingly, SSMBS adopts a divide and conquer strategy, breaking down the
large sequence into small fragments comprising of 3,500 nucleotides. The value
of 3,500 nucleotides per fragment is an optimal value that was heuristically de-
termined after considering the time taken by the program implementing this
method for varying sizes of the fragments. Let the fragments be denoted by Fg
where s ranges from 1 to (n/3500 + 1). The method begins locating the occur-
rences of the sequentially separated motifs by traversing each fragment starting
from F;. The fragment in which the first occurrence of motif; is detected is
marked Fp,. Attempts to detect the occurrences of other motifs are carried out
only in the fragments that follow Fp,. In addition, the method also checks for
any occurrences of the motifs that might overlap between regions common to
two consecutive fragments, say F, and F,41 where a < (n/3500 + 1). It does
so by searching for an occurrence of either of the k motifs in the string F, +
Fat1(‘“+’ denotes concatenation) and confirming whether the starting position
of the substring that matches any of the motifs is less than the length of F, i.e.
|F,| and the ending position is greater than |F,|. Finally, the method collates
all occurrences of the k motifs and displays the results by traversing the linked
list L, which stores the individual occurrences of the k motifs as in the case of
amino acids sequences explained earlier.
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Locating overlapping occurrences of motifs. The proposed method lo-
cates all overlapping occurrences of a motif as well and thus misses no occur-
rence. For instance, the motif Mexmpr = ATA{3,5} can be found to occur six
times in a sequence of the form ATAATAATAATAATA i.e three occurrences
of ATAATAATA, two occurrences of ATAATAATAATA and single occurrence
of ATAATAATAATAATA. To report such overlapping occurrences, the method
initially attempts a greedy match to find an occurrence of the Meympr in the
sequence. For every occurrence of Meyxmpr, SSMBS then attempts a reluctant
match to find occurrences of the motif that might exist within or that overlap
with the matched string that was returned as a result of the greedy search. This
is achieved by appending the reluctant quantifier ‘?’ to Mexmpi to form the new
expression Mexmpl’ = ATA{3,5}? Now, SSMBS matches Mexmpi’ against the sub-
string that matches Mexmpi. Thus, the reluctant match returns (ATAATAATA: 1
to 9) as the first overlapping occurrence. Successive iterations of this step return
all possible overlapping occurrences.

2.5 Time Complexity

The computational complexity of SSMBS method is explained based on the
following points:

1. Complexity with regard to number of proteins sequences: The SSMBS
method searches for occurrences of k motifs only in those sequences that have
at least one occurrence of EXPR. As explained earlier, EXPR detects the
ordered occurrence of k motifs in O(n) time, where n is the length of the
sequence. If there are m sequences in all, then in O(mn) time, the method
searches for all sequences that have at least one occurrence of EXPR. Hence,
the method scales linearly with the number of input sequences. This is no-
table especially in the context of the exponential rise in the size of sequence
databases.

2. Complexity with regard to locating all occurrences in a given se-
quence: The method is able to detect all ordered occurrences of k motifs in
k-1 scans of the sequence, as compared to k scans in a brute force approach.
Further, as the computation grows, it optimizes by reducing the length of the
query sequence based on motif positions located in previous iterations. For
instance, while searching for the motifg, the algorithm searches only till the
last occurrence of motifr41 in the sequence. Specifically, the performance of
the method is bounded polynomially by O(n*¥~1).

3. Complexity specifically for nucleotide sequences: By following the
divide and conquer strategy in nucleotide sequences, the method success-
fully avoids the out of memory problem no matter how large the nucleotide
sequence is. As in the case of proteins sequences, the complexity of the
algorithm scales linearly with the size of nucleotide sequence. Thus, the al-
gorithm can be applied to search for specific regions in entire genome of
different organisms.
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Biological Applications

3.1 Motifs Specified Using Regular Expressions

Motifs with biological importance often occur with some mutations or substi-
tuted residues in the sequence. Thus, regular expressions are used to specify such
motifs in SSMBS. This process is quite similar to that found in the PIR pattern
search. However, one main difference between the SSMBS algorithm and the
PIR pattern search is that SSMBS can search for multiple motifs in a particular
order, while PIR’s pattern search is limited to those patterns in which the num-
ber of intervening residues between two motifs is at least approximately known.
A few examples are:

1.

String motifs: Motifs such as CXXCXXC will match any substring that has
first, fourth and last characters as C. ‘X’ denotes a wild card residue that
can match any amino acid or nucleotide.

Range motifs: Motifs such as SEK{2,5}XXC would match SEKKAEC, SEKK-
KAEC...SEKKKKKAEC.

Either/or motifs: Certain amino acid residues or nucleotides in motifs can
be specified using the ‘|” operator. For instance, AA(B|C)DE will match
AABDE as well as AACDE. B and C can also be replaced by complex motifs
to form a motif of the form AA(SEKXXAF)|(SEKP{2,4}DFX)DE.

. Start of Sequence motifs: If the motifs are prefixed by °, the match will be

performed at the start of the sequence. Example, “CDG will match only a
CDG occurring at the start of the sequence and nowhere else in the string.
End of Sequence motifs: The motifs that are suffixed by $ will be matched
only at the end of the sequence.

Class motifs: For motifs in which amino acid residues or nucleotides are
enclosed in square brackets, the method will match any of them in any order
against the sequence. For example, ABC[EFGH]| will match ABCEFGH,
ABCEFHG, ABCE, ABCGH etc.

Negative class motifs: If * is prefixed to the characters that are inside the [ ],
SSMBS will ignore all matches of substrings that have the characters placed
in []. For example, ABC["EFGH] will match ABC, ABCD but not ABCE i.e.
all substrings beginning with ABC and not ending with E or F or G or H.
Multiple motifs can also be combined to form a single motif and searched ac-
cordingly. For instance, a motif of the form AATAX{3,10}GACATTX{20,30}
TCACTG will attempt to match three smaller motifs in the order motif;=AA
TAX, motifo=GACATT and motif3=TCACTG such that 3-10 nucleotides
separate motif; and motifs, and 20-30 nucleotides separate motifs and motifs.
Motifs with hydrophobic or polar residues: Hydrophobic or polar residues
can be substituted by the single characters B or Z respectively.

3.2 Case Study: Members of the Haloacid Halogenase HAD Family

Based on the presence of three sequentially separated motifs, DXXX(V|T),
(S|T)GX, KX16-30(G|S)(D|S)XXX(D|N), protein sequences can be categorized
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to belong to the HAD family of proteins [I0],[7]. Thus, the proposed method was
executed over a set of 15 protein sequences that belong to the enzyme trehalose-
6-phosphatase. A sample of the output generated by SSMBS is shown below.

Input FileName : fasta.txt

No of motifs to be searched : 3

Motif 1 : DXXX(VIT)

Motif 2 : (SIT)GX

Motif 3 : KX{16,30}(G|S) (DIS)XXX(DIN)
OutPut FileName : filenamel.doc

OUTPUT OF SSMBS

>1L6R:A|PDBID|CHAIN|SEQUENCE

Motif positions for occurrence number: 1

(DGNLT: 13 to 17)

(SGN: 45 to 47)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Position of motifs with intermediate residues for occurrence number: 1
(DGNLT: 13 to 17)

(DRDRLISTKAIESIRSAEKKGLTVSLL)

(SGN: 45 to 47)
(VIPVVYALKIFLGINGPVFGENGGIMFDNDGSIKKFFSNEGTNKFLEEMSKRTSMRSILTNRWREASTG
FDIDPEDVDYVRKEAESRGFVIFYSGYSWHLMNRGED)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Motif positions for occurrence number: 2

(DGNLT: 13 to 17)

(TGF: 115 to 117)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Position of motifs with intermediate residues for occurrence number: 2
(DGNLT: 13 to 17)
(DRDRLISTKAIESIRSAEKKGLTVSLLSGNVIPVVYALKIFLGINGPVFGENGGIMFDNDGSIKKFFSN
EGTNKFLEEMSKRTSMRSILTNRWREAS)

(TGF: 115 to 117)

(DIDPEDVDYVRKEAESRGFVIFYSGYSWHLMNRGED)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Total number of occurrences: 5

>1L6R:B|PDBID|CHAIN|SEQUENCE

Motif positions for occurrence number: 1

(DGNLT: 13 to 17)

(SGN: 45 to 47)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Position of motifs with intermediate residues for occurrence number: 1
(DGNLT: 13 to 17)
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(DRDRLISTKAIESIRSAEKKGLTVSLL)

(SGN: 45 to 47)
(VIPVVYALKIFLGINGPVFGENGGIMFDNDGSIKKFFSNEGTNKFLEEMSKRTSMRSILTNRWREASTG
FDIDPEDVDYVRKEAESRGFVIFYSGYSWHLMNRGED)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Kok oK oK K K K o oK oK oK K K o oK oK oK K K o ok ok ok K K o ok ok ok K K ok ok ok 3K 3 ok oK K K 3 ok oK K K K ok ok oK K K ok ok ok K ok ok ok K ok ok ok ok K ok

93 hits were found in 15 sequences.
sk ok sk e ok sk s sk o ke sk sk e ks s sk sk e ok sk s sk s s sk s s ok sk s e ks s e ks s ok sk sk s sk sk s sk sk s ksl sk sk sk sk ek sk ok

Total sequences in file : 15

Running on machine : igraph9.physics.iisc.ernet.in
Program stated at (h:m:s:ms) : 3:40:6:559 on 2/3/07 3:40 AM
Program stop at (h:m:s:ms) : 3:40:6:994 on 2/3/07 3:40 AM
Executed Time (h:m:s:ms) : 0:0:0:435

The output reports occurrences of the three motifs in each of the 15 sequences
in the particular order as specified. This is in accordance with the results pub-
lished in literature [12]. Hence, it can be concluded that all of the 15 sequences
belong to the HAD family.

This test, however, could not be run directly on the PIR pattern search as
three different motifs are be specified simultaneously, for which there is no pro-
vision on the web-server. On checking PROSITE for HAD, haloacid halogenase
and combinations thereof, no signature motifs were found that could be used to
provide a pattern to the PIR search.

3.3 Case Study: Transcription Activation of CRP in E.col:

The proposed method was tested to run over the genome sequence of E.coli to
locate the occurrences of the CRP binding complex. According to the litera-
ture [2], the consensus for the activating regions of the CRP protein is given
by the sequence S; = TGTGAX{5,7}TCACA. The whole complex inclusive of
the CRP with the core promoter sites is specified by the consensus sequence
So = TGTGAX{5,7}TCACAX{15,23} TATAA [2]. SSMBS located 28 identical
matching occurrences of S; and a single identical occurrence of Sy in the genome
sequence. A section of the output for Sy search is shown below.

No of motifs to be searched : 1
Motif 1 : TGTGAX{5,7}TCACAX{15,23}TATAA

OUTPUT OF SSMBS

>gi|49175990 | ref INC_000913.2| Escherichia coli K12, complete genome
Motif positions for occurrence number: 1

.. .CAATCTTTA

(TGTGATACAAATCACATAAATACCCCTTTAATGTTATAA: 1986066 to 1986104)
AAATGATAAT. ..
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3k oK oK K K K o ok oK oK K K o ok oK oK K K o ok ok ok K K ok ok ok K 3 3k oK ok K K 3 oK oK K K oK oK K K K oK ok ok K K ok ok ok K ok ok ok 3 ok ok ok o K

1 hit(s) was found in 1 sequence(s).
KKK KK KK KK KK KKK KKK Sk KKK KoK K KK KK Sk K ok KK kKK ok oK KK Sk ok ko o

Running on machine : igraph9.physics.iisc.ernet.in
Program stated at (h:m:s:ms) : 21:39:12:101 on 2/6/07 9:39 PM
Program stop at (h:m:s:ms) : 21:39:13:585 on 2/6/07 9:39 PM
Executed Time (h:m:s:ms) : 0:0:1:484

3.4 Case Study: Zinc Finger Binding Motif

In order to compare SSMBS with with the PIR Pattern Search in terms of speed
and accuracy, the extremely well knowm Zinc Finger Binding Motif HX3 HXo3
CXXC was considered. SSMBS was used to search for this motif in the 90%
non-redundant dataset of PDB chains containing 14,423 chains. It found 33 hits
in 33 sequences in 7 seconds. A section of the output for the search from SSMBS
is shown below.

No of motifs to be searched : 1
Motif 1 : HX{3}HX{23}CXXC

OUTPUT OF SSMAS

>1jrx_B mol:protein length:571 Flavocytochrome C
Motif positions for occurrence number: 1
.. .EVAETTKHE (HYNAHASHFPGEVACTSCHSAHEKSMVYCDSC: 54 to 85)HSFDFNMPYA...

Total number of occurrences: 1

>1wjd_B mol:protein length:55 Hiv-1 Integrase
Motif positions for occurrence number: 1
.. .DGIDKAQEE (HEKYHSNWRAMASDFNLPPVVAKEIVASCDKC: 12 to 43)QLKGEAMHGQ...

Total number of occurrences: 1

3k >k 3K 3k 3k 3k >k 3k 3k 3k 5k %k 3K 3k 3k 3k 5K 3k 3k 3k 5k %k 3K 3k 3k 3k %k >k 3k 3k 3k 5k %k 3k 3k 3K 3k 3k 3k %k 5k 3k 3k 3k 5k %k >k 3K 3K 3k 3k %k %k >k 3k 3k 3k %k %k K >k >k 3k %k %k kK Kk k

33 hits were found in 33 sequences.
sk ks e ok sk s sk sk ke sk sk e ks s sk sk ke ok sk s sk s s sk s s sk s e ks s e ks s ok sk sk sk sk sk s ksl sk e ksl sk e ksl sk ek sk ok

Running on machine : igraph9.physics.iisc.ernet.in
Program stated at (h:m:s:ms) : 7:28:58:273 on 6/14/08 7:29 AM
Program stop at (h:m:s:ms) : 7:29:5:279 on 6/14/08 7:29 AM

Executed Time (h:m:s:ms) : 0:0:7:6
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3.5 Case Study: Eukaryotic DNA Topoisomerase II

Following the results of the previous case study, another was carried out with the
signature motif of the eukaryokic DNA Topoisomerase II protein: (L|I|V|M|A)
Ro—1 EG(DIN)SAFy_1 (S|T]A|G). A single sample output is shown, where the
source file is the same as the earlier case study.

No of motifs to be searched : 1
Motif 1 : (LITIVIMIAR{0,1}EG(DIN)SAF{0,1}(SITIAIG)

OUTPUT OF SSMAS

>1z0w_A mol:protein length:207 Putative Protease La Homolog Type
Motif positions for occurrence number: 1
... IQFVGTYEG(VEGDSAS: 91 to 97)ISIATAVISA...

Total number of occurrences: 1

3k >k 3K 3k 3k 3k >k 3k 3k 3k 5k %k 3K 3k 3k 3k 5K 3k 3k 3k 5k %k 3K 3k 3k 3k %k >k 3k 3k 3k 5k %k 3k 3k 3K 3k 5k 3k 5K 5k 3k 3k 3k 5k %k >k >k 3K 3k 3k %k %k >k 3k 3k 3k %k %k K >k >k 3k %k %k K Kk k

25 hits were found in 25 sequences.
sk ok sk sk ok ok ok sk sk sk ok sk sk sk ok ok sk sk sk sk ok ok sk sk ok sk sk sk sk e sk sk sk sk sk sk sk sk sk s ok sk sk sk ok sk sk sk ok ok o

Running on machine : igraph9.physics.iisc.ernet.in
Program stated at (h:m:s:ms) : 8:6:56:702 on 6/14/08 8:07 AM
Program stop at (h:m:s:ms) : 8:7:4:77 on 6/14/08 8:07 AM
Executed Time (h:m:s:ms) : 0:0:8:375

The same searches for the last two case studies (outlined in sections 4] and
[BA) performed by the PIR pattern search over the the UniRef100 database (with
its several thousand sequences) timed out after 43 and 22 minutes respectively.
This search was not attempted for E. coli genome case study since PIR pattern
search cannot be used for nucleotides. The web-server has the additional dis-
advantage of depending upon the internet connectivity of the user, rather than
being freely available and utilized. Thus, for simple common motif searches over
large databases, perhaps the SSMBS algorithm is easier to use.

4 Implementation

SSMBS requires three input: a file of protein or nucleotide sequences in FASTA
format, the number of motifs to be searched and the motifs of interest. The
program will generate a detailed output containing the location of the motifs and
the residues which separate the motifs occurring in the given order. An option
is also provided to the user to specify the maximum number of occurrences
to be reported per sequence. This is particularly helpful in case this method
reports a large number of occurrences for the specified motifs. The number of
motifs that can be detected in a particular sequence is restricted to five due to
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the high time complexity of the method for more motifs. A standalone version
of SSMBS can be obtained upon request by sending an e-mail to Dr. K. Sekar
(sekar@serc.iisc.ernet.in or sekar@physics.iisc.ernet.in). We plan to create a web-
based computing server to locate the sequentially separated motifs in various
biological sequence databases such as SWISS-PROT, PDB, PIR and Genome
Database.

The SSMBS method has been implemented using JAVA since it has an in-
built garbage collector that works with commendable efficiency. It improves the
performance of the program by releasing occupied portions of the memory that
are no more in use during run time. Since JAVA is also a platform independent
language, the program can be executed on any operating system. The program
has been successfully tested on Microsoft Windows (XP), Linux (Red Hat 9.0)
and Sun Solaris.

5 Conclusion

Sequentially Separated Motifs in Biological Sequences (SSMBS) is a motif local-
ization method used to locate user-defined motifs in both nucleotide and protein
sequences. It has been developed to provide a comprehensive solution to the task
of locating sequence motifs occurring in a particular order in large biological se-
quence databases. The method also provides the option for the user to specify
motifs using regular expressions. By default, the method locates all the overlap-
ping occurrences of the motifs. The method has the advantage of locating the
ordered occurrences of up to five motifs in any user-defined database in FASTA
format. It is a rapid method and clearly indicates the location and occurrence
of the motifs.
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Abstract. Recent evidence suggests that SUMOylation of proteins plays
a key regulatory role in the assembly and dis-assembly of nuclear sub-
compartments, and may repress transcription by modifying chromatin.
Determining whether a protein contains a SUMOylation site or not thus
provides essential clues about a substrate’s intra-nuclear spatial associa-
tion and function.

Previous SUMOylation predictors are largely based on a degenerate
and functionally unreliable consensus motif description, not rendering
satisfactory accuracy to confidently map the extent of this essential class
of regulatory modifications. This paper embarks on an exploration of
predictive dependencies among SUMOylation site amino acids, non-local
and structural properties (including secondary structure, solvent acces-
sibility and evolutionary profiles).

An extensive examination of two main machine learning paradigms,
Support-Vector-Machine and Bidirectional Recurrent Neural Networks,
demonstrates that (1) with careful attention to generalization issues both
methods achieve comparable performance and, that (2) local features en-
able best generalization, with structural features having little to no im-
pact. The predictive model for SUMOylation sites based on the primary
protein sequence achieves an area under the ROC of 0.92 using 5-fold
cross-validation, and 96% accuracy on an independent hold-out test set.
However, similar to other predictors, the new predictor is unable to gen-
eralize beyond the simple consensus motif.

1 Introduction

SUMOylation is a post-translational modification attaching a small ubiquitin-
like modifier (SUMO) covalently to a target protein. It has been shown that
SUMO plays an important role in many essential biological functions, such as
preserving the integrity and function of intra-nuclear compartments, chromatin
organization and ultimately gene regulation NQ, @} By modifying histones, dy-
namically competing with acetylation and ubiquitylation, SUMOylation appears
to play a pivotal role in repressing transcription. Dysfunction of the SUMOy-
lation pathway is related to several neurodegenerative diseases in human, such
as Huntington’s disease ﬂa] The significance of the SUMO conjugation system
is further underscored by the apparent conservation through evolution among
eukaryotic organisms.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 28«@ 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. SUMOylation pathway. The figure shows the role of the involved proteins
in the SUMOylation pathway. E1 activates SUMO in an ATP requiring process. E2
attaches SUMO to the Lysine in the target protein, supported by E3. SUMO-protease
removes SUMO from the protein, now free to be re-used in another cycle.

The SUMOylation pathway comprises four proteins: E1 activating enzyme,
E2 conjugating enzyme, E3 ligase and SUMO-protease (illustrated in Fig. [).
E1 prepares SUMO for binding to the target protein (the substrate). E2 and E3
interact directly (in a concerted fashion) with the substrate at the SUMOylation
site, usually conforming to the consensus motif, KxE (where ¥ is a large hy-
drophobic residue, K is Lysine and E is Glutamic acid). E2 and E3 mediate the
binding between SUMO and the central Lysine ] Finally, the SUMO-protease
disassociates SUMO from the target protein.

Unfortunately, the motif is an unreliable predictor. Some substrates are mod-
ified on sites not matching the consensus motif B] Furthermore, not every con-
sensus site in a protein is modified by SUMO. It has been suggested that there
are additional factors, such as the appropriate presentation of the substrate se-
quence and protein sub-cellular location, which determine whether modification
is completed [d)].

To date, three specialized SUMOylation site predictors have been published.
SUMOplotE is commercial. SUMOsp ﬂﬁ] combines two algorithms originally
designed for phosphorylation site prediction (the scoring-based function GPS HE]
and an iterative statistical approach MotifX [13]). SUMOpre [16] is based on a
probabilistic method that optimizes the entropy of the motif.

An immediate application for in silico prediction is to determine the putative
SUMOylation sites in the four core histones of S. cerevisiae. Nathan et al. [@]
demonstrated that H2A, H2B, H3 and H4 are frequently SUMOylated. However,
Nathan and colleagues were only able to experimentally identify the exact loca-
tion of a fraction of the expected sites. The SUMOylation sites of the histones do
not conform to the consensus motif. SUMOpre and SUMOsp both fail to predict
a single SUMOylation site in protein sequences of the four histones. This ex-
emplifies the need for a SUMOylation site predictor that captures dependencies
beyond the consensus motif.

! http://www.abgent . com/doc/sumoplot
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It is understood that SUMOylation site recognition by E2 and E3 depends
mainly on the amino acid composition in the immediate neighbourhood of the
central Lysine. However, it is unclear (1) if there are relevant dependencies be-
tween central residues and surrounding residues not captured by simpler models,
(2) if the site’s structural presentation influences binding and the computational
recognition of it, and (3) if sequence conservation can be used to improve the
recognition of functional sites. In this study, we investigate the ability of two
machine learning techniques in predicting SUMOylation sites. Support-Vector-
Machine (SVM) [15] and Bidirectional Recurrent Neural Networks (BRNN) [2]
have both been successful in incorporating a range of dependencies into biolog-
ical sequence models. To evaluate the contribution of dependencies putatively
relevant to SUMOylation, we explore a range of features and functions for pre-
senting our data to these machine learning algorithms.

SVMs use kernels to map samples into a high dimensional feature space to find
the best separating decision hyperplane between the two classes (by maximizing
the margin between them). In this study we investigate standard vector-based
kernels as well as sequence-adapted kernels, including the string P-kernel ﬂ] and
the local alignment kernel ﬂﬁ], all acting on a fixed sequence-window around
Lysine residues.

In the BRNN, the sequence input is instead fed iteratively into a network
of interconnected nodes with feedback connections incorporating a trace of past
sequence inputs. A BRNN is thus capable of accounting for sequence information
beyond that of a current input (here coming from both a downstream and an
upstream direction). The BRNN uses a gradient-based learning algorithm @],
which involves updating network “weights” to minimize the difference between
predicted and target values.

We investigate the usefulness of secondary structure (SS) and solvent acces-
sibility (SolvAcc) for SUMOylation site recognition. Unfortunately, experimen-
tally resolved structures are available for only a fraction of known SUMOylated
proteins, hence both SS and SolvAcc are obtained from predictors. We use the
continuum secondary structure predictor, CSSP (with a reported Q3 = 77%) B]
and the solvent accessibility predictor, ASAP (with a correlation coefficient of
0.69) [18].

The present paper is organized as follows. First, we give an overview of the
SUMOylation sites and analyse their distribution in our dataset. Second, we in-
vestigate the abilities of the different machine learning approaches when applied
directly on the primary data and then with additional features. In the last sec-
tion, we compare the best model with previous predictors, SUMOplot, SUMOsp
and SUMOpre.

2 Methods

2.1 Dataset

This study uses the dataset of Xu et al. m] only containing proteins with at
least one SUMOylation site. Using the same strategy as Xu et al. for dividing
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the data results in 144 proteins used for training and testing, and 14 proteins
set aside for final validation.

The 144 proteins contain a total of 241 validated SUMOylation sites, which
collectively form the positive class. Roughly 68% of the SUMOylation sites con-
tain the consensus motif. The set of 5,741 Lysines which are not modified by
SUMO form the negative class. The 13 proteins in the hold-out set contain 27
sites of which 48% match the consensus. Noteworthy, the resulting dataset is
strongly unbalanced and could bias the method to prioritize the larger (nega-
tive) class. Steps are taken to investigate any effects of this imbalance.

Redundancy reduction of sequence similarity is not performed. Standard re-
dundancy reduction targets the overall sequence similarity within a dataset and
does not reduce the similarity of the relatively short SUMOylation sites.

When a numerical encoding is required (e.g. when using vector-based kernels),
each amino acid in the sequence is represented by a one-hot bit vector (“plain”) or
the position-specific score profile produced by psi-Blast ﬂ] for the protein (“pro-
file”). The “plain” encoding is neutral in that no similarities are incorporated a
priori. The “profile” encoding reflects the evolutionary divergence between ho-
mologous proteins, making available information about sequence conservation.
Such “profiles” have found great utility for predicting structural features from
sequence. In either case, the full sequence is represented by concatenating the
position-specific vectors.

We apply CSSP (using default setting) to predict the secondary structure from
primary sequence. The secondary structure is represented by the probability
of a residue to adopt each of the three considered classes (helix, sheet, coil).
ASAP provides predicted residue-wise relative solvent accessibility (using default
settings). The predicted value is normalized to range between zero and one (with
one indicating a maximally exposed residue). In either case, each residue-wise
prediction is concatenated to the “plain” or “profile” encoding.

2.2 Cross-Validation and Evaluation

We evaluate every predictor configuration using 5-fold cross validation, where
the dataset is randomly divided into five subsets. All but one of the five are used
for training with the remaining one used for testing. This routine is repeated
until all five subsets have been used for testing exactly once. In most cases, each
evaluation is then repeated five times, with averages and standard deviations
reported. To evaluate the performance we compare the predictions with the
known positives and report on the correlation coefficient (CC), the sensitivity
(SN), specificity (SP), and, the area under the ROC (AUC) (see e.g. [d] for
standard definitions). Only the AUC is not influenced by the arbitrary setting of
a specific classification threshold and we thus use this as the primary measure.
The large number of negatives makes it easy to reach high specificity by simply
predicting all but a few certain as negatives. We do revert to CC, SN and SP to
discuss specific issues and to compare with previous results.
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Finally, trying a large number of configurations and selecting parameter values
on basis of test results will impart some selection bias. We therefore report
and rely on results for the hold-out set, which has not influenced any predictor
settings.

2.3 BRNN

A BRNN first centered on a particular position in a sequence (in our case this
is always a Lysine). Then, in an iterated fashion it processes w,, residues on the
N-terminal side and w, residues on the C-terminal side, from both flanks and
working towards the centre (in steps of w, and w,. residues, respectively). The
hidden nodes in this network are divided into two “wheels”, serving as feedback
modules in the N-terminal and C-terminal direction, respectively. Each wheel is
equipped with a specified number of nodes, effectively controlling the trace of
input from the flanks. The influence decays with the distance to the centered
Lysine.

Tuning the internal weights of the BRNN is an iterative process, requiring
many passes through the training set. With an independent test set left for the
final evaluation, we monitor the performance on the cross-validation test set of
each fold and stop training when the performance starts to deteriorate.

The unbalanced dataset could potentially also compromise performance. In
addition to the original training set we create a balanced set by sampling positive
and negative training data with equal probability. However, during testing all
positives and negatives from the test set in the particular fold are evaluated.

2.4 SVM and Kernels

To train the SVM we extract a sequence window covering w,, residues towards
the N-terminus of the protein and w, residues to the C-terminus surrounding
every Lysine in the dataset. To account for the imbalance of the dataset, we
evaluate the influence of class-specific soft margin parameters, C;. and C_, for
positives and negatives, respectively.

Apart from window size and C-values, the performance also depends on the
choice of the kernel. Here, we evaluate five different kernels, the three standard
kernels: linear, radial basis function (RBF) and polynomial kernel, all requiring
numerical input (“plain” or “profile” encoding) and two sequence based kernels
which operate directly on the sequence data in the window.

Haussler proposed a string kernel known as the string P-kernel that probabilis-
tically evaluates (by convolution) the similarity between sequences by exploring
their alignment with all ancestral sequences [7]. Since we are only dealing with
fixed-length (N = w,, + 1 + w.) amino acid sequences without gaps, the string
P-kernel is computed as Kp(x,y) = Hf\il > aca Pla)P(zi|a) P(y;|a) where A
is the amino acid alphabet and x and y are the two amino acid patterns being
evaluated. The prior and conditional probabilities of amino acids are taken from
the data used to create the BLOSUMG62 substitution matrix.
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In contrast, the local alignment kernel compares two sequences by explor-
ing all their alignments including those with gaps ﬂﬁ] An alignment between
the two sequences is quantified using an amino acid substitution matrix (here
BLOSUMG62) and a gap penalty setting (we use the default setting). The contri-
bution of non-optimal alignments to the final score is controlled (we use 8 = 0.1
which implies that many local alignments influence the result). All kernels are
normalized.

3 Results

3.1 Dataset Analysis

This section illustrates the discrepancy between the dominant consensus motif
and alternative SUMOylation sites.

165 out of the 241 sites in the training set have the consensus motif of
VKxE. The motif seems to be direction dependent, reading in direction of the
C-terminus. However, there are four validated SUMOylation sites which show
the reverse motif. As shown in Tab. @] a simple regular expression parser for
the consensus motif can achieve a CC of 0.68 — exceeding the 0.64 reported for
SUMOpre — by identifying the 165 SUMOylated sites containing the consensus
motif and missing 76. However, it wrongly predicts 88 sites to be SUMOylated. It
should be noted that on a proteomic scale the dataset contains an unrealistically
high proportion of SUMOylation sites so the estimates are optimistic.

The difficulty of discriminating between SUMOylated and non-SUMOylated
sites on basis of the consensus is illustrated in Fig. 2a-b using sequence Logos
of both positives and negatives that match the motif @] A Logo of the known
SUMOylation sites not matching the consensus motif is shown in Fig. Ze. The
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Fig. 2. Comparison between the sequence Logos of SUMOylated and non-
SUMOylated sites as well as site distribution in the dataset. Panel a shows
the sequence Logo created from 165 SUMOylated sites containing the consensus motif
(positive class). Panel b shows the Logo of 88 non-SUMOylated sites which contain
the consensus motif. Panel ¢ shows the Logo of the remaining 76 non-consensus sites
of the positive class. Panel d shows a pie diagram of the SUMOylation distribution in
the dataset.
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central Lysine is still predominantly flanked by Glutamic acid (E) on the C-
terminal side, however the N-terminal hydrophobic residue is missing.

Fig. B shows the distribution of consensus vs non-consensus SUMOylation
sites in the dataset of 144 proteins. 56% of the proteins have a single SUMOy-
lation site only of which two thirds are consensus sites. A similar ratio can be
observed for proteins, which contain more than one SUMOylation site. Only 12
proteins contain consensus as well as non-consensus sites. This indicates that
there is no cascade effect, where the “strong” consensus site is SUMOylated first
and then aids in the SUMOylation of “weaker” non-consensus sites.

3.2 Performance of BRNN

The optimal parameter setting of the BRNN was determined empirically. The
window size of w, = 1 and w. = 3 has the highest AUC. Smaller windows give
worse accuracy while larger windows do not bring any improvements. Tab. [I]
summarizes the performance of several settings of hidden nodes, and on balanced
and unbalanced presentation of data.

The performance is rather even across all settings. The BRNN performs
slightly better when trained on the unmodified, unbalanced dataset. Increas-
ing the number of hidden nodes appears to only decrease accuracy — suggesting
that the site is simple to represent. The simplest topology with one hidden node
in each wheel, trained without compensating for the class imbalance provides the
best result with an average AUC of 0.93 (henceforth referred to as BRNNZ¢st),
The BRNNZ¢$* model contains 125 parameters to be optimized during training
on approx. 4,800 samples. We do not observe a trend to overfit, which indicates
a sufficient amount of training samples.

Table 1. Overview of the performance of examined BRNN settings. Average
area under the ROC (AUCQC) of different benchmark settings for BRNN (five times
repeated).

Dataset hidden AUC
nodes (sd)
unbalanced| 2 ]0.923 (0.006)
unbalanced| 10 [0.919 (0.004)
unbalanced| 20 |0.914 (0.007)
balanced 2 10.895 (0.012)
(0.007)
(0.010)

balanced 10 10.906 (0.007
balanced 20 ]0.906 (0.010

3.3 Performance of SVMs

In this section the performance of several SVM-settings are evaluated. Kernel,
C-values and window size are problem specific and thus determined empirically.
Fig. Bl exemplifies the influence of the choice of window size, as well as C-values
for the linear, RBF and string P-kernel respectively. The optimal window sizes
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Fig. 3. Performance of different SVM settings. Each panel exemplifies the AUC
on the test set for different configurations with varying window sizes (upper panels)
and C-values (lower panels) for the linear, RBF and P-kernel respectively.

Table 2. Overview of the performance of the examined machine learning
methods. The methods are ordered according to the average AUC, achieved by the
different kernels and BRNNZ¢**, Each SVM and BRNN is represented by its best
performing parameter setting regarding test error, 5-fold CV, five times repeated.

ML method AUC parameter settings
(sd) wc[wn[C’Jr[C,[method specific

RBF kernel 0.923 (0.001)||6 |4 |2 |1 |0c=0.014
String P-kernel 0.923 (0.004)||6 | 4 | 8 | 1 |y =0.1, BLOSUM62
BRNNPest 0.923 (0.006)|| 3| 1 hidden nodes=2
Linear kernel 0.920 (0.004)|| 6 | 1 | 2
Polynomial kernel 0.920 (0.004)([12| 1 | 4 | 1 |order =3
Local alignment kernel|{0.913 (0.002){| 3|2 | 1| 1 |3 =0.1, BLOSUM62

agree with the information content visualized in the Logos (Fig. Bl): while there
seems to be some conservation towards the C-terminus the performance drops
when more than three residues are included towards the N-terminus. The best
C-values for the linear kernel put equal weight for the negative and positive
classes. For the RBF and the string P-kernel there seems to be specific C-value
pairs, which perform better than others.

Tab.lsummarizes the performance of the best setting for each kernel in terms
of C-values, window sizes and kernel specific parameters.

Once the optimal parameter setting is determined, all kernels seem to be
able to recognize SUMOylation sites quite accurately, since the average AUC is
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Table 3. Influence of evolutionary and structural features on the perfor-
mance of SUMOsvm. Panel a: average ROC for SUMOsvm using plain encoding
(five times repeated). Panel b: Performance of SUMOsvm with additional features
input. The structural features are secondary structure (SS), solvent accessibility
(SolvAcc) or both. Evolutionary features are psi-Blast profiles.

ROC

1.0

0.6
I

l encoding [A UC"

true positive rate

3 A Plain 0.92
s Profile 0.93
SS 0.92

E T T T T T T SO]VACC 0.92
00 02 04 06 08 10 SS+SolvAce| 0.92

false positive rate

(a) ROC of SUMOsvm  (b) Enriched encoding

around 0.92 (with no statistical significant difference using t-test p-value < 0.05).
The RBF and string P-kernel achieve the highest average AUC (both at 0.923)
and have the same predictive power as the BRNN, albeit with a smaller standard
deviation.

We choose the SVM with RBF kernel (w. = 6,w,, = 4,Cy = 2,C_ = 1) as
our final predictor. Though not statistical significantly better its performance
is more robust than the BRNN approach. Compared to the string P-kernel the
RBF-kernel is much faster to train and test. We refer to the SVM-RBF kernel
as SUMOsvm.

3.4 Assessing Enhanced Input Data and Multi-SVM Architecture

In this section we evaluate the impact of incorporating structural features and
evolutionary information into the predictor, as well as combining several kernels
into one “committee”-like SVM.

The results from the extended input features are summarized in Tab. Bl We
observe no performance increase when incorporating secondary structure or sol-
vent accessibility. The small increase using psi-Blast profiles is not statistically
significant.

A multi-SVM committee yields no observable performance increase. An im-
provement in performance due to a committee-style prediction is expected only
when the kernels deliver qualitatively different predictions. This is not the case
here as we observe at least 90% of the false predictions are shared amongst the
majority of all kernels.

3.5 Comparison and Discussion

In this section we compare SUMOsvm with the previously reported SUMOyla-
tion site predictors. In Tab. dl we show the testing error measured on the 144
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Table 4. Performance overview of the existing predictors and SUMOsvm.
The values for the area under the ROC (AUC), correlation coefficient (CC), sensitivity
(SN), specificity (SP) and accuracy (AC) are obtained from the original publications of
SUMOpre and SUMOsp. The threshold chosen for SUMOsp was 18. *Though reported
by Xu et al. as CV and hold-out error, the values are understand to be training error
because “self-consistency test was used as the testing strategy” m]

[Method [ Validation]AUC[ CC] SN| SP[ AC]

SUMOsvm |CV 0.9210.67|0.62(0.99|0.97
hold-out - 10.56{0.44|0.99|0.96
RegularExp|training | NA [0.68|0.69/0.99/0.98
hold-out - 10.54/0.48|0.99|0.97
SUMOpre |CV* 0.8710.64|0.74(0.98|0.97
hold-out* | - ]0.66|0.54| 1.0 [0.97
SUMOsp |CV 0.7310.26|0.83(0.93|0.93
hold-out - 10.37{0.61]0.93]0.91
SUMOplot [training | NA [0.48]0.80({0.93|0.90
hold-out - 10.35[0.57]0.93]0.91

proteins during cross-validation and the prediction error on the 14 proteins in
the hold-out set. To obtain the hold-out error, we perform a voted prediction of
the SVMs trained during the 5-fold cross-validation. The performance measures
from the other methods are obtained from the original publications.

The comparison with other methods for predicting SUMOylation sites is com-
plicated by the use of different validation methods. For SUMOpre, only three
different test protocols are used: self-consistency (where “the SUMOylation state
for each motif in the entire dataset is predicted by the rules derived from the
same dataset” NE]L K-fold cross-validation and Leave-one-out cross-validation
(which is identical to K-fold CV when K equals the size of the dataset minus
one). The hold-out set is inspected only in the context of these protocols (all of
which involve training on this set).

The AUC is not explicitly reported for SUMOpre, but here estimated from
their ROC curve. Sensitivity and specificity are altered by simply changing the
classification threshold. The threshold setting similarly affects the correlation
between observed and predicted sites. We thus assume that all reported results
are achieved when the threshold is the best possible.

SUMOsvm is not significantly better than the previously published methods,
which in turn are not more powerful than a simple regular expression scan with
[LVI]K.E. Neither the motif-flanking residues nor structural features appear to
aid prediction. This begs the question how non-consensus sites are processed by
SUMO.

One hypothesis is that sites are SUMOylated by different means (correspond-
ing to different SUMOylation pathways). We would then expect that SUMOy-
lation sites of proteins group in accordance with shared means. To identify such
groups, we performed a kernel hierarchical cluster analysis, where the distances
in the feature space (as seen by the RBF kernel) are used to generate a distance
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Fig. 4. Hierarchical clustering of the SUMOylation sites in the hold-out set.
We use the RBF-kernel with w. = w, = 3 to obtain the hierarchical clustering plot.
Sites SUMOsvm predicts correctly are marked with *.

map between the different sites. The resulting map of the SUMOylation sites in
the hold-out set is shown in Fig. @l The correctly predicted sites (all conform to
the consensus motif) are clustered and form the largest entity. There is only one
other cluster formed containing a putative Kz K motif in the hold-out set.

To investigate if SUMOylation binding is species or compartment dependent,
we extracted all proteins in the dataset that belong to human and are localized
to the nucleus. If the SUMOylation pathway is species and/or compartment de-
pendent, one would expect to see a correlation of either with sequence motif.
However, a similar fraction of the consensus motif appears amongst human nu-
clear proteins as in the original set, and no alternative motifs were obvious when
Logos were used from this smaller group of binding sites. Also, no performance
gain could be observed when retraining on this subset.

4 Conclusion

We developed a SUMOylation site predictor, SUMOsvm, based on support vec-
tor classification and the RBF kernel. Several other configurations performed
equally well including models based on alternative kernels and the bidirectional
recurrent neural network. However, in the comparison to previously published
SUMOylation site predictors we found that neither SUMOsvm nor the previ-
ously published methods are significantly better than a simple regular expression
scanner.

The disappointing result is particularly noteworthy because we presented
SUMOsvm with sequence data which were enriched with predicted structural
features (secondary structure and relative solvent accessibility) and evolution-
ary information (psi-Blast profiles).

No predictor to date is able to identify the SUMOylation sites in the four core
histones of yeast—a group of proteins which are known to be regulated by SUMO
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but for which we still have only partial understanding of actual sites involved.
All predictors tend to rely on the consensus motif that describe a majority of
known SUMOylated sites but do not include the sites on the histones. Until
more of the SUMOylation pathway is uncovered, SUMOylation site prediction
from the current paucity of data remains challenging.
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Abstract. Nondeterministic conformational search techniques, such as Genetic
Algorithms (GAs) are promising for solving protein structure prediction (PSP)
problem. The crossover operator of a GA can underpin the formation of poten-
tial conformations by exchanging and sharing potential sub-conformations,
which is promising for solving PSP. However, the usual nature of an optimum
PSP conformation being compact can produce many invalid conformations (by
having non-self-avoiding-walk) using crossover. While a crossover-based con-
verging conformation suffers from limited pathways, combining it with depth-
first search (DFS) can partially reveal potential pathways. DFS generates ran-
dom conformations increasingly quickly with increasing length of the protein
sequences compared to random-move-only-based conformation generation.
Random conformations are frequently applied for maintaining diversity as well
as for initialization in many GA variations.

Keywords: Depth-first search, protein structure prediction, genetic algorithm,
lattice model.

1 Introduction

We are seeking to solve the ab initio (meaning ‘from the origin’) or the de novo pro-
tein structure prediction problem [1]. In an ab initio approach, the building of a 3D
conformation (structure) is essentially based on the properties of amino acids, where
protein is a three dimensionally folded molecule composed of amino acids [2] linked
together (called the primary structure) in a particular order specified by the DNA
sequence of a gene. Particular folded structures are essential for the functioning of
living cells as well as for providing body structure. Protein structure prediction (PSP)
is a problem of determining the native state of a protein from its primary structure and
is of great importance because three dimensionally folded structures determine the
biological function [3] and hence proves extremely useful in applications like drug
design [4].

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 412008.
© Springer-Verlag Berlin Heidelberg 2008
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For investigating the underlying principles of protein folding, lattice protein mod-
els introduced by Dill [5] are widely used [6]. Protein conformation as a self-avoiding
walk in the lattice model has been proven to be NP-complete [7, 8]. Therefore a de-
terministic algorithm for folding prediction is not feasible. So, a nondeterministic
approach with robust strategies that can extract minimal energy conformations effi-
ciently from these models becomes necessary. Still, this is a very challenging task as
there exists an astronomical number of possible conformations even for a very short
sequence of amino acids [9, 10].

We have chosen the Genetic Algorithm (GA) as a vehicle for providing solutions
to the PSP problem for better performance, where crossover is regarded as the key
operation of GA [11]. The core concepts of GAs and their components are often
adapted by many PSP solving algorithms for the effectiveness [12-16]. While cross-
over can be very effective in joining two different potential sub-conformations, it can
be repeatedly unsuccessful as the converging conformations (hence the sub-
conformations), being compact in nature, leave limited pathways to a valid (i.e., self-
avoiding-walk) conformation. This means many potential conformations may be lost,
which motivates us to apply partial pathways based on depth first search (DFS) [17]
to regain potential conformations, leading to effective PSP solution.

2 Background and Preliminaries

In nature, a protein folds remarkably quickly, requiring between a tenth of a millisec-
ond and one second in general, whereas any algorithm on any modern computer is
still unable to simulate this task in anything approaching similar time[11, 18]. For the
immensely complex protein structure prediction problem, there are several issues and
approaches which are yet to be considered [11, 19, 20]:

First, the energy function, which is a combination of several factors that determines
the free energy of a folded protein, is not fully understood. Therefore, existing formu-
lations for energy functions do not suggest any obvious path to solution of the PSP
problem.

Second, conformational search algorithms are promising approaches toward this
hard optimization problem, but the PSP problem still needs considerable research to
find an effective algorithm. The aim of the search is to identify an optimum confor-
mation within a huge and very convoluted search landscape.

Third, Cyrus Levinthal postulated, in what is popularly known as the Levinthal
paradox, that proteins fold into their specific 3D conformations in a time-span far
shorter than it would be possible for the molecule to actually search the entire con-
formational space (which is astronomically large) for the lowest energy state [21]. As
proteins cannot, while folding, be sampling all possible conformations, therefore
folding pathways must exist.

While focusing on the second issue [22-27], we are utilizing DFS strategies, devel-
oping novel search algorithms in a form to address the pathway hypothesis. It has
been concluded that conformational searching is the bottleneck in protein folding
prediction and the observed folding rates have been found to be proportional to the
number of microscopic folding routes [28]. These routes can be captured by the
crossover operation from suboptimal conformations and then partial DFS can mimic
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the existing microscopic path guided by the converging sub-conformation, whereas a
crossover operation alone can encounter more collisions [13] (while mating dissimilar
converging conformations) before having a SAW conformation and thus often can
reject the potential sub-conformation as being unfit when paired with the available
counterpart of the crossover portion (from a dissimilar conformation). To determine
the effect of DFS in such situations we will rely on empirical results.

2.1 The HP Lattice Model

The simplified HP lattice model [29, 30] is based on hydrophobicity [31], dividing the
amino acids into two different beads — hydrophobic (H) and hydrophilic (or polar
(P)). The model allows HP protein sequences to be configured as self-avoiding walks
(SAW) on the lattice path favoring an energy free state due to HH interaction. The
energy of a given conformation is defined as the number of fopological neighboring
(TN) contacts between those Hs, which are not adjacent in the sequence. This contact
between two neighboring H residues (or HH contact) is TN and is assigned a value for
the potential, termed interaction potential which is define as -1 for the regular HP
model [32]. Further, the HP interaction and PP interaction potential value is assigned
0, which basically implies that there is no interaction between an H and a P of HP
contact or between the Ps of PP contacts.

To define PSP formally, assume for an amino-acid sequence s = s,55,53,"*,5,, a

conformation ¢ needs to be formed where ¢ € C(s), C(s) is the set of all valid (i.e.,
SAW) conformations of s, n is the total number of amino acids in the sequence and
energy E' = E(C)=min{E(c)|ce C} [15]. If the number of TNs (for HH contact) in
a conformation c is ¢ then the value of E(c) is defined as E(c) =—1xXg=—¢ and the
fitness function is F =—¢g . The optimum conformation will have a maximum possi-

ble value of IFl. In a 2D HP square lattice model (Figure 1), a non-terminal and a
terminal residue, each with 4 neighbours, can have a maximum of 2 TNs and 3 TNs,
respectively. In this paper, we will confine ourselves to using the 2D HP square lattice
model only, as this model will be sufficient for our needs. However, its simplicity
may encourage interested readers to do further research, which would otherwise be
very difficult. The HP lattice model is also very popular with the research community
[11, 23, 29, 30, 33-39], since it allows easy development, validation and comparison
of new techniques for protein structure prediction (PSP) [22-24, 26, 27, 40].

Fig. 1. HP conformation in the 2D HP model shown by a solid line. 2D square lattice having
fitness = - (TN Count) = -9. @ indicates a hydrophobic and « indicates a hydrophilic residue.
The dotted line indicates a TN. Starting residue is indicated by a ‘1’ in the figure.
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2.2 Complexity of the Lattice Model

Even if we use this simplified model we have an inordinate number of valid (i.e.,
SAW) conformations, even for a shorter sequences [9, 10, 41]. For instance, for a

sequence of n amino acids, the number of valid conformations is proportional to u",
where the connective constant or the effective coordinate number 4 , is lattice de-

pendent [10]. Prediction of the optimal conformation using the lattice model is also an
NP-complete problem [7, 8]. To predict the backbone conformation of the folded
protein from its amino acid sequence based on global interactions such as hydropho-
bicity, lattice models are used for approximation [29, 30, 33-35]. For ab initio predic-
tion in Critical Assessment of Structure Prediction (CASP) [33-35], most successful
approaches followed the hierarchical paradigm where the lattice-based, backbone
conformational sampling works very effectively at the top of the hierarchy. With
further advancement toward all-atom or full modeling from the lattice, the energy
functions include atom-based potentials from molecular mechanics packages such as
CHARMM, AMBER, ECEPP and so on [42, 43]. Conformational search algorithms
built on lattice models, which play a key role in solving PSP, are discussed next.

2.3 Nondeterministic Conformational Search Algorithms

For solving ab initio PSP using the lattice model numerous nondeterministic ap-
proaches have been investigated: Monte Carlo (MC) simulation, Evolutionary MC
(EMC) [12, 13], Simulated Annealing (SA), Tabu Search with Genetic Algorithm
(GTB) [14], Ant Colony Optimisation [15], and Immune Algorithm (IA) based on Arti-
ficial Immune System (AIS) [44]. Due to their simplicity and search effectiveness,
Genetic Algorithms (GAs) [11, 26, 32, 45-48] are the most attractive. They also pro-
vided superior performance over MC [46, 47]. The concepts of GAs are also widely
adapted within these algorithms. For instance, a new MC algorithm [12] adopted the
population-based cut-and-paste (i.e. crossover) operation to achieve higher fitness. The
evolutionary Monte Carlo (EMC) [13] algorithm incorporated the evolutionary fea-
tures of genetic algorithms, such as a population which is updated by crossover and
mutation operations. Jiang et al. applied the GA with Tabu (GTB) search to solve PSP
using lattice models [14]. Also, the conformational space annealing (CSA) [16, 49]
algorithm is based on GA concepts, where the population is renamed as a “bank”.

2.4 Focus of the Paper

Given the widespread adaptation of GAs for PSP, the heart of a GA, i.e. the crossover
operation, can be made more effective by combining it with DFS which can have a
significant positive impact on solving the PSP problem. In a conventional GA, since
the optimum conformation is mostly compact physically (see Figure 2), a crossover-
based converging conformation suffers from limited pathways and the algorithm
increasingly generates invalid conformations. Our hypothesis is that the combination
of depth-first search (DFS) with crossover can instead reveal potential pathways in
solving PSP. Thus, a repeatedly failing crossover with a congested but potential sub-
conformation can be allowed a limited number of pathways for possible candidate
crossover counterparts obtained by using DFS if there exists at least one path.
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Fig. 2. As the search proceeds the conformation gets more compact: For a typical run, confor-
mations at generation 1, 1434 and 5646 have been shown in (a), (b) and (c) respectively, show-
ing the fitter conformation is relatively more compact.

2.5 Defining the GA Operators for PSP Problem

Here, we define the GA operators for the PSP problem based on the HP lattice model:

Crossover operation: For PSP, this aids the construction of global solutions by the
cooperative combination of many local substructures [11]. We particularly followed
the commonly-used crossover operation pioneered by Unger et al. [46], as illustrated
in Figure 3, a single-point crossover. We follow this single-point crossover, since
otherwise the converging conformation, being compact in nature, would generate
more collisions or invalid conformations [13]. The ability to rotate before joining
within the crossover, in addition, provides a mutation-equivalent operation. With the
help of relative encoding [40], this can be seen easily. For example, if we emulate the
crossover in Figure 3 without the rotation, we can write using relative encoding that:

Crossover (a:‘LFLLRRLRLLFLRFRLFL’, b: ' RFFFRFRFLFLRFRLLFL’) = would
output, ¢ ‘LFLLRRLRLLFL*RLLFL’ without the rotation before joining. (Here, ‘*’
indicates an undefined move in relative encoding but here it indicates a non-SAW
move.) But, with rotation, the conformation can have SAW, ie. c:
‘LFLLRRLRLLFLRRLLFL’.

SR =S ae I

1. I T30

(a) (b) (©

Fig. 3. An example of the crossover operation [46]. Conformations are randomly cut and pasted
with the cut point chosen randomly between residues 14 and 15. The first 14 residues of (a) are
rotated first as needed (as allowed by the degree of freedom by the model configuration) and
then joined with the last 6 residues of (b) to form (c), where fitness, F = -9. «==> indicates
crossover positions.
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Comparing c"‘LFLLRRLRLLFL*RLLFL’and c:‘LFLLRRLRLLFLRRLLFL’, it
becomes clear that the “*’ is replaced by an ‘R’ after the rotation, which is genotypi-
cally a single-point mutation.

Crossover failure: This implies that before joining two parts all, possible, rotated
positions at the joining point have been tried but failed to produce at least one valid
conformation (i.e., a SAW).

Combination of crossover and DFS: For generating a conformation this implies that a
DFS-generated random and partial path has been joined with the first half of the sub-
conformation.

DFS after crossover failed: This implies that ‘combination of crossover and DFS’ has
been performed after an occurrence of ‘crossover failure’.

Mutation operation: This involves pivot rotation (Figure 4) as basically pioneered by
Unger et al. [46]. We employed single-point mutation to avoid more collisions.

N

Fig. 4. An example of the mutation operation [46]. Dotted lines indicate TN. Residue number
11 is chosen randomly as the pivot. For the move to apply, a 180° rotation (among a number of
possible degree of freedom defined by the model configuration) alters (a) with F = -4 to (b) F =
-9. “=> indicates the mutation residue.

Ordinary random conformation generation: This implies the generation of a SAW
conformation based on random-move-only (RMO). In a 2D square lattice model Left,
Right and Forward moves are permissible but Backward move is prohibited. For a
conformation, once a path search has failed after looking in the three possible degrees
of the freedom the whole process restarts.

Random conformation generation by DFS: This implies that we apply DFS to gener-
ate a SAW conformation. As the DFS proceeds, it stores the possible pathways using
a stack-memory [17] and, upon total failure after trying all possible degrees of free-
dom on a particular location (i.e. lattice point), it can backtrack to restart from the
stored options instead of restarting the creation of the whole conformation.

3 Experiments and Results

We carried out experiments to empirically verify our hypothesis that combining
DFS with crossover will be advantageous. The simple GA (SGA) applied for PSP is
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1. Initialize the fixed size current population ( Pop, ) of randomly generated conformations.
2. Obtain a new solution (S ,,,, ) from the current population by using Crossover and
Mutation operations at the pre-specified rates ( p. and p,, respectively).

3. Assess the quality or fitness, F, of .S,

4. Promote the obtained S and elite and untouched chromosomes, to the next generation

new?>
and assign the new generation as the current population.
5. IF END-OF-SOLUTION is not reached THEN repeat from Step 2.

Fig. 5. Genetic Algorithm for solving PSP problem’

() (b)
1. DO single-point Crossover. 1. DO single-point Crossover.
2. IF “Crossover failure’ = TRUE then 2. IF ‘Crossover failure’ = TRUE then
3. REPLACE one of the parents. 3. DO ‘DFS after crossover failed’.
4. DO single-point Crossover. END IF

END IF

() (d)

1. DO single-point ‘Combination of 1. DO apply option: (a).
crossover and DFS’. 2. IF no improvement for 5 consecutive generations,
3. DO apply option: (b).
END IF

Fig. 6. Crossover operation and variation details

illustrated in Figure 5 and the crossover variations with the possible implementation
have been shown in Figure 6. As shown in Figure 6, we have experimented with four
variations of the crossover operation. Crossover (a) (see Figure 6(a)) represents a
conventional crossover operation for PSP without DFS. Crossover(b) (see Figure
6(b)) applies DFS-based partial path generation with the sub-conformation immedi-
ately the sub-conformation fails to join with its counterpart sub-conformation after
trying all possible degrees of freedom. Crossover(d) (see Figure 6(d)) is similar to
Crossover(b) in operation but allows more time to a failed crossover to search for a
suitable counterpart sub-conformation to match. Crossover(c) is a the most dissimilar
variation of Crossover(d) where, instead of a sub-conformation looking for its coun-
terpart sub-conformation in the population, Crossover(c) directly uses DFS to gener-
ate the rest of the path to complete the conformation. This alternative was investigated
to determine an effective rate of DFS.

The default GA parameters for all experiments were set as population size ( Pop )

to 200, crossover rate ( p,.) to 0.85 or 85%, mutation rate ( p,, ) to 5% and for elitism
the elite rate was set to 5% [50, 51].

The fold for longer PSP problems generally has complex energy landscapes [30,
52-57], and hence those sequences will take longer to converge. So we chose those
longer sequences to highlight the true benefit of this approach. A maximum of 2000

"Terms in bold and italic are explained in section 2.5.
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Table 1. Benchmark protein sequences for 2D HP model

Length Sequences Ref.
50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 [59]
60 P2H3PH8P3H10PHP3H12P4H6PH2PHP [59]
64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 [59]
85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H [58]
100 3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6HOP1H1P2H1P11H2P3H1P2H (58]

1P1H2P1H1P3H6P3H

‘H’ and ‘P’ in the sequence indicate hydrophobic and hydrophilic amino acids, respectively.

Table 2. Run results of 10 iterations on each PSP sequence (see Table 1 for the sequences). GA
runs with four different crossover options (shown in Figure 6), have been compared.

Length X(a) X(b) X(c) X(@) CS4 UGA
50 -17.3/-20 -17.6/-20 -14.5/-17 -18/-20 -17/-19 -16.6/-18
60 -29.2/-32 -29.8/-32 -27.8/-31 -30.5/-32 -30.4/-32 -29/-31
64 -29.1/-31 -29.3/-31 -25.2/-29 -32/-35 -29/-30 -27.8/-31
85 -39.4/-44 -39.6/-45 -34.5/-38 -43.4/-46 -43.2/-46 -41.4/-46

100 -37.1/-39 -37.6/-41 -30.2/-37 -38.5/-42 -37.2/-38 -37.4/-40

The format of column entries is ‘Average / Minimum’. The X implies Crossover operation. Thus, X(a)
indicates Crossover(a) as described above, and so on. CSA and UGA indicate Conformational Space
Annealing Algorithm [16] and Unger’s GA [46], respectively. Bold entries indicate the row-wise best
values obtained.

generations was allocated for each of the 10 iterations carried out per sequence, per
category of experiments. Benchmark PSP sequences shown in Table 1 for the 2D
square HP lattice model [5], length ranging from 50 to 100 were used [58, 59]. The
results are shown in Table 2.

It may be noted that in Table 2, we include two other algorithms in their generic
form: Unger’s GA (UGA [46]) and Conformational Space Annealing (CSA) algo-
rithm [16, 49] with our proposed algorithm for solving the PSP problem. UGA has
already outperformed many MC variations, as reported in [11, 46]. We emulated
UGA in our experiment with the same parameter for cooling, i.e. the cooling tempera-
ture was set to 2 at the start and decreased by 0.99 every 200000 steps until the tem-
perature became 0.15.

We abstracted the general form of the CSA algorithm by removing the heuristic-
based special moves, keeping the generic form intact, to provide a fair comparison in
our experiment. Comparison with CSA algorithm is particularly important for our
work, since the CSA approach has recently been applied in the PSP software
ROSETTA [33, 60-63]. Both UGA and CSA ran 2000 GA generation equivalent runs
per iteration.
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4 Discussion of the Experimental Results

We have introduced the concept of finding potential partial pathways using a depth-
first search (DFS) strategy when a converging, potential sub-conformation in a
crossover failed to find a matching counterpart to produce a valid (i.e., having a
self-avoiding-walk) conformation. Crossover variation X(c) has the worst result in
Table 2. X(c) involves applying DFS constantly at the same rate as the crossover op-
eration to generate the other half of the crossover portion, which is misguiding the
optimum results more that guiding them. X(a) represents the crossover-only approach,
that is, crossover with DFS, and X(b) is the variant where DFS is applied whenever a
crossover fails. X(b) is a slight improvement over X(a). X(d) performed the best, with
results comparable to the UGA and CSA algorithms. This is because, in X(d), cross-
over was applied exhaustively by allowing a failed crossover to look for more coun-
terparts to match and when there is no improvement at all in the whole population for
consecutive few generations, the failed crossover is combined with DFS to generate
the possible potential pathways. It is interesting to note that, in our experiment we
find DFS has zero failure in finding pathways. Thus, a constantly failing sub-
conformation in a crossover operation, which is likely to have few possible pathways,
can be salvaged using DFS to unravel the hidden paths effectively. As an alternative
to DFS, breadth-first search (BFS) [17] could have been used; however, BFS is both
memory and time intensive.

S Supplementary Applications of DFS in PSP

It is important to remember that ordinary random conformation generation' takes
exponential time (fitted curve: y = 2.8723 ¢”** with square of coefficient of deter-
mination, R* = 0.9832) with increasing sequence length using the random-move-only

Seq.Len. vs. Rand. Gen. Time
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Fig. 7. Random conformation generation: DFS approach versus random-move-only (RMO)
approach. An average of 100 iterations is taken for a particular length of a single random con-
formation generation.

"Terms in bold and italic are explained in section 2.5.
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(RMO) approach. In contrast, the run-time for random conformation generation by
DFS remains quadratic (fitted curve: y = 0.02 x*-0.5717x+54.789, with R* = 0.9996)
(see Figure 7).

The application of random conformation generation by DFS may have a gener-
ally lower impact because totally random conformations are only generated for ini-
tialization of the population. To maintain diversity many GA approaches replenish the
population a considerable amount and at frequent intervals [64, 65]. For example,
Hoque et al. have shown removal of chromosomes having 80-90% or greater similar-
ity from a GA population helps it to perform better [64]. After removal it is necessary
to replenish the population by random conformations of 20 to 30% in each generation.
Thus, in such a case, for longer sequences, random conformation generation by DFS
would make the GA search far more efficient.

6 Conclusions

A depth-first search (DFS) strategy at a low rate has been applied in combination with
a powerful crossover operation. Together they revealed convoluted and microscopic
pathways in solving protein structure prediction problem. Experiments using a variety
of longer, standard benchmark sequences from the literature have demonstrated the
efficacy and improved performance characteristics of this approach. The search strat-
egy developed was inspired by the pathway hypothesis. Further work will be directed
to exploring the biological significance and relevance of this novel approach.
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Abstract. The development of a method that accurately predicts pro-
tein folding nucleus is critical at least on two points. On one hand, they
can participate to misfolded proteins and therefore they are related to
several amyloid diseases. On the other hand, as they constitute struc-
tural anchors, their prediction from the sequence can be valuable to
improve database screening algorithms. The concept of Most Interact-
ing Residues (MIR) aims at predicting the amino acids more likely to
initiate protein folding. An alternative approach describes a protein 3D
structure as a series of Tightened End Fragments (TEF). Their spatially
close ends have been shown to be mainly located in the folding nucleus.
While the current sequence-driven approach seems to capture all MIR,
the structure-driven method partially fails to predict known folding. We
present a stability-based analysis of protein folding to increase the recall
and precision of these two methods.

Results: Prediction of the folding nucleus by MIR algorithm is in agree-
ment with mutation stability prediction.

Availability: The database is available at:
http://bioinformatics.eas.asu.edu/Stability /index.php, The MIR calcu-
lation program is available at:
http://bioserv.rpbs.univ-paris-diderot.fr/cgi-bin/MIR and the TEF pro-
gram at:

http://bioserv.rpbs.univ-paris-diderot.fr/TEF.

Contact: jacques.chomilier@impmec.jussieu.fr

Keywords: Protein folding, folding nucleus, structure stability, point
mutations.

1 Introduction

Structural bioinformatics has been particularly productive for the past decade
partially thanks to the contribution of physics disciplines. One of its main fo-
cuses is the study of protein folding and, in particular, the prediction of folding
nuclei. Modeling and predicting protein folding mechanisms is critical because
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a misfolded protein may result in the formation of aggregates that may play a
role in most misfolding diseases such as amyloid ones [TI2134].

The folding nucleus model [BIGI7IRII] is based on the assumption that protein
folding begins with just a few amino acids that strongly interact with each other.
These strong interactions initiate the folding that is completed by a successive
folding of the remaining parts of the structure to constitute a compact globule.
Within this model, a precise and accurate prediction of the main amino acids
responsible for initiating the folding provides enough constraints to simulate the
whole folding mechanism. For that purpose, Papandreou et al. developed an
algorithm devoted to the search of the Most Interacting Residues (MIR) [10].
The current algorithm has a good recall however its precision needs improvement
as several studies consider that the minimal number of amino acids needed to
initiate a folding process is significantly less than the 15 % found in average with
the MIR prediction algorithm [SITTIT2IT3].

Proteins can be described as a succession of Tightened End Fragments or
TEF [T4I5IT6U17] which spatially close ends (lower than 10 A) are deeply buried
in the cores of globular domains. Their ending positions could represent the
folding nucleus while TEF would correspond to the final fold for these por-
tions. Indeed, we have previously demonstrated that the TEF ends correspond
statistically to hydrophobic residues highly conserved in multiple alignments of
proteins of common function [I7]. These particular positions have been called
topohydrophobic, and they are clearly related to amino acids belonging to the
folding nucleus [I8]. They are derived from multiple alignments of distantly re-
lated sequences, typically less than 30 % identity. It constitutes a limitation of the
prediction process since most of the available algorithms for multiple alignments
of highly divergent sequences produce controversial results [I9]. We have shown
that MIR and tophohydrophobic positions match in two thirds of the cases which
confirms a reasonable recall of the MIR prediction algorithm. In other words,
one has a mean to predict, from the single information of the sequence, positions
(MIR) including the folding nucleus.

In this paper we present a stability-based analysis that was conducted to
better characterize MIRs. The expected results were to improve the precision
of the MIR method by refining the algorithm with constraints related to the
prediction of the stability changes induced by point mutations. We assume that
the folding nucleus is the deep core of the structure and thus should be very
sensitive to point mutations. For example, if a keystone substitutes another one
with a different shape, the vaulting will collapse almost every time.

2 Material and Methods

2.1 MIR Prediction Algorithm

A Monte Carlo algorithm is used to simulate the early steps of protein folding
on a (2,1,0) lattice. An amino acid is randomly selected and displaced to a new
available position on the lattice. The energy of both initial and final conforma-
tions is computed from the Miyazawa and Jernigan potential of mean force [20]
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and the Metropolis criterion is then applied [2I/10]. The starting point is the
protein structure in a random coil conformation and the simulation is typically
conducted on 10% Monte Carlo steps.

This simulation is repeated 100 times with different initial conformations.
The number of first neighbors is recorded after each series of 10 Monte Carlo
steps, and at the end of the process, an average Number of Contact Neighbors
(NCN) is calculated for each amino acid of the sequence. Actually, amino acids
surrounded by many others play a role in the compactness of the protein and
thus are called Most Interacting Residues (MIR). In contrast, the ones with few
neighbors are called Less Interacting Residues (LIR).

2.2 TEF Assignment

Along the backbone of a protein, some pairs of amino acids can be very close
in several places, with a typical distance between their alpha carbons below
10 A. The histogram of the sequence separation between these ”contact” amino
acids is not smooth, and presents a maximum around 25 amino acids [15]. These
sequence fragments were initially called closed loops [14].

Later on, it has been shown that the ends of these closed loops are mainly
occupied by hydrophobic amino acids. A thorough analysis demonstrated that
these hydrophobic amino acids were highly conserved among structures of the
same family, although containing distantly related sequences: these positions
were called topohydrophobic [22].

The concept of TEF emerged from the junction between closed loops and
topohydrophobic positions mainly located at their ends.

2.3 Free Energy Calculation

Gibbs free energy change due to mutation is a good approximation to character-
ize the stability of a given structure. It consists of a succession of energetic terms
that attempt to capture all the properties and forces that drive the conformation
of a protein. In our study we focus on the difference of these energies for the wild
type structure AGyq and for the mutant structure AGupant- Considering that
in the literature various stability prediction methods use different nomenclature,
AAG is defined as follows:

AAG - AGmutant - AGwild . (1)

The unit is kcal/mol. AAG describes whether it costs more in energy to have
the mutated amino acid or the wild type one. For example, if AAG < 0 then
it costs more in energy to have the wild type structure than the mutant one
thus the mutation is more favorable to the structure stability. Conversely, if
AAG > 0, the mutant structure AG is higher than the wild type one thus the
mutation is less favorable to the structure stability.



Evaluation of the Stability of Folding Nucleus upon Mutation 57

2.4 Stability Analysis

Many methods have been implemented to predict stability changes induced by
point mutations. MUpro [23] and I-Mutant (sequence version) [24] both predict
stability changes on a protein sequence whereas DFIRE [25], I-Mutant (sequence
+ structure version) [24] and PoPMuSiC [26] use protein sequence and structure
to predict these changes. Other methods exist but have been rejected due to some
restrictions: CUPSAT[] [27] was not available in a standalone version and the cur-
rent version of Fold XA [28] only computes mutations to Alanine. To avoid biases
from one or the other method, we present a comprehensive analysis with five ex-
isting tools (the two versions of I-Mutant are considered as two different tools).

We use the Protherm database [29] that collects thermodynamic data pub-
lished in the scientific literature and thus includes measured values of AAG to
compare our prediction to experimental data. It is available at the following
URL: http://gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html.

2.5 Data Set

Our analysis was conducted on a dataset published by the Protein Folding Frag-
ments European consortium that can be found at the URL: http://bioserv.rpbs.
univ-paris-diderot.fr/PFF /. MIR predictions and TEF calculations were already
performed on the selected 116 protein sequences.

The experimental dataset consisted of 116 protein sequences for a total of
15,183 amino acids. Each sequence was processed with each of the five sta-
bility prediction tools, for each amino acid, and for each of the 19 possible
mutations. We computed 1,442,385 different AAG values. In order to man-
age and publish our produced data and results in a more efficient way than
output flat files, a database was created and is available to the community at
http://bioinformatics.eas.asu.edu/Stability /| where more information about the
data can be found.

3 Results

3.1 MIR and TEF

The MIR concept aims at characterizing the main amino acids involved in the
early steps of the protein folding process. The TEF method splits a structure
into fragments with spatially close ends that interact with each other. A previous
study [10] has demonstrated that TEF ends (within a range of +5 positions)
correspond to MIR in 57 % of the cases. As we are looking at coherent methods
to determine the folding nucleus, we observe that MIR over predict the TEF
ends, therefore we hypothesize that restricting the MIR to the ones in agreement
with TEF ends would capture the expected amino acids responsible for protein
folding.

! CUPSAT is available at http://cupsat.tu-bs.de/}
2 FoldX is available at http://foldx.crg.es//.
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Then, separation between ”good” MIR and ”"bad” MIR emerges, and we de-
fine them as TEF related and TEF independent MIR. The TEF independent
MIR are expected to be the noise in the MIR prediction algorithm. The TEF
related ones are those in a £3 amino acids window around a TEF end. As the
experimental validation of folding nucleus is rather difficult, one way to validate
MIR prediction (i.e., TEF related MIR are the nucleus residues) is the com-
parison with other structural data. Indeed, there is nowadays no experimental
technique able to determine which residues constitute the folding nucleus.

The @ value experimental determination [30] attests whether one amino acid
is in the folding nucleus or not, but all the mutants need to be constructed to
validate the hypothesis. Nevertheless in some cases, such as CI2 for instance,
a low @ value can be obtained for a residue attributed to the folding nucleus
by convergent experiments [31]. We propose here to add constraints derived
from energy stability evaluation in order to increase the agreement between
prediction and experiment; these constraints are restrictred to thermodynamics
experiments as they are not supposed to be suspicious.

3.2 Stability Changes upon Point Mutations

Because they are structurally compulsory for the complete folding, we assume
that folding nucleus positions are very sensitive to mutation, in the sense that a
mutation would destabilize the protein. We thus decide to verify this assumption
by computing stability changes upon point mutations for all the sequences which
already have been processed for the MIR and TEF predictions (See Material and
Methods section). There exist numerous software devoted to this task among
which we focused on: DFIRE, two versions of I-Mutant, MUpro, and PoPMuSiC.

We first start by calculating AAG resulting from mutations at each position
for the five tools. We retrieve all experimental values for proteins either present
in our database and in Protherm [29]. 1409 different mutations with their exper-
imental AAG were gathered. A correlation then appear between experimental
AAG and predicted AAG. The two versions of I-Mutant obtain the best score
(represented in Fig.[D) with 0.96 correlation coefficient, just followed by MUpro
with 0.86. The remaining tools PoPMuSiC and DFIRE show an average corre-
lation with 0.53 and 0.48 respectively. The goal of these correlations is to verify
that the tools used in this work are accurate and truthfully. The excellent corre-
lation for I-Mutant and MUpro can be explained by the fact that both software
used data extracted from the Protherm database as a training set for their al-
gorithm. No other experimental data was available for this study.

Three tools can be considered as efficient and two others have to be carefully
apprehended. Nevertheless, for a better overview of the stability changes concept,
all five tools are kept in this study and a comparison between the two types of
MIR and their relative stability changes upon mutation can be performed. We
then verify if stability upon mutation would allow to discriminate among the
two types of MIR, according to their location relative to TEF ends. Stability
prediction is characterized by AAG on each amino acid and for each possible
mutation. We compute a stability score to compare with MIR prediction as
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AAG I-Mutant sequence only

AAG Protherm

Fig. 1. Graph of AAG (kcal/mol) predicted by I-Mutant (sequence only version) as a
function of the experimental one, taken from the Protherm database. The line repre-
sents the correlation between both experiment and prediction.

follows. To synthesize the mean stability change tendency for a given amino
acid, the 19 AAG have been summed in one value. Actually, to normalize this
result, instead of summing the AAG, a score has been given to each AAG. If
AAG < 0, the mutation is considered as stabilizing and it is granted a value of
+1. Conversely, if AAG > 0, the mutation is considered as destabilizing and the
value is —1. This procedure produces a score in the range of [—19,4+19] which
reflects the global stability change for an amino acid upon its mutation. The
lower the score, the more sensitive to mutation, i.e., the native residue is the most
stable. This stability score is computed for each amino acid of all the sequences
in the data set and for the five different tools. Moreover, a consensus tool has
been created which corresponds to the mean of the five programs. Graphs are
plotted, upon request on the server, to get an overview of the stability score
over a whole sequence. One example is given in Fig. 2] where the stability scores
along a whole sequence have been represented for the five tools in the case of
the engrailed homeodomain (PDB code: lenh). Stability scores curves have also
been smoothened for an easier interpretation.

We observe that along the homeodomain sequence, stability changes score
ranges from —19 to +15. One can notice that most values are under 0 which
means that there are more positions destabilized by mutations than stabilized
ones. This observation is in agreement with the principles of Evolution which
tend to favor stable protein structures.

It is thus possible to detect the most sensitive positions to a mutation. Indeed,
the minima of stability scores are positions for which mutations induce the most
destabilizing changes, regarding free energy, along the structure. We can locate
these positions and compare them with the MIR.
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To bear evidence of an eventual co-localisation of MIR and stable positions,
we compute the distance in sequence that separates each MIR (TEF related and
TEF independent) from the nearest minimum of stability score. These differences
of positions have been computed for all the sequences of the database and for
each tool. Figure[3]shows an example of these deltas of positions for the consensus
tool. It appears that there is no distinction between the two classes of MIR as
both have their respective peak centered on the same position.

< —— Mupro
- = I-Mutant seq only
+ |-Mutant seq+struct
DFIRE
— = PoPMuSiC
o | Consensus
=

Stability score
0

Sequence position

Fig. 2. Representation of the stability scores for each amino acid of the lenh sequence.
The five lines represent each one a different tool. The consensus graph is also repre-
sented.

— Al
- - TEF related MIR
- TEF independent MIR

Occurences
300 400 500
L L L

200
1

100
1

Delta of positions

Fig. 3. The origin of the abscissa corresponds to the position of each MIR, (TEF related
and independent) and one calculates the distance to the closest minimum of stability
scores on the whole dataset and for the consensus tool.
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— MR
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Occurences
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200
1

100
1

T
-20 -10 0 10 20
Delta of positions

Fig. 4. Sequence separation (Delta) between MIR, LIR, and minima of stability scores
on the whole data set and for the consensus tool. The origin is taken as for Fig.

However, MIR have been shown to statistically match the topohydrophobic
positions, corresponding in several experiments to the folding nucleus [18]. The
conservation of the folding nucleus among species is still under a strong debate.
If we assume, in agreement with Shakhnovich [31], that the folding nucleus is the
subject of an additional evolution pressure, considering simulations on distantly
related sequences of the same fold, instead of single one, may help in a better
definition of the folding nucleus.

Two hypotheses emerge: the MIR algorithm is not accurate enough or the TEF
assignment has to be improved. A direct comparison of each of these methods
with minimua of protein stability scores has been processed.

The determination of MIR accuracy relies on their good match with minima
of stability scores but also on the comparison between their antagonists i.e.,
LIR for Less Interacting Residues and stability scores under the same protocol.
These amino acids are the ones with the smallest number of contact neighbors
and are thus assumed to be mainly located at the interface of the protein and
the solvent. Results are shown in Fig. @l As already seen in Fig. B MIR are
statistically located at minima of stability scores with a peak for a delta of 0.
If one takes a window centered on 0, on the [—1, +1] range, 55% of the MIR
correspond to a minimum of stability score. For the LIR, we observe that there
is a clear minimum on the 0 position and two peaks centered on the -2 and +2
positions. The conclusion is that the MIR concept is in good agreement with the
concept of sensitivity to the structure stability. This prediction method succeeds
in correctly locating the most stable residues, that can be either located at the
ends of TEF or elsewhere, because both classes of MIR match the location of
the lowest scores.
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—— TEF ends
-+ TEF centers

80 100 120
L L 1

Occurences

40

T T T

T T
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Delta of positions

Fig. 5. Sequence separation (Delta) between TEF ends, TEF centers, and minima of
stability scores on the whole data set and for the consensus tool.

We then compare specific TEF positions to the positions with the lowest sta-
bility scores. We consider on one hand TEF ends, as they are assumed to be in
the folding nucleus, and TEF centers on the other hand. Figure [l represents the
distance in terms of amino acids (delta) between the TEF ends/TEF centers and
minima of stability score on the other side. The results are compatible with the
ones presented for Fig. @lwith MIR and LIR. TEF ends match the positions where
stability is the highest (lowest scores), while TEF centers do not. Therefore, one
can conclude that MIR predictions capture some physics of the folding process, by
finding residues forming the core, evaluated here on the basis of the most stable
positions toward mutation, independently of their location relative to the TEF.

The relative efficiency of this method has been confirmed by the calculation of
solvent accessible surface for all amino acids and for each sequence of the database.
The mean value is of 53 A2 for one amino acid among all the sequences of the
dataset. If we now consider amino acids which are characterized as MIR, this mean
drops to 33 A2. For the LIR, we obtain a rise to 64 A2. This observation also gives
another evidence of the efficiency of the MIR method as low solvent accessible sur-
face induces that the considered amino acid is buried inside the globular domain.

For the results observed for the TEF the conclusion is less evident. TEF ends
are centered on the positions of the highest stability, but TEF centers graph
is more ambiguous as there is kind of a plateau in the range [—3, +3]. It thus
means that TEF ends are quite in agreement with stability scores minima but
TEF centers do not show any tendency to be reluctant to stability scores minima.

4 Conclusion

Protein folding is nowadays one of the biggest challenges in structural bioinfor-
matics. The MIR method is devoted to the prediction of the residues forming the
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folding nucleus of proteins. Some refinement has been proposed to improve the
accuracy of the current algorithm such as the use of additional input based on
topology and stability. The structural analysis of proteins in terms of TEF was
a relevant choice as it captures ends of fragments buried in the core of the pro-
tein. MIR are constituted of two families, the ones present at the ends of TEF
and the other ones found elsewhere. It was hypothesized that folding nucleus
would preferentially be located at TEF ends. We checked the relevance of this
separation by comparing the presence of MIR with positions known to be stable
upon point mutation. We actually evidenced that both classes of MIR are highly
stable positions with respect to mutations. This result may be interpreted in the
following way: if we admit the assumption that most stable positions toward
mutation are indicative of the inclusion in the folding nucleus, then MIR is a
rather satisfactory method to predict this nucleus. In addition, we assume that
split of the protein structures into TEF should be improved, and in particular,
one might think of secondary contacts, i.e. two residues located in the middle of
a TEF, and close from one each other.

Although we probably overestimate the number of amino acids involved in
the folding nucleus, our approach might be a help for selecting positions sus-
ceptible of experimental muations in order to perform @g determination. A long
term application of this prediction nucleus algorithm is its inclusion in database
screening tools, in order to give a stronger weight once a residue has been pos-
tulated as belonging to the nucleus. One might guess that this would help in
retrieving more distantly related sequences than present methods.
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Abstract. Protein secondary structure prediction is one major task in
bioinformatics and various methods in pattern recognition and machine
learning have been applied. In particular, it is a challenge to predict (-
sheet structures since they range over several discontinuous regions in
an amino acid sequence. In this paper, we propose a dynamic program-
ming algorithm for some kind of antiparallel 3-sheet, where the proposed
approach can be extended for more general classes of [3-sheets. Experi-
mental results for real data show that our prediction algorithm has good
performance in accuracy. We also show a relation between the proposed
algorithm and a grammar-based method. Furthermore, we prove that
prediction of planar -sheet structures is NP-hard.

Keywords: (-sheet, dynamic programming, formal grammar, compu-
tational complexity.

1 Introduction

Protein structure prediction is one of the central problems in bioinformatics and
computational biology, and various approaches have so far been proposed. Sec-
ondary structure prediction is one of the major approaches. It asks which type of
secondary structure (a-helix, G-strand, or others) each residue belongs to. Since
it is a kind of classification problem, various machine learning and pattern recog-
nition techniques have been applied, including hidden Markov models [3I16], logic
programming [20], neural networks [22], stochastic tree grammars [I] and support
vector machines [12]. Although the overall prediction accuracy of existing meth-
ods is around 75% [18], it is recognized that (-strand regions are more difficult
to predict than a-helix regions. This discrepancy may come from the fact that
(B-sheet structures typically range over several discontinuous regions, whereas a-
helices are continuous and thus depend more on local sequence patterns.

Protein threading is another major approach for protein structure predic-
tion. In this approach, alignment between an input amino acid sequence and a
template protein structure is computed. It is known that protein threading is

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 66 2008.
© Springer-Verlag Berlin Heidelberg 2008
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NP-hard if pairwise interactions of residues must be taken into account [2J/I7].
However, several optimal algorithms have been developed for protein threading
with pairwise residue-residue interactions under an assumption that insertions
or deletions do not occur in core regions (i.e., a-helices and [(-strands) [26]. Al-
though it is usually overlooked in literature, there is a similarity between protein
secondary structure prediction and protein threading. In protein threading (with
pairwise interactions), configuration of core regions is given in advance (from a
template 3D structure) and each core (a-helix or -strand) region is searched for
in an input protein sequence. In secondary structure prediction, configuration of
core regions is not given in advance and each residue is assigned to one of the
three classes of secondary structures.

Although we have discussed about protein structure prediction, RNA sec-
ondary structure prediction is another important problem in bioinformatics and
computational biology. One of the common approaches of RNA secondary struc-
ture prediction is use of (stochastic) grammars, which include stochastic context-
free grammar [T0/23], stochastic multiple context-free grammar [15], parallel
communicating grammar [7], crossed-interaction grammar [21] and tree adjoin-
ing grammar [25]. These grammars may also be useful to model other pattern
recognition problems.

Recently, Chiang et al. [§] proposed some grammar-based methods for pro-
tein secondary structure prediction. In particular, they proposed use of range
concatenation grammar (RCG) [B] for B-sheet modeling. They suggested that
linearly ordered (-sheets can be modeled by using a simple RCG and can be
predicted in O(n®) time, where n is the number of residues in a given protein
sequence. They also suggested that (-barrels and more complex [(-sheet struc-
tures can be modeled by using RCG, while the time complexity increases to
O(n™) ~ O(n'?) depending on the complexity of 3-sheet structures. However,
they did not show how to incorporate residue-residue interaction preferences
into the RCG-based methods. Furthermore, they posed the following question
for proving NP-hardness of (-sheet prediction: “it remains to be seen whether
such dependencies might be needed, for example, in calculating conformation
counts for (-sheets.”

In this paper, we propose a simple and flexible dynamic programming algo-
rithm for prediction of antiparallel up-down -sheets. This algorithm is based on
RCG approach [8], where no experimental results on structure prediction were
provided. It is noteworthy that our method explicitly takes pairwise interaction
preferences into account and thus can be applied to real protein sequences. Hub-
bard [13] also used interstrand residue pairing preferences to predict 3-strand
contact maps, but did not show an original prediction algorithm specific for -
sheet prediction. Our prediction algorithm achieved good performance of overall
per-residue accuracy Q3 ~ 80% for nonhomologous protein sequences with up-
down topology, where there are only two secondary structural states. Although
types of B-sheet structures that can be handled by our method are restricted, the
technique is extensible to more complex (-sheet structures including (-barrel.
We also provide insight into an existing grammar-based method. Furthermore,
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we show that prediction of planar (-sheet structures is NP-hard. This result
gives an answer to the question posed by Chiang et al. [§].

2 Methods

2.1 Ungapped Antiparallel 3-Sheet

(-sheets are formed by pairwise interaction of several (consecutive) amino acids,
called (-strands, in parallel and/or antiparallel way. Antiparallel S-structure
is a fundamental topology of (-sheet, and many proteins include it in their
domain. Although there are a large number of combinations of [-strands, it
is known that the number of topologies of the class of antiparallel 3-sheets is
relatively few [6]. In this section, we are concerned with the simplest topology
among them, called up-down (3-sheet, where all strands have antiparallel topology
via hydrogen bonding and they are connected by hairpin. In addition, suppose
that every amino acid of §-strands is involved in hydrogen bonding, which we
call ungapped [3-sheet. Fig. [l (a) illustrates an ungapped up-down [-sheet. This
assumption enables us to design more efficient prediction algorithm in terms of
computational complexity.

1 2 =1k

(a) An ungapped up-down [-sheet. A
white circle represents an amino acid and (b) A schematic diagram of the dynamic
a dashed line indicates a hydrogen bond. programming algorithm

Fig. 1. Illustration of an ungapped up-down (-sheet

Let a = aqjas - - - a,, denote an amino acid sequence to be analyzed. We consider
an ungapped up-down (-sheet that have N strands of the same length L where
N < |7 ]. The reason why we can assume L is fixed is that we are concerned
with only ungapped [(-sheets. Because of this assumption, a (-sheet can be
represented by an N-tuple of the start positions of S-strands (p1,pa2,...,pPnN)
in the amino acid sequence a. Note that p; + L < p;;1 must be satisfied to
prevent adjacent strands from overlapping each other. Let s : (a;,a;) — R be a
score (energy) function between two amino acid residues. Then, the ungapped
up-down [3-sheet prediction problem can be defined as follows:

Definition 1. (Ungapped up-down [3-sheet prediction problem)
Input: An amino acid sequence a = aias - - - Gy, the number of strands N, their
common length L and a score function s.
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Output: An ungapped up-down [3-sheet (p1,pa,...,pN) that minimizes the fol-
lowing score:
N—
Z 8<aiﬂi+j*17alﬂi+1+L*j)v
i=1 j=1

—

subject to p; + L <piy1 (i=1,2,...,N).

2.2 Dynamic Programming Algorithm

We provide a dynamic programming (DP) algorithm for predicting ungapped
up-down (-sheets. In the experiments described later, we predict (-sheet by
changing the value of N, though N is fixed in the algorithm described below.
Let W (k, j) be the minimum free energy of up-down [-sheet for a; - - - a;, where j
is the last position of the kth S-strand (see Fig.[l (b)). W (k, j) can be calculated
by the following simple recursion formula:

Wk, j) = min{ W (k = 1,4) + S(i, j, L)},

where
L
S(i,j. L) =Y s(ai-pin, aj—ni1).
h=1

The detailed description of the DP algorithm is presented below.

Initialization:

for j =L ton do W(l,j) =0.
Recursion:

for k =2 to N do

for j = kL ton do

W(k,j) = min {(W(k—1,i)+5(i,j,L)}.

(k—1)L<i<j—L—2

Note that this algorithm takes the length of hairpin into consideration by re-
stricting the range of 7 in the recursive step.

A simple inspection of the recursive step yields the time complexity of the
algorithm. Since the double “for loop” takes O(n?) time and the minimum op-
eration takes O(n) time, the time complexity is evaluated as O(n?). Obviously,
the algorithm requires O(n?) space. Note that the optimal 3-sheet itself can be
constructed by a simple traceback procedure.

Although our DP algorithm can only handle up-down (-sheets, we can easily
extend our method to predict more complicated structures, including consecutive
parallel g-sheets, G-barrels as well as gapped structures.

In order to extend the algorithm for -barrels, we compute the following:

W(kvja ZO) = mll’l{W(k‘ - ]-7 ia ZO) + S(Zﬂjv L)}
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for each ig under the condition that

W(l,j,io) — {OOO (.7 = Z.0)7

(otherwise).

Then, we compute the minimum of
L
W (N, jyio) + Y s(aig—r1n, ¢j—ni1)-
h=1

In this case, the time complexity increases from O(n?) to O(n*). More complex
(B-sheet structures may be treated by using the divide-and-conquer approach
proposed by Xu et al. [26]. However, the time complexity would increase as
the complexity of [-sheet increases as suggested by the NP-hardness result in
Section Bl

In order to extend the algorithm for gapped antiparallel 3-sheets, it is enough
to modify the definition of S(i, 7, L) so that it denotes the score of an optimal
alignment between a;_r41---a; and a;---a;_r4+1. In this case, the total time
complexity increases to O(n*). Of course, we can extend it for prediction of
gapped (-barrels. In that case, the time complexity remains O(n*). Capability
of handling gapped [(-sheets is one of the big advantages of our proposed method
since gaps in core regions are not allowed in protein threading with residue-
residue pairwise interactions [20].

3 Experimental Results

3.1 Data

In our experiments on prediction of up-down B-sheets with g-barrels, we used
real protein sequences with known structure available in PDB SELECT (2007)
[11] as the test sets (see Table [[). The criteria for selecting test data are as
follows:

(1) The test sequences are contained in the 25% threshold list of PDB SELECT,
where no two proteins have more than 25% sequence identity.

(2) They have at least four [-strands specified in DSSP [I4]. Note that we do
not count a residue involved in an isolated $-bridge as one strand.

(3) All but at most one pair of adjacent (-strands in the primary sequence are
involved in hydrogen bonding. This constraint results from lack of a perfect
set of up-down (3-sheets in the list.

3.2 Tests

Since the sequences selected above actually have different strand lengths, we
set the strand length constant L by rounding the mean of their actual lengths.
We used a contact potential table derived from 785 proteins described in [9] as
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Table 1. Accuracy of antiparallel 3-sheet prediction

(a) Up-down B-sheet prediction (b) B-barrel prediction
PDBID N n L Q3 [%] Qr (%] Q% °? [%] PDBID N n L Q3 (%] Qr [%] Q% [%]
2B9K 4 47 7 72.34 77.78 75.00 1Q9F 7 148 10 70.95 69.01 70.00
1AUU 4 55 4 83.64 70.59 75.00 IMM4 8170 9 64.71 58.11 59.72
INY4 4 826 84.15 72.00 75.00 1G90 8176 11 82.39 81.32 84.09
1TPN 5 50 4 68.00 61.11 55.00 1FW3 12 269 12 63.20 65.73 65.28
2E6Z 5 59 4 74.58 61.90 65.00 1PHO 16 330 11 66.36 67.96 69.89
2DIG 5 68 5 82.35 74.07 80.00 Average 69.52 68.43 69.80
2JN4 6 66 5 87.88 89.29 83.33
2BT9 8 90 8 80.00 88.33 82.81
Average 79.12  74.38 73.89

the score function s. Implementation of the prediction algorithms for up-down
(-sheet and S-barrel was carried out in Java (version 1.6.0 03) on a machine
with Intel Core2 CPU 6700 2.66GHz, 1.57GHz and 2.99GB RAM. To evaluate
prediction accuracy of our algorithms, we measured per-residue accuracy Qs3, Qg
and Q%md. Q3 is the ratio of correctly predicted residues in overall secondary
structural elements. Note that there are only two secondary structural states
in this case (i.e., strand and other), and observed structures that we referred
to are specified in DSSP. Qg is defined as the ratio of the number of correctly
predicted residues of the -strands to the total number of residues of the strands
in the observed structure, which corresponds to sensitivity. Q%T6d7 corresponding
to specificity, is the ratio of the number of correctly predicted residues of the
[-strands to the total number of predicted residues of the strands. Prediction
results on up-down (-sheet prediction are shown in Table[Il (a) and Fig. 2l and
results on S-barrel prediction are shown in Table[Il (b). Computation time of up-
down [-sheet prediction was 0.19 seconds on average, whereas computation time
of B-barrel prediction was 480.04 seconds on average. Note that this discrepancy
arises from the difference of time complexity (i.e., O(n?) vs. O(n%)).

Observed beta sheet (E: extended strand, participates in beta ladder):
MKVMIRKTATGHSAYVAKKDLEELIVEMENPALWGGKVTLANGWQLELPAMAADTPLPITVEARKL
. .EEEEE....EEEEE....EEEEEEEE........ EEEE....EEE........... EEE.....

Predicted beta sheet:
MKVMIRKTATGHSAYVAKKDLEELIVEMENPALWGGKVTLANGWQLELPAMAADTPLPITVEARKL
..EEEEE....EEEEE....... EEEEE....... EEEEE...EEEEE........ EEEEE.....

Fig. 2. Comparison of the observed structure with the predicted one for 2JN4. Under-
lined residues indicate that they agree with correct residues of the §-strands.

3.3 Discussion

Experimental results on up-down (-sheet prediction show that our prediction
algorithm has good performance in accuracy for several real protein sequences.
One reason for high accuracy is that the contact potentials computed in [9] are
good in quality. In fact, we performed the same prediction tests using other
contact potentials presented in [4U2427], where average prediction accuracy is
76.62% in Q3, 71.71% in Qg and 71.52% in nged for [], 72.52% in @3, 66.14%
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in Qg and 65.68% in nge‘i for [24], and 67.86% in Q3, 60.01% in Qg and 59.73%
in QY °d for [27]. These values are lower than the average accuracy when using
the contact potentials in [9]. It should be noted that a few protein structures
(IAUU and 1TPN) used to compute the contact potentials in [9] were also used
for our experiments. However, most accuracy assessment for these two proteins
is lower than the average (see Table [l (a)), and there seems to be no positive
bias that improves the accuracy of the algorithm.

It can be seen that the choice of the number of S-strands N is important to
achieve good prediction accuracy. After we performed the test shown in Table
[ where N was actually chosen as the observed number of strands N,ps, we
developed a simple method of selecting N during computation of the DP table
W. More specifically, we calculated the average of W(k,j) for each k (2 <
k < [}]), denoted by Way4(k), and then selected N as the first & such that
Wavg(k) < Wapg(k + 1) holds while calculating in an increasing order of k.
Although the average prediction accuracy for up-down S-sheets drops to 72.52%
in Qs, 74.41% in Qg and 65.17% in Q% the value N determined by this
method ranges from Nyps — 1 to Nyps + 2, which shows a relatively good tendency
in choice of N.

As Table [ (b) indicates, prediction accuracy for 8-barrels is not so good as
compared with the results on up-down (-sheet prediction. This may suggest
that achieving good accuracy is difficult if the topology of the [(-sheet to be
analyzed becomes complex. To achieve higher accuracy than the present accuracy
for (-barrels, it would be interesting to incorporate “torsion changes” into our
algorithms, which is considered to be important for the stability of a protein.

As compared to another approach for 3-sheet prediction, accuracy of a method
using ranked node rewriting grammar (RNRG) [I] is roughly 74% in Q g, which
is comparable to the performance of our method. Although the test data used in
our experiments are different from the data used in the RNRG-based method,
we tested more sequences than they did. Furthermore, it should be noted that
we never used a training algorithm to estimate score parameters, whereas the
RNRG approach performed training of probability parameters using an inside-
outside algorithm, which is prohibitively time-consuming.

4 Remarks on Grammatical Modeling

4.1 Definitions

Range concatenation grammar [5] is defined as a deductive system on sequences. A
(positive) range concatenation grammar (RCG) is a 5-tuple G = (N, T,V, P, S),
where N, T,V and P are finite sets of predicate names, terminals, variables, rules,
respectively, and S € N is the start predicate. For each predicate name A € N,
a nonnegative integer dim(A) is specified. Each rule in P has the shape g —
1 - - - k. This rule means that ¥y holds when all of 91, ..., ¢y, hold. Each ¢; (0 <
i < k) in the rule is a predicate of the shape A; (1, . .., @ dim(a,)), Where A; € N
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and each a;; (1 < 7 < dim(4;)) is just a variable in V' if 1 < ¢ < k. The following
is a simple example of rules:

S(xyz) — Aw,y)B(z),  Alazb,cyd) — A(z,y),  Blez) — B(z),
A(ab, cd) — ¢, B(e) — e.

Let = denote the one-step derivation relation. For example,

S(aabbeedde) = A(aabb, cedd)B(e) = A(ab,cd)B(e) = B(e) = B(e) = ¢.

Let = denote the transitive closure of =. The language generated by an RCG
G is defined as L(G) = {w | S(w) = £}. For the above example, L(G) =
{ambmcmd™e™ | m > 1,n > 0}. We also say that A generates w when A(w) = .

If every variable occurs at most once in the left-hand side (rsp. right-hand
side) of a rule, the rule is called left linear (rsp. right linear). For example,
S(x) — S1(x)Sa(x) is left linear but not right linear.

4.2 Modeling by RCG

Chiang et al. [§] presented the following RCG to generate linearly ordered (-
sheets:

Beta(zy) — B(x,y), B(zyz,y') — B(x,y)Adj(y.y'),
Blyz,y') — Adj(y.y'),

Adj(z,y) — Anti(z,y), Adj(z,y) — Par(z,y),
Anti(az,ya) — Anti(x,y), Anti(e,e) — ¢,

Par(az,ay) — Par(z,y), Par(e,e) — ¢,

where a,a € T stand for amino acid residues that are connected with each
other by hydrogen bond. (We extend the notion u for a sequence u.) Par and
Anti generate parallel and antiparallel strands, respectively. B(u,v) means that
uv is a (-sheet where the second argument v is the “last” strand. Thus, the
second rule says that if zy is a (-sheet (with y the last strand) and (y,y’)
constitutes a pair of adjacent strands, then xyzy’ is also a 3-sheet (with y’ the
last strand) for an unpaired subsequence z. In this rule, the right nonlinearity
plays a crucial role that expresses the constraints that the last strand y should
be one component y of pair strands (y,y’). The time complexity of the structure
prediction based on parsing of RCG is easily derived by counting the independent
positions that appear in the arguments of the left-hand side for each rule and
taking the maximum of them. For example, the independent positions are marked
by #; (1 <4 <5) for the second rule as B(«, Tx,Yus 24y, Ys, ). This is the maximum
among all the above rules, thus the complexity is O(n®) where n is the length
of an input sequence.

Returning to the problem of this paper, we assume that the length of each
strand is L. This means that |y| = |¢'| = L in the second rule, implying that
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the position *3 and *5 is determined by *o and *,4, respectively. Thus, the time
complexity becomes O(n?), which is the same order as our algorithm for up-
down [-sheet in Section Pl Note that the formalism in [§] does not incorporate
residue-residue interaction preferences. Implementation or experimental results
on f-sheet prediction based on RCG has not been reported as far as the authors
know. On the other hand, we have performed experiments with real protein
sequences. Although our algorithms currently consider only antiparallel 3-sheets,
it is not difficult to extend our proposed algorithms so that parallel structures
can be treated, as described in Section [Z2]

5 Hardness Result

Although we have presented an O(n?) time dynamic programming algorithm
in Section ] it remains a question whether generalized ungapped [-sheets can
be predicted in polynomial time or not. To discuss the complexity of such a
prediction problem, we define the corresponding decision problem as follows:

Definition 2. (Ungapped (3-sheet prediction problem, UGBETA)
Input: An amino acid sequence, a topology diagram and a real number e.
Output: “Yes” if and only if there exists an ungapped (3-sheet with some free
energy e or less.

In the following, we will show that UGBETA is NP-complete by reducing the
longest common subsequence problem that is known to be NP-complete [19]:

Definition 3. (Longest common subsequence problem, LCS)

Input: m sequences over an alphabet and a positive integer k.

Output: “Yes” if and only if there exists a common subsequence of length k or
more, which is not necessarily consecutive.

Theorem 1. UGBETA is NP-complete even if the topology diagram is planar.

Proof. Assume that each -strand consists of exactly one amino acid (i.e., L = 1)
(see Fig. Bl). We can also show that NP-completeness result holds for L > 2.

First, it is easy to see that UGBETA belongs to N'P. Guess an ungapped
[-sheet from the amino acid sequence, and check that it has at most e of free
energy value under some energy function.

Next, let us show how to reduce LCS to UGBETA for the proof of NP-
hardness. Let wy,ws ..., w, € {0,1}* be instance sequences of LCS. Without
loss of generality, we assume that m is an even number. If it is odd, we simply
add a new sequence wy, 11 that is the same as w,,. Also, we can assume that a
positive integer k is an odd number. If it is even, we simply add 0 at the end
of each w; (i = 1,2,...,m). We construct from wq,wa, ..., w,, an amino acid
sequence A = ByB1Bs -+ By Bimt1 € {0,1,z,y}*, where
(k+1)/2y, Bgi_l = TW2;—1TY (’L = 1,2,...,777,/2),
(k+1)/2

By = z(zyx)

Boy = zwizy (i=1,2,...,m/2), B = z(zyzx)
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QO : Amino acid
—— : Peptide bond
— —: Hydrogen bond

(b) The topology diagram of (-sheet of (a)

Fig. 3. A simplified ungapped [-sheet (L = 1). For simplicity of illustration, we allow
hydrogen bond to be compatible with peptide bond.

Yy Y )y
rXETXT XTI
‘\5;‘6--0'_6--6"7(\‘

x—-1'"‘|"1'-‘1-~¥/
,

“J)i 1,0--6_ 1 R
~'(), 0 ,JL:@' yl
Cy “t-47 0 M-

Fig. 4. Example of an amino acid sequence over {0, 1, z,y} constructed from an LCS

instance, where w; = 011010, w2 = 010010, w3z = 010100, ws = 011010, m = 4 and
k=5.

(see Fig. H). Note that w!* denotes the reverse sequence of w;, and B; ; that will
be used below denotes the jth symbol of B;. The score (energy) function s is
defined in such a way that s(0,0) = s(1,1) = —1, s(z,z) = —a where « is set
at some positive constant times nm, and defined as 0 for the other pairs. It is
obvious that this transformation can be accomplished in polynomial time. Then,
we must show the following:

— There exists a common subsequence of length k in wy, we, ..., wy, if and only
if there exists an ungapped [(-sheet of A with free energy —k(m + o — 1) —
a(2m + 3).

We omit a detailed proof of the above statement in this version as space is limited.
It should be noted that the topology diagram used in this proof is planar (see
Fig. B (b)). O
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6 Concluding Remarks

We presented dynamic programming algorithms for predicting ungapped up-
down [(-sheet and its extensions. Experimental results on ungapped up-down -
sheet prediction showed that performance is good enough to distinguish 3-sheet
regions from non-f3-sheet ones. However, we have not presented complete com-
parison with other models for 3-sheet prediction, which is left as our future work.

Computational models that predict biomolecule structure with high accuracy
are needed in bioinformatics. When we develop a model for prediction, it is
important to assign some biologically appropriate score to the model. In our
experiments using the dynamic programming algorithms, we used contact po-
tentials and did not perform training from the sequence sets. It might be possible
to design a training algorithm based on the EM algorithm, in which case, the pre-
diction accuracy would be higher. If we choose a grammatical approach, training
has to be carried out due to the difficulty in assigning optimal probabilities.

As shown in Section [ arbitrary ungapped planar -sheet prediction is NP-
hard. However, this claim does not always imply that efficient algorithms never
exist for small input sets. Most protein sequences consist of at most a few hun-
dred amino acid residues, and there is room for further investigation into the
development of efficient algorithms even if topologies that we wish to handle are
complex. Furthermore, it is a challenging task to develop an efficient algorithm
for predicting protein structures that include the combination of a-helix and
[-sheet.
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Abstact. The concept of multi-scale glide zoom window was proposed and a
novel approach of multi-scale glide zoom window feature extraction was used
for predicting protein homo-oligomers. Based on the concept of multi-scale
glide zoom window, we choose two scale glide zoom window: whole protein
sequence glide zoom window and kin amino acid glide zoom window, and for
every scale glide zoom window, three feature vectors of amino acids distance
sum, amino acids mean distance and amino acids distribution, were extracted. A
series of feature sets were constructed by combining these feature vectors with
amino acids composition to form pseudo amino acid compositions (PseAAC).
The support vector machine (SVM) was used as base classifier. The 75.37% to-
tal accuracy is arrived in jackknife test in the weighted factor conditions, which
is 10.05% higher than that of conventional amino acid composition method in
same condition. The results show that multi-scale glide zoom window method
of extracting feature vectors from protein sequence is effective and feasible, and
the feature vectors of multi-scale glide zoom window may contain more protein
structure information.

Keywords: Multi-scale glide zoom window, feature extraction, pseudo amino
acid compositions, homo-oligomer.

1 Introduction

In the protein universe, there are many different classes of oligomer, such as mono-
mer, dimer, trimer, tetramer, and so forth. These quaternary structures are closely
related to the functions of the proteins [1, 2]. Some special functions are realized only
when protein molecules are formed in oligomers; e.g., GFAT, a molecular therapeutic
target for type-2 diabetes, performs its special function when it is a dimer [3], some
ion channels are formed by a tetramer [4], and some functionally very important
membrane proteins are of pentamer [5,6,7]. It is generally accepted that the amino
acid sequence of most, not all, proteins contains all the information needed to fold the
protein into its correct three-dimension structure structure [8,9]. So, predicting oli-
gomers types from given protein sequences is important.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 78186.]2008.
© Springer-Verlag Berlin Heidelberg 2008
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Garian [10], Chou and Cai [11], Zhang [12] predicted homodimer and non-
homodimer using decision-tree models and a feature extraction method (simple
binning function), pseudo-amino acid composition feature extraction method, amino
acid index auto-correlation functions respectively. Zhang [13] also predicted protein
homo-oligomer types by pseudo amino acid composition. They found that protein
sequences contain quaternary structure information.

The concept of multi-scale glide zoom window based on the protein sequence was
proposed in this paper. Three kinds of feature vector incorporating sequence order
effect, that is, amino acids distance sum, amino acids mean distance and amino acids
distribution , were extracted from whole protein sequence glide zoom window and
kin amino acid glide zoom window of protein sequence. This new feature extraction
method is combined felicitously with a support vector machine [14, 15] to predict
homodimers, homotrimers, homotetramers and homohexamers.

2 Materials and Methods

2.1 Database

The dataset1283 consists of 1283 homo-oligomeric protein sequences, 759 of which
are homodimers (2EM), 105 homotrimers (3EM), 327 homotetramers (4EM) and 92
homohexamers (6EM). This dataset was obtained from SWISS-PROT database [16]
and limited to the prokaryotic, cytosolic subset of homo-oligomers in order to elimi-
nate membrane proteins and other specialized proteins.

2.2 The Concept of Multi-scale Glide Zoom Window

Multi-scale glide zoom window of every nature amino acid can be described as multi-
scale segment sequence (or, whole sequence) of one protein sequence, that is, the
every scale glide zoom window of one nature amino acid can be decided by three
factors: constructing rule of xth scale glide zoom window, kth protein sequence and
ith amino acid. So, for one protein sequence, we can obtain many glide zoom win-
dows and extract feature vectors from every glide zoom window. This novel multi-
scale glide zoom window feature extraction method is very depends on constructing
rule of every scale glide zoom window. In this paper, we extract feature vectors of
one protein sequence from 2-scale glide zoom window. The first scale glide zoom
windows of every nature amino acid are all the whole protein sequence, which pro-
vide panorama of a protein sequence. The second scale glide zoom window of every
nature amino acid are kin amino acid glide zoom window, which begins from the
position where every kin amino acid appears firstly and ends at the position where
this kin amino acid appears lastly among the whole protein sequence, which focuses
on corresponding local of every nature amino acid in a protein sequence. There are
one first scale glide zoom window and twenty second scale glide zoom windows for
every protein sequence. For example, for the protein sequence ‘MITRM-
SELFLRTLRDDP’, the first scale glide zoom windows of every nature amino acid
are all the whole protein sequence itself ‘MITRMSELFLRTLRDDP’. The second
scale glide zoom window of nature amino acid M is ‘MITRM’, the second scale glide
zoom window of nature amino acid T is ‘TRMSELFLRT’, the second scale glide
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zoom window of nature amino acid D is ‘DD’, and so on. If one nature amino acid
does not appear in the protein sequence, the second scale glide zoom window of this
nature amino acid is empty. The position and the width of every second scale glide
zoom window are variable. Apparently, the second scale glide zoom window contains
some sequence order information. The width of first scale glide zoom window is
equal to the length of the protein sequence.

2.3 The Multi-scale Glide Zoom Window Feature Extraction Methods

Suppose the dataset consists of N homo-oligomeric protein sequences. p* represents
the kth protein sequence. ¢¥; represents the ith amino acid of the nature amino acid set
AA, AA={A,R,N,D,C,0,E,G,H,I,L,LK,M ,F,P,S,T,W,Y,V}. Here, We can use

z * to represent the xth scale glide zoom window of Q; in p*. % and 17

repre-
sent the first position and last position of zix’k in the kth protein sequence p*, respec-
tively. Lf’k is defined as length of Zix’k . According to the definition of first scale glide
zoom window in section 2.2, every first scale glide zoom window of ¢, in p* is the
same whole sequence. Apparently, zl.l’k is p*. L]l.’k is the length of p* ,which we can
denote as L. fl-]’k and lil’k are 1 and L' respectively. According to the definition of

second scale glide zoom window in section 2.2, f,** and [?*

are first and last position
‘ . 2k .

where ¢/, appear among p* , respectively. Z;” is segment sequence between

FF*and 7% I2F is equal to 12* — f* . In order to describe the positions of every

nature amino acid in p*, We first defined a position indicator o; ; .

1 if @, locates in jth position of p*

0= . . L (D
710 if @, does not locate in jth position of p*

. e sk
Then, we map protein sequence p* to a position indicator matrix V" .

_vlk - Olk,l"“’ollij’.“’ol]iLk
R TEN
VE=| b (=] oot k=l N @)
R TEN
k
V20 _0]2(()’1’. "0§O,j""’0§o,L’<_20XLk
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e k .
Here, position indicator vector V; shows where ¢, locates in the p*

. k. k . .
In order to extract various feature vectors of Zix with v;", we defined a coordi-

. ’k
nate axis vector W,

5,1 ’ 2 ’° fll ’° 5 ]lek 7-x:172; j:L'-"Lk (3)
Here,
=i L j=La, L @)
g /e B A AT
2k , )
Yo if j<f or j>r*

To integrate more sequence order information, according to the concept of multi-
scale glide zoom window, three kinds of feature vector of every scale glide zoom
window are extracted to predict homo-oligomers. The three kinds of feature vector of
every scale glide zoom window are defined as follows:

1) Amino Acids Distance Sum Feature Vector
The amino acids distance sum feature vector of p* is expressed as the following 20-
D feature vector:

C=ntt Ll k=1, N (©6)

Here,

x,k

nt =wx e k=1 N 9

Conveniently, S'and S* are respectively used to present the amino acids distance sum
feature sets of first and second scale glide zoom windows.

2) Amino Acids Mean Distance Feature Vector
The amino acids mean distance feature vector of p* is expressed as the following 20-
D feature vector:

M& =[5 k=1, N ®)
Here,
3 —_ : , if L #£0
ﬂiA, — l’l (9)
0 , if LF=0

Conveniently, M" and M? are respectively used to present the amino acids mean dis-
tance feature sets of first and second scale glide zoom windows.
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3) Amino Acids Distribution Feature Vector
The amino Acids distribution feature vector of p* is expressed as the following 20-D
feature vector:

DY =] pt e i pit ], k=1 N (10)

Here,

x.k 2
1 : k 1 k kNT . k
! 0; X j— wrx) |, it LT #0
prt =1Lk ]Zf:( I T
0 , if L =0

Conveniently, D' and D? are respectively used to present the amino acids distribution
feature sets of first and second scale glide zoom windows. It is easy to certified that
D'is equal to Dz, so, we can marked D' and D? as D.

(1)

1

2.4 Assessment of the Prediction System

The prediction quality can be examined using the jackknife test. The cross-validation
by jackknifing is thought the most objective and rigorous way in comparison with
sub-sampling test or independent dataset test [17, 18]. During the process of jackknife
analysis, the datasets are actually open, and a protein will in turn move from each to
the other. The total prediction accuracy (Q), Sensitivity (Q(class(k))) and Matthew’s
Correlation Coefficient (MCC) [19] for each class of homo-oligomers calculated for
assessment of the prediction system are given by:

M
0 =Zpk/N><IOO% (12)

k=1
Q(class(k)) =p, /(pk +uk) (13)
MCC(class(k)) = Pult — %O (14)

\/(pk +”k)(pk +0k)(”k +”k)(”k +0k)

Here, M is the total number of classes, p, is the number of correctly predicted se-
quences of k class protein homo-oligomers, #, is the number of under-predicted
sequences of k class protein homo-oligomers, 71, is the number of correctly predicted

sequences not of k class protein homo-oligomers, 0, is the number of over-predicted

sequences of k class protein homo-oligomers. According to The dataset1283 used in
this paper, M=4, class(1), class(2),class(3) and class(4) are 2,3,4 and 6 respectively. 2,
3, 4 and 6 represent 2EM, 3EM, 4EM and 6EM respectively.
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3 Results and Discussion

3.1 The Results of Different Pseudo Amino Acids Composition Feature Sets

C presents the feature set based on the amino acid composition approach [20].
Twenty-seven feature sets of pseudo amino acid composition (PseAAC) are con-
structed by feature sets D, Ml, M2, Sl, S? of glide zoom window and C. The results of
these twenty-seven PseAAC feature sets and feature set C with RBF SVM and one-
versus-one strategy in jackknife test are shown in table 1.

From Table 1, we can see that the result of CDM'M?2S? is the best in all the feature
sets, and the total accuracy is 75.53%, which is 6.71% higher than that of C. The
accuracies of feature sets which include M!, M? or both of them are higher than that
of other feature sets which do not include M', M* or both of them. These results sug-
gest that, in every scale glide zoom window, the feature set of amino acids mean dis-
tance is more effective and robust than other feature sets. In addition, the accuracies
of feature sets which include D, S!, s? except M! and M? are near that of feature set C.
The reasons are that there may be some redundancy and conflict information between
these feature sets, or the unbalance of sample numbers among the four classes.

Table 1. Results of 28 Feature sets with RBF SVM and one-versus-one strategy in jackknife
test

2EM 3EM 4EM 6EM

0,
Feature sets Q(2) % MCC(2) QE3) % MCC(3) Q4) % MCC(4) Q(6) % MCC(6) Q %
C 91.57 0.3582  42.86 0.5726 3853 03568  18.48 03088  68.82
CD 9539  0.6630 3238 0.5276  33.03 0.3611 1.09  0.0992  67.58
cm! 9223 05152 5048  0.6621  57.49 05258 2935 04412 7545
CM? 91.17 0.7497 5333 0.6511 5535 05053  30.43 04373  74.59
cs! 9512  0.3341 3238 05188  33.95 0.3627 217 01403  67.73
cs? 9433  0.6813 3619 05150  37.61 0.3753 326 0.1439  68.59
cpM' 92.89  0.5051  50.48 0.6690 5535 05155  26.09 04318  75.06
CDM? 91.04 0.7495 5333  0.6511  55.05 0.4989  30.43 04373  74.43
Cps! 94,60 03325 3238 05188  35.17  0.3696 326 01720  67.81
CDS? 9592  0.6612 2857 0.4922 3211  0.3569 1.09  0.0992  67.34
cM'm? 9236 0.5013 5333 0.6898  55.66 0.5178  25.00 0.3955  74.98
cm's! 91.44 05105 5333  0.6765  57.49 05183  30.43  0.4447  75.29
cm's? 91.96 0.5113 5333  0.6765  56.57  0.5201 2935  0.4267  75.29
cms! 91.30  0.5025 5333  0.6573  55.66 0.5065  32.61 0.4587  74.90
cm*s? 91.17 0.7514 5333  0.6572  55.05 0.4973  31.52 0.4480  74.59
cs's? 95.65 0.3347  30.48 05102 3333 0.3641 1.01  0.0992  67.65
CcbM's! 9223 05133 5333  0.6765  56.27 0.5235  30.43  0.4447  75.45
CDM?S? 90.78  0.7481 5333 0.6634 5535 0.4995  31.52  0.4480  74.43
CDS'Ss? 94,07 03429 3238 05190  37.61  0.3679 326 01720  68.12
CcM'Ms! 9249 0.5085 5333  0.6899 5627 0.5233  26.09 04151  75.29
CM'M’S? 9236 0.5065 5333  0.6899  56.27 0.5213  26.09 0.4151 7521
CcM's's? 92.89 05137 5238  0.6831 56.27 0.5235  26.09 04319 7545
CcMms's? 91.04 0.4985 5333 0.6573 5596 05070  32.61 0.4657  74.82
CDM'M?S! 9275 05125 5333 0.6900 5627 05273  26.09 04152 7545
CDM'M?s? 92.89 05145 5333  0.6900 5627 05294  26.09 04152  75.53
CDM?s'S? 91.57 0.4965 5333  0.6635 5443 0.5019  32.61 04657  74.75
cM'M’s's? 92.23  0.5072 53.33  0.6831 56.57 0.5218 26.09 0.4151  75.21

CDM'M’s's? 92.36  0.5065 53.33  0.6831 56.27  0.5250 26.09  0.4073  75.21
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3.2 The Influence of the Unbalance of Sample Numbers among the Four
Classes

We used the weighted factor approach to investigate the influence of the sample un-
balance among the four classes. According to the number of four types of protein
homo-oligomer, the weighted factor values of 2EM, 3EM, 4EM and 6EM are calcu-
lated as follow: 759/759, 759/105, 759/327, 759/92. The results of twenty-eight fea-
ture sets using weighted factor approach are shown in table 2.

From table 2, we can see that, in the weighted factor conditions, the total accura-
cies of all feature sets except CS'S? based on the two scale glide zoom window are
higher than that of C. The result of CDM'M?S! is the best, and the total accuracy are
75.37%, which are 10.05 higher than that of feature set C. These results suggest that
weighted factor approach can weaken influence of the unbalance of sample numbers
among the four classes.

Table 2. Results of 28 feature sets with RBF SVM and one-versus-one strategy in jackknife test
using weighted factor approach

Feature sets 2EM 3EM 4EM 6EM Q%
Q)% MCC(2) Q(3) % MCC(3) Q(4) % MCC(4) Q(6) % MCC(6)
C 7036 03577 49.52 0.4772 6391 03859  46.74 03752 6532
CD 76.02  0.4105 5333 05213 64.83  0.4383 4239  0.4092  68.90
cMm! 78.79  0.4881 59.05  0.5911 69.72 05127  51.09 0.4983  72.88
cm? 78.00  0.4647  59.05 0.5532  67.58 0.5035  53.26 0.5188  72.02
cs' 7431 04163  57.14 05196 6575 04571 4891 04237  68.90
cs? 76.81  0.4363 5524 0.5371  66.36 0.4665  45.65 04305  70.15
cpM! 78.92  0.4838  60.00 0.5981  68.50  0.5041 51.09 04982  72.72
cbm? 7879 04723  60.00 0.5677  66.97 0.5039 5435 0.5356  72.49
cps' 75.89 04327 5810 0.5375 6544 04609  47.83 04312  69.76
CDS? 7576 04271  57.14  0.5300  64.83 0.4537 4674 0.4127  69.37
cM'M? 8235 05150  60.95 0.6450  68.50 0.5279  51.09 0.5463  74.82
cM's! 78.52  0.4833  59.05 05991  69.42 05031  51.09 05020  72.64
cm's? 80.24 0.4931  57.14 05811  69.72 05265  51.09 05275  73.58
cms! 7852  0.4763  60.00 05713 6820 0.5054 5326 05355  72.56
Ccms? 7839 04735  59.05 05604  67.89 05025 5326 05270  72.33
cs's? 65.88  0.3722  62.86 0.4681 6453 0.4211  51.09 03296  64.22
CcDM's! 80.37 04797  56.19 05736 6758 05117 5326 05533  73.19
CDM?S? 80.24 0.4837  60.00 05866  66.36 0.5077 5435 05443  73.19
CDS's? 7747 04424 5810 05450  64.83  0.4686  47.83  0.4485  70.54
cM'Ms! 8248 05172 6190 0.6520 6820 0.5258  52.17 0.5646  74.98
CM'M’S? 8221 0.5085  61.90 0.6519  67.28 0.5164  52.17 05595  74.59
CcM's's? 79.18  0.4843  57.14 0.5848  69.42  0.5103 51.09 05102  72.88
cms's? 76.68  0.4546  62.86 0.5643  66.67  0.4823 5326  0.5264  71.32
CDM'M?S! 8327 0.5246  61.90 0.6522  67.89 05328 5217 0.5648  75.37
CDM'M?s? 83.16 0.5255  61.90 0.6522  68.20  0.5322 51.09 05513 75.29
CDM?s'S? 80.50 0.4830  60.95 0.5899  65.44 05019 5435 05529  73.19
cM'M*s's? 83.14 05176  61.90  0.6521 66.97 0.5236  52.17 0.5646  75.06
CDM'M’s's? 83.53  0.5223  61.90  0.6568  66.97  0.5269  52.17  0.5647  75.29

4 Conclusion

A novel concept of multi-scale glide zoom window was proposed in this paper. Based
on the concept of multi-scale glide zoom window, a protein sequence can be investi-
gated from two scale glide zoom windows (whole protein sequence glide zoom
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window and kin amino acid glide zoom window). Twenty-seven feature sets were
constructed by combining five kinds of feature sets of the two scale glide zoom win-
dows with amino acids composition to form pseudo amino acid compositions (Pse-
AAC). The results show that the twenty-six feature sets based on the two scale glide
zoom windows are better than feature set C in the weighted factor conditions, and
weighted factor approach can weaken influence of the unbalance of sample numbers
among the four classes. In the three kinds of feature sets of the two scale glide zoom
window, amino acids mean distance feature set is most effective and robust. It is
demonstrated that the concept of multi-scale glide zoom window provide a new scope
to investigate primary protein sequence, the feature sets extracted from multi-scale
glide zoom window may contain more protein structure information.
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Abstract. There is much research on the automatic extraction of new
binding sites in proteins by searching for common sites in proteins with
identical functions. While many binding sites consist of concave struc-
tures, it is difficult to compare such concaves directly due to the various
sizes of concaves. To cope with this difficulty and to realize detailed and
precise comparisons between concaves, we propose a method of searching
for and comparing concaves by gradually changing the size. By experi-
ments with enzyme proteins, we confirmed that extraction accuracy for
the binding sites is improved.

1 Introduction

The functional analysis of proteins is an important research area for elucidating
the mechanism of living bodies. Recently, a variety of papers concerning the
analysis of protein, e.g, constituent atoms, amino acid sequences and character-
istic structures, have been published [I]. The sites on the molecular surface of
a protein related to functions are called functional sites, and specifying them
can provide clues for further analysis. Some proteins can function by binding to
other proteins or compounds (ligands) at functional sites. Moreover, it is well-
known that the surface shape and the physical properties of binding sites are
involved in bindings to ligands because binding occurs on the molecular sur-
face [2]. Therefore, analysis at the functional sites and the molecular surfaces is
useful for specifying the protein function [3J4]. For example, one can identify an
unknown binding site by searching for structures that resemble well-known bind-
ing sites as well as by extracting structurally common sites within proteins that
have the same function. The local pattern that commonly appears in a group of
proteins is generally known as a motif. Moreover, various kinds of protein motifs
are based on target patterns. While a sequential pattern that repeatedly appears
in the base sequence and amino acid sequence is called a sequence motif, a struc-
tual pattern that appears in the structural feature is called a structural motif.
These motifs extracted from proteins having the same function often correspond
to functional or binding sites. Moreover, a binding site, which usually forms a
concavity called a pocket, is regarded as a structural motif candidate. Therefore,
searching for similar pockets within proteins that have the same function helps

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 87197] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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specify binding sites. However, deciding the size of pockets for similarity evalu-
ation beforehand is difficult because the size of pockets may vary from protein
to protein.

In this paper, we approach the problem of flexible comparisons between pock-
ets. We propose the following way to evaluate similarity between pockets. If we
specify the size of the local sites of pockets, the local sites of pockets with spec-
ified size can be extracted, and we can compute similarity between local sites.
While slightly modifying the size, we repeatedly perform the above computa-
tion. Similarity between pockets is the highest similarity between local sites.
Comparisons between pockets that do not depend on pocket size are enabled by
focusing on local sites in pockets. Pockets of proteins with identical functions
are compared using a defined similarity measure to extract similar pockets as
motifs.

The rest of this paper is organized as follows. In Section 2, we introduce
motifs on molecule surfaces. In Section 3, the proposed framework is described
in detail. In Section 4, the parameter settings for the experiments are described.
After mentioning the experimental results in Section 5, we conclude this paper
in Section 6.

2 Motifs on Molecule Surfaces

2.1 Protein Motifs

Locally common amino acid residues exist in amino acid sequences of proteins
having the same function. They are called sequence motifs. Since functional
and binding sites are often included in a sequence motif, sequence motifs are
considered candidates of binding sites. Sequence motifs are crucial, but motifs
based on structural data have recently become of major interest because of the
following facts [5]:

— Extraction of residues located far from each other in the sequence
Amino acid residues that are located far from each other in the sequence,
despite located close to each other in space, interact to form an binding site
(Fig. ). Thus, it is difficult for these amino acid residues to be defined as a
sequence motif.

— Evolutionary conservation of structural features
An amino acid sequence is altered during evolution. On the other hand, the
structural features of a protein tend to be conserved more than amino acid
sequences. Structural motifs provide biologically and evolutionarily interest-
ing insights and help predict protein functions.

In this paper, local patterns that commonly appear on molecular surfaces are
defined as surface motifs (hereafter, motif).

2.2 Pockets as Motif Candidates

A protein family is a group of proteins with similar functions. Some functional
sites, which commonly appear in each member of a protein family, have a similar
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Functional site

Gy

Folding

Amino acid residue

Chain

Fig. 1. Folding of distant amino acid

shape on the molecular surface and similar physical properties. Moreover, bind-
ing sites include a complex shape structure on molecule surfaces. For instance,
when a serine protease acts as a catalyst, an other protein binds nonpolar pock-
ets in the neighborhood of its functional site. Thus, the pocket is a candidate for
a binding site [6]. We consider extracting motifs from surface data as extracting
similar pockets among a protein family.

We use the surface data in eF-sitd] to extract the motifs. The surface data
consist of polygons, and each polygon vertex has its position and physical prop-
erties (maximum curvature, minimum curvature, electrostatic potential, and hy-
drophobicity). These data are provided in an xml format. An example of surface
data is shown in Fig.

<vertex id="1" image&‘)’90.85497 34.809933 35.965733
0.5078119 0.36840865 -0.7787183 255.0 255.0 95.625"

property="-0.007242 4.200000 69.020000 -0.418032 -0.034518"/>

@ ®

@ Coordinate (x, y, 2)
@ Electrostatic potential
@ Hydrophobicity

@ Maximize curvature

® Minimum curvature

Fig. 2. Example of surface data

2.3 Extraction of Pockets

In this paper, we attempt to extract pockets using curvature. Gaussian curvature
K and mean curvature H are defined as follows using maximum curvature Kmqz
and minimum curvature Kpin [8]:

K = Rmaz * Bmin 5 H = Kmaz + /imin)'

2 (
! http://ef-site.hge.jp/eF-site/[T]
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Each vertex belongs to one of eight shapes base on the values of K and H. One
is called concave if and only if K > 0 and H > 0. We extract the set of vertices
that belongs to concave as a pocket using the region growing method [9]. That is,
a pocket is extracted as a set of vertices. To remove pockets that are too small to
be binding sites, we set a lower bound of the number of vertices that constitute
a pocket. In addition, the cavities inside the protein are excluded because they
do not appear on the surface.

3 Motif Extraction

3.1 Overview

In this section, we give an overview over our method for extracting the motifs
of proteins, namely, for extracting similar pockets. A family that consists of n
proteins is denoted as % = {Py, Py, ..., P,}. The set of pockets of each protein
P, is denoted as mc(P;) = {p},p}, ...}, and we consider the Cartesian product
set of pocket set S(.F) = me(Py) x me(Pa) X ... xme(P,) in # and call it a motif
group. In this paper, we rank an element of a motif group using some similarity
measure and extract pockets in superior elements as the motif in each protein.
However, a multiple comparison of an element of the motif group is difficult
because, if a family has n proteins, each of which has 30 pockets, | S(F) |= 30",
we conduct pairwise comparison. The motif extraction procedure is as follows.

1. First, given pocket p, msp(p, P) denotes a pocket in protein P that is the
most similar to p, called the most similar pocket. The formal definition of the
similarity between pockets will be explained later in Section Next, the
most similar pockets are calculated for all pockets in P;. The set of the pairs
of a pocket in P; and the most similar pocket in P;, denoted as pair(P;, P;),
are formally defined as follows:

pair(P;, P;) = {(p,q) | p € mc(P;),q = msp(p, Pj)} . (1)

2. M (%) is obtained by applying the above operation to all proteins in protein
family .7:

M(F)= ] pair(z,y). (2)
T, yEF xty

3. Finally, an element of motif group s € S(.%) is ranked using the following
score:

score(s) =|{z,y € s | (x,y) € M(F)} |. (3)

Equation (@) is based on the idea that the pocket equivalent to the motif has a lot
of frequency that is most similar pockets for pairwise comparison. The elements
of S(F) are ranked using Equation (Bl), and the pockets in the superior one
are extracted as the motif in each protein. An example of the process of the
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extraction of motifs from .# = { Py, Py, P53} is illustrated in Fig. Bl Proteins Py,
P, and Ps5 only have four, three, and three pockets respectively. First, the most
similar pocket is calculated for each pocket of proteins Py, P, and Ps (Fig.
@). For instance, if the most similar pocket of pi is p3, then (p},p3) becomes
an element of pair(Py, Py). M (%) is the union of pair(Py, P2), pair(Py, Ps),
pair(Py, Py), pair(Pa, Ps), pair(Ps, Py), pair(Ps, P1), and | M (%) |= 20 in Fig.
Next, the element of the motif group is ranked using Equation (). In the case
of s4, score(sy) is the number of arbitrary pairs of elements in s4 that are also
in M(Z) (Fig. B®). As a result of ranking, s; has the high score, and pockets
in s5 are extracted as motifs on proteins Py, Py, P3 (Fig. BI®)).

In the above method, one crucial thing to consider is the similarity measure
between pockets, which is needed to get the most similar pocket msp(p, P). It is
difficult to compare pockets directly because sizes differ in each protein. In the
next section, we introduce a similarity measure between pockets.

Protein A, Protein P, Protein P,

N 3
§ ) P
P33 g /}\'\j‘/c@ '

pair(P.P) ={(p,.p,").(p, . p).(py . p,)).(p . P}
pair(P,,P) ={(p,". p, ).(p,". ).(p". Py )}

wz) || Par®.P)={(p.p)) (P, PPy 2)). (P PN}
pair(P,R)={(p’, p,).(p,’. ). (p,", p,)}
pair(P,,B)={(p,",p,).(p,", 0,)). (05" 2,))}
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@ | Extracts as motifs
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Fig. 3. Overview of motif extraction
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Fig. 4. Dissimilarity between pockets

3.2 Dissimilarity between Pockets

As mentioned above, the surface data consist of polygons, and each polygon
vertex has its position and physical properties. In this section, we present a
similarity measure between pockets that is independent of the size of pockets
by comparing neighboring vertices that compose pockets. The procedure is de-

scribed as follows (Fig. [)).

1. Each pocket is represented as a set of vertices. Consider two pockets, p; =
.}, where u; and v; are the vertices of p; and
p2. Moreover, let n(u;,d) be a set of neighboring vertices located within dA
from wu;.
. The distance between two sets of neighboring vertices n(u;,d) and n(v;, d)
is denoted as ns(n(u;,d),n(vj,d)). To evaluate the distance of neighboring
vertices, we use physical properties and give three definitions of the distance
between two sets of neighboring vertices: nsl, ns2, and ns3. They are de-
fined by combining the average and the variance, which are representative
measures for set comparisons:

nsl(n(u;, d),n(vj,d)) = Z lave;(n(u;, d)) — ave;(n(vj,d))|

{u1,us,...} and py = {v1, 09, ..

i€c,h

ns2(n(u;, d),n(vj, d)) = Z lave;(n(u;, d)) - var;(n(u;, d))

i€c,h
—ave;(n(vj,d)) - var;(n(vj, d))|

ns3(n(us, d),n(vy,d)) = > |avei(n(u, d)) — ave;(n(v;, d))|

i€c,h

+var;(n(us, d)) — var;(n(vj, d))|,
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where ave.(X) and avep, (X)) denote the average value of the electrostatic po-
tential and hydrophyobicity of vertex set X . Similarly, var.(X) and vary (X)
denote those variances. Note that electrostatic potential and hydrophobicity
are normalized from 0 to 1.

3. The dissimilarity between pockets p; and po is defined as the minimum
distance of neighboring vertices in p; and ps:

Nslocal (plva) = minuiepl,’llj €p2 (nS(n(UZ‘, d)7 n(vjv d))) (7)

From the above definition, the most similar pocket is defined about pocket p and
protein P using the dissimilarity between pockets:

msp(p, P) < q € me(P), s.t. Vo € me(P), NSiocal(D, ¢) < NSiocar(p,x). (8)

The first experiment assessed which equation is more suitable to define dis-
tance. This experiment used ten proteins (lowe-A, lowd-A, 1gjc-B, 1sqt-A, 1sqo-
A, 1sqa-A, lowi-A, 1ubqg-A, 1gj7-AB, and lowk-A) that belong to a urokinase-
type plasminogen activator, where lowe is PDB-ID and A is a chain name. The
Structure Classification of Protein (SCOP [I0]) is referred to for obtaining infor-
mation about the protein family. The ten proteins are divided into one training
protein and nine test proteins. The pocket that corresponds to the binding site
in the training protein is compared to pockets in the test proteins. The above
operation is iterated ten times by altering the training protein. The most sim-
ilar pocket in each test protein is obtained using Equation (). Note that to
calculate the most similar pocket in (§]), we need Equation (), which must be
instantiated by Equations (@), ([@), or (@). If the most similar pocket in each test
protein is actually a binding site, we consider that the method has successfully
obtained correct pockets in the test protein. To judge whether the pocket is
actually a binding site, we use the information on the nonpolar pockets located
in neighborhood of functional sites as a binding site. PROSITH] is used as the
information of functional sites. The accuracy, which is the ratio of successfully
obtaining binding sites, of the three definitions (@), (@), and (@) is 56%, 67%,
and 87%, respectively. From these results, Equation (@) is employed as a distance
measure between neighboring vertices.

The second experiment confirmed the effectiveness of using local parts of
pockets. We compared the proposed dissimilarity measure to that based on all
vertices in pockets. The dissimilarity between pockets using all vertices in pockets
is formally defined as follows:

NSgiobal(p1,p2) = ns(p1, p2). 9)

Ten experiments were conducted by altering a training protein, as in the first
experiment, and we aggregated the results for each training protein. The re-
sult is shown in Fig. Bl In this experiment, the neighboring range was set to
4A. The horizontal axis is a protein ID (PDB-ID), and the vertical axis is the
accuracy of detecting a correct pocket. “Global” means the results obtained us-
ing all the vertices in the pockets, and “Local” means the results obtained using
the neighboring vertices. We see that “Local” consistently outperforms “Global”.

2 http://www.expasy.org/prosite/[T1]
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In this experiment, the neighboring range is 44, but it is not obvious which
neighboring range is really effective. If the neighboring range is too small, it
may cause sites noise that is accidentally similar. On the other hand, if the
neighboring range is too wide, it targets all the vertices of the pockets. In the next
section, we introduce a method that dynamically determines the neighboring
range.

4 Automatic Setting of Neighboring Range

4.1 Alternation of Neighboring Range

Since it is not obvious how far the neighboring range is effective for comparing
pockets, we show the influence of the neighboring range in pocket comparisons.
We used a family containing ten proteins (1gbt-A, 1fn8-A, 1f0t-A, leb2-A, 1fy5-
A, 1fn6-A; 1fni-A, 1bra-A, lco7-E, and 1fy8-E) that belong to a trypsin. Ten
experiments were conducted by altering training proteins, as in the first exper-
iment in Section B2 and we altered the neighboring range from 0.25 to 6.0A.
The accuracy of detecting a correct pocket is shown in Fig. [6] where the optimal

Pl
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-« Urokinase } ( \
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Fig. 6. Validation of neighboring range



Extraction of Binding Sites in Proteins 95

neighboring range differs with each protein. The accuracy greatly differs with
the neighboring range, which suggests that the optimal neighboring range value
should be explored automatically. The neighboring range is expanded stepwisely,
and the most similar pockets are calculated using the optimal neighboring range.

4.2 Similar Neighboring Range Prior Method

The similar neighboring range prior method (SNP method) gives priority to
the most similar neighboring range between pockets. An overview of the SNP
method is shown in Fig. [l This method is based on the idea that the important
neighboring range about binding site is restricted. If the dissimilarity between
p1 = {u1,ug,...} and py = {v1,vs,...} is calculated, the dissimilarity between
pockets is redefined as Equation (). Note that dissimilarity between pockets is
reflected in neighboring range dA, because similarity in a narrow range tends to
include noise. Less the dissimilarity between pockets means more similar between
pockets:

min(ns(n(u;, d),n(v;,d)))

NS(p1,p2)iocar = mina( y ). (10)
Protein £, Protein 2,
] A ,—Af V’Z,

msp(p,,B,) = p’

Fig. 7. SNP method

5 Experiments and Results

To verify the effectiveness of the proposed method, we conducted experiments
for extracting motifs. We also evaluated whether the extracted motif is a binding
site. Nonpolar pockets located in neighborhood of functional sites were used as
correct data. The information of the function sites was obtained from PROSITE.
The proposed method needs family information because it extracts common
pockets within the same family as motifs. In this experiment, we used family
information from SCOP and proteins classified as serine proteases. The family
information used is shown in Table[Il In the automatic settings of the neighboring
range, the initial range was 0.25A4, and the upper bound of the neighboring
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Table 1. Family and member proteins (PDB-ID)

Family Protein
Chymotrypsin 2gmt, 1cho-E, 1ged, 1gl0-E, lacb-E
Protease B 1sgq-E, 1sgp-E, 1ds2-E, 1ct4-E, 1ct2-E
Trypsin 1gbt, 1fn8-A, 1f0t-A, leb2-A, 1fy5-A
Alpha-Lytic protease 1ssx-A, 1qq4-A, 1pl12-E, 1qrw-A, 1qrx-A
Urokinase-type plasminogen activator lowe-A, lowd-A, 1gjc-B, 1sqt-A, 1sqo-A
Coagulation factor VIla 1dva-H, 1o5d-H, 1klj-H, 1dan-H, 1kli-H

Table 2. Result of extracted motifs

RANK (SNP) SCORE (SNP)

Chymotrypsin 2 17

Protease B 1 20

Trypsin 1 19

Alpha-Lytic protease 7 14
Urokinase-type plasminogen activator 1 16
Coagulation factor VIla 1 17

range was 6A. All experiments were done on an Intel Xeon 2.80 GHz PC with 2
GB of main memory running Debian Linux (32 bits). The experiment runtime
to extract motifs from six families was about half a day. The results of the
extraction of motifs are shown in Table[2, where SCORE means the score value
of the elements of the motif group. RANK means the level at which the elements
of the motif group are ranked by their SCORFEs. A motif group has thousands of
elements, but pockets in the elements of the top-ranked motif group are binding
sites.

One method closely related to our work is LEM-Pro [12], which is a framework
for identifying family specific local sites. LFM-Pro resembles our method in terms
of extracting family specific structural features. We focus on the pockets in a
protein, and features are extracted as surface motifs, which are a portion of the
molecular surface. On the other hand, in LFM-Pro, geometrically significant local
structural centers are first identified, and then the geometrical and biochemical
environment around these centers are evaluated at the atom-level to distinguish
a target family. Quantitative comparison with LFM-Pro is future work.

6 Conclusion

In this paper, we proposed a method of extracting binding sites from protein
molecular surfaces using a similarity measure between pockets by comparing
neighboring vertices. We successfully found binding sites in enzyme proteins by
applying the proposed method.
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The proposed method assumes that information about the protein family can

be clarified in advance. If we cannot get complete information about the protein
family, we will explore a new method in which protein-protein interaction is
employed complementarily as a substitute for family information. In addition,
applying the proposed method to the protein classification problem is a crucial
remaining work.
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Abstract. Recently, much attention has been given to the mass spec-
trometry (MS) technology based disease classification, diagnosis, and
protein-based biomarker identification. Similar to microarray based in-
vestigation, proteomic data generated by such kind of high-throughput
experiments are often with high feature-to-sample ratio. Moreover, bio-
logical information and pattern are compounded with data noise, redun-
dancy and outliers. Thus, the development of algorithms and procedures
for the analysis and interpretation of such kind of data is of paramount
importance. In this paper, we propose a hybrid system for analyzing such
high dimensional data. The proposed method uses the k-mean cluster-
ing algorithm based feature extraction and selection procedure to bridge
the filter selection and wrapper selection methods. The potential infor-
mative mass/charge (m/z) markers selected by filters are subject to the
k-mean clustering algorithm for correlation and redundancy reduction,
and a multi-objective Genetic Algorithm selector is then employed to
identify discriminative m/z markers generated by k-mean clustering al-
gorithm. Experimental results obtained by using the proposed method
indicate that it is suitable for m/z biomarker selection and MS based
sample classification.

1 Introduction

With the development of high-throughput proteomic technologies such as mass
spectrometry (MS), we are now able to detect and discriminate disease patterns
in complex mixtures of proteins derived from biological fluids such as serum,
urine or nipple aspirate fluid [IJ2]. The technologies commonly employed in such
kind of differential studies are time-of-flight (TOF) spectroscopy with matrix-
assisted or surface-enhanced laser desorption/ionization (SELDI) or SELDI-TOF
[3l4]. Similar to microarray studies, SELDI-TOF datasets consist of tens of thou-
sands of mass/charge (m/z) ratios per specimen [56]. Each m/z value of the
spectrum approximately reflects the abundance of peptides of certain mass [7].
Despite of its great promise, the analysis of the data generated by such studies
presented several major challenges. The challenges originate from the nature that

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 98 2008.
© Springer-Verlag Berlin Heidelberg 2008
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SELDI-TOF datasets are often with large number of features and limited size
of samples which are known as the curse-of-dimensionality and curse-of-dataset-
sparsity problems [§]. To make the problem worse, SELDI-TOF data are often
extremely noisy and redundant. Thus, how to select a subset of m/z biomark-
ers that not only can yield low sample misclassification rate but also have true
biological importance are of great value.

Generally, feature selection algorithms can be categorized into three groups,
namely, filter, wrapper and embedded.

With filter approaches, the feature subsets are selected with certain kind of
evaluation criterion such as Mutual Information [J], t-statistic [I0], y>-statistic
[11] and Information Gain [12]. Although, filter selection methods are relatively
computational efficient, they totally ignore the effects of the selected feature sub-
set on the performance of the inductive algorithm [I3]. More importantly, fea-
tures selected with filter approaches are often highly correlated [I4]. Therefore,
redundancy and data noise are introduced, leading to the decrease of the classi-
fication accuracy while increasing the computational burden. Wrapper method
get its name because the inductive algorithm is used or “wrapped” as the fea-
ture evaluation tool in the selection process. Classical wrapper methods often
utilize forward selection and backward elimination to search feature sub-space,
while advanced types of wrappers introduce the use of Evolution Strategy (ES)
[15] and Genetic Algorithm (GA) [BIIGJI7]. Although wrapper methods often
produce higher sample classification accuracy than filter methods, they are ex-
tremely computational intensive compared with filters. Overfitting is another
problem of applying wrapper methods to high feature-to-sample ratio dataset
analysis. The third group of selection methods are embedded approaches, which
use the inductive algorithm itself as the feature selector and classifier. Examples
are ID3 [I8] and C4.5 [I9]. The drawback of such kind of feature selection meth-
ods is that they are often greedy search based algorithms [20], using only the top
ranked feature to perform sample classification in each step while an alternative
split may perform better.

Since each type of feature selection method has its advantage and weakness,
hybrid systems are often preferred for robustness and efficiency in feature se-
lection application [62TI22I23124125]. In [T4], Jaeger et al. suggested that in mi-
croarray data analysis genes with high correlations are potentially belong to the
same biological pathway. Therefore, if certain pathway has the main influence,
the gene selection results may be dominated by such pathway, while other infor-
mative pathways will be totally ignored. This is especially phenomenal when one
performs aggressive feature reduction with filter based methods which often con-
sider each feature separately. To include information from other disease related
pathways, several feature extraction methods have been proposed [2224)25]. In
[25], a k-mean clustering procedure is conducted to cluster the genes with simi-
lar expression pattern into groups. Then the mean expression level of a group of
genes is calculated and used as the “prototype gene” for the later learning and
classification process. However, a disadvantage of this method is that the “pro-
totype gene” is a transformed feature vector which does not bear true biological
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meaning. In [22], 50-100 genes from a microarray dataset are firstly pre-filtered
by filter algorithms such as ReliefF, Information Gain and y2-statistic, and then
hierarchically clustered. A representative gene which is most similar to the mean
expression of its belonging cluster is then selected for later sample classification
purpose. While this method does hold promise in identifying biologically impor-
tant biomarkers, the size of the pre-filtered genes (50-100) potentially confined
its power to include as much useful pathway information as possible. As for [24],
the gene ranking and gene clustering processes are conducted independently. The
final gene sets are then selected by using gene ranking and clustering informa-
tion collaboratively. One drawback of this process is that the number of selected
genes is still too large for any biological validation.

Similar to gene expression studies, when analyzing SELDI-TOF datasets, it’s
reasonable to assume that high correlation of m/z markers are the indication
that they may belong to the same protein or proteins in the same pathway. The
rationale of this argument is based on the central dogma of biology that proteins
are the functional products of various mRNAs which are produced by their
corresponding genes. Therefore, if the resulting classifier is created by several m/z
markers with high correlation, the classifier will gain not much extra information
than using just one representative m/z marker in this correlated group. In this
study, we propose a k-mean clustering based biomarker extraction and selection
method to bridge filter based and wrapper based feature selection algorithms.
The advantages of this hybrid system are as follows:

— Filter based algorithm is employed to speed up the feature selection process
by pre-filtering the potential disease related m/z markers. Therefore the total
computation time is shortened than using wrapper based algorithm directly.

— The potential disease related m/z markers selected by filters are subject to
the k-mean clustering algorithm for correlation, redundancy and data noise
reduction. This procedure generates an information enriched and redundancy
reduced dataset, which is crucial in creating accurate classification model.

— With above dimensional reduction, data cleansing and information extrac-
tion processes, the wrapper algorithm can be easily applied to identify a
minimum m/z marker set, while also create accurate classification model.

We applied the proposed feature selection strategies to the analysis of two
SELDI-TOF datasets and the experimental results are encouraging.

This paper is organized as follows: An overview of the proposed system is given
in Section 2. Section 3 details the experiment designs while Section 4 provides
the experimental results. Section 5 concludes the paper.

2 System Overview

The proposed system can be sequentially divided into following five steps:

— Firstly, a filter based feature selection method is conducted to pre-filter the
potential biomarkers, by selecting the top 2000 m/z biomarkers with rela-
tively high differential power.
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Fig. 1. The work flow of the proposed system for m/z marker selection and evaluation

M

— After the pre-filtering process, k-mean clustering is conducted on the re-
sulting feature set. Ideally, each cluster corresponds roughly to a biological
pathway.

— The mean intensity pattern of each cluster is calculated (also known as fea-
ture extraction) and an m/z marker which has the most similar intensity
pattern to the mean intensity pattern is then selected as the representative
m/z marker of this cluster.

— A multi-objective GA based wrapper selector is employed to further minimize
feature redundancy by identifying informative pathway representatives and
discard the uninformative ones.

— Lastly, an ensemble classifier integrated by majority voting is utilized to
evaluate the selected m/z markers by performing sample classification.

Figure [I] visualizes the entire system work flow.

3 Methods

In this section we give a short description of the SELDI-TOF datasets used in
the experiment and detail the design of each step.

3.1 Dataset

The SELDI-TOF MS datasets generated from prostate cancer analysis [3] and

from ovarian cancer analysis [4] are applied to evaluate the proposed system.
The first dataset named “Prostate dataset”, consists of 322 serum samples

which are categorized into four classes. The first class contains 190 serum samples
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which have been diagnosed as benign prostate hyperplasia with serum prostate-
specific antigen (PSA) level greater than or equal to 4 ng/mL. The second class
has 63 serum diagnosed as no evidence of disease with serum PSA level less than
1 ng/mL. The third class contains 26 serum samples diagnosed as prostate cancer
with serum PSA level between 4 and 10 ng/mL. The last 43 serum samples were
categorized as the fourth class with serum PSA level greater than 10 ng/mL.

The second dataset is a binary dataset, which contains only two classes referred
as “Cancer” and “Normal”. We named this dataset “Ovarian dataset”. It includes
253 samples which can be divided into 91 normal samples and 162 ovarian cancer
samples. Finally, the total m/z number of the dataset is 15154. Both datasets were
split into training set for feature selection and test set for evaluation in our exper-
iment. Table [l summarizes the datasets and the partitions.

Table 1. SELDI-TOF MS datasets used in the experiment

Prostate dataset training test Ovarian dataset training test

benign: 190 95 95 normal: 91 46 45
no evidence: 63 32 31
cancer(4-10): 26 13 13 cancer: 162 81 81

cancer(10-): 43 22 21

3.2 Pre-filtering

Most SELDI-TOF datasets contain several tens of thousands of m/z features, but
only a small portion of these markers are trait associated [8I26]. By preforming
a filter based pre-selection, we can eliminate the unrelated markers which may
skew the final selection results. At the same time, the computation burden is
also greatly decreased. However, the main concern is that the reduction should
be carried out without sacrificing any useful information. In this study, we used
two types of filter algorithms, namely, x2?-statistic and Information Gain for the
pre-filtering purpose. A safe number of m/z markers used in our experiment is
2000, which is large enough to capture most differential markers from various
pathways while also suitable for k-mean clustering algorithm to work with.

3.3 k-Mean Clustering

k-mean clustering is an iterative algorithm. It groups the similar elements into a
cluster while also increases the dissimilarity among different clusters by using a
given definition of similarity and cluster mean. One major challenge of applying
k-mean clustering algorithm is that the number of the clusters (k) must be
determined before conducting the clustering process [22I24]. Yet, previous study
[24] illustrated that the change of the k value (from 100 to 220) had quite limited
impact on the classification results with different size of feature sets.

In this work, we carried out the k-mean clustering on the pre-filtered 2000
m/z markers and group them into 50 clusters. By doing so, markers with high
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correlations are put into the same blocks for later feature extraction and repre-
sentative marker selection. However, since k-mean clustering is stochastic, in our
experiment we found that a different initial partition can result different clus-
tering outcomes. To include as many potential pathways as possible while also
avoiding the clustering results been affected by certain initialization, we repeated
the k-mean clustering on the pre-filtering set 5 times with different initialization,
producing five 50-cluster sets (a total of 250 clusters) for later process.

3.4 Cluster Feature Extraction and Representative Selection

Followed by k-mean clustering, we extract the mean intensity pattern of each
cluster by averaging each m/z intensity value within the same cluster. After ob-
taining the mean intensity pattern of each cluster, a representative m/z for each
cluster is then selected by comparing the similarity of mean intensity pattern
of the cluster and the individual m/z markers and choosing the m/z with the
minimum difference. The difference is defined as follow:

n
dif ference = Z(Xl —x;)? (1)

i=1
where n is the total number of samples, while x; is the mean intensity values
of m/z markers of the ith sample within a cluster. With above extraction and
selection process, our method selects one representative marker per cluster. One
may ask that whether one representative m/z marker of a cluster is sufficient.
In [24], Cai et al. evaluated using more than one representative per cluster to
form the resulting feature subset, their experimental results demonstrated that
one representative per cluster actually outperforms other choices (from 2 to 5).
After performing above procedures on all five k-mean clustered datasets with
different initial partition, the selected representatives were then combined to

form the clustering processed set for later wrapper based selection.

3.5 Multi-objective GA Based Feature Selection

It is important to notice that not all biological pathway information in the
dataset are related to the disease or the biological trait of interest. Thus, those
unrelated pathway representatives are redundant features in classification. In-
cluding these redundant features will increase the computational expenses while
also compounds the identification of disease related biomarkers. Therefore, a
multi-objective GA based feature selection step is employed to further minimize
the m/z marker size by only selecting those highly discriminative representatives
and their combinations.

The detail of the multi-objective GA based ensemble algorithm is described
in [23]. Basically, this hybrid algorithm utilizes a multi-objective GA as the
feature space searching engine while an ensemble classifier is used as the feature
subsets evaluator to evaluate feature combination produced by multi-objective
GA. Here the ensemble classifier is the combination of five individual classifiers
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(decision tree, logistic regression, support vector machine, naive bayes and k-
nearest neighbor) integrated with majority voting strategy.

The fitness function of the multi-objective GA is defined as the average sample
classification accuracy and the consensus sample classification accuracy:

accuracy;(s)
fitnessi(s) = =t " (2)
fitnessa(s) = consensus(s) (3)

Fitness(s) = fitnessi(s) —;— fitnessa(s) )
where accuracy;(s) specify the classification accuracy of the jth classifier upon
the sth feature set, while consensus(s) specify the classification accuracy using
majority voting with the five classifier committee upon the sth feature set.

Table 2] provides the details of the GA parameters used in the experiment,
and the training portion of the datasets were used to perform the m/z marker
selection.

Table 2. Genetic Algorithm Parameter Settings

Parameter Value
Genetic Algorithm Multi-Objective
Population Size 100
Selector Binary Tournament Selection
Crossover Single Point (0.7)
Mutation Multi-Point (0.05 & 0.25)
Termination Condition 50th generation

3.6 Subset Evaluation

After the m/z marker selection process, the selected m/z markers are then evalu-
ated by the ensemble classifier itself with the test portion of the datasets. Three
repeated runs of 10-fold stratified cross-validation with random partition are ap-
plied to the test datasets, and the sample classification accuracy is calculated
by averaging the results. It is worth noting that the feature selection and eval-
uation processes are accomplished using multiple classifiers. Therefore, they are
less subject to certain inductive algorithm and have better generalization.

For the comparison purpose, we provide a baseline by using filter selected
m/z markers as the inputs of the ensemble classifier directly. Also, we compare
the evaluation accuracy of the m/z markers selected by applying multi-objective
GA based algorithm directly to the 2000 pre-filtered candidate markers with the
proposed method (which applying multi-objective GA based algorithm after the
k-mean clustering process). With the consideration of the stochastic nature of
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GA, each GA based method is conducted with 5 independent runs. We report
the mean results of the 5 runs and give the standard deviation in the form of
mean + o.

4 Results

The first question should be asked is how many m/z markers we should select as
the final feature set for sample classification. To answer this question we utilized
the proposed methods (using both x2-statistic and Information Gain) to test
the marker size varying from 5 to 40 with a step of 5, using Prostate dataset.
Figure 2 depicts the test results. It’s evident that a size of 20-25 m/z marker
set is sufficient. Therefore, in the following comparison experiments, we evaluate
the m/z combinations with size varying from 5 to 25 with a step of 5 for both
SELDI-TOF datasets.

Determintion of m/z Marker Size
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Fig. 2. To determine the size of the m/z markers for sample classification, we test the
marker size varying from 5 to 40 with a step of 5, using Prostate dataset

As aforementioned, each of the two feature filter methods was used to rank
the m/z markers, respectively. Then we compared the evaluation accuracy of the
following three different processes:

1. Using filter ranked top m/z marker combinations (5, 10, 15, 20, and 25) for
subset evaluation and sample classification.

2. Using the top 2000 m/z markers ranked by a filter as a pre-filtered marker
pool, and applying multi-objective GA based algorithm to select m/z marker
combinations (5, 10, 15, 20, and 25) for subset evaluation and sample clas-
sification.
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3. Applying the proposed process. Using the top 2000 m/z markers ranked
by a filter as a pre-filtered marker pool, and employing k-mean cluster-
ing and representative selection process to reduce correlation, redundancy
and noise. Then utilizing multi-objective GA based algorithm to select m/z
marker combinations (5, 10, 15, 20, and 25) for subset evaluation and sample
classification.

The subset evaluation process was carried out as described in Section
Table B provides detailed evaluation accuracy of each method with m/z combi-
nation size of 5, 10, 15, 20, and 25. As can be seen, the evaluation accuracy of
using solely filters of y2-statistic and Information Gain from 5 to 25 features with
both MS datasets does not differ significantly. For prostate dataset, the average
of 80.08 for x2-statistic and the average of 82.90 for Information Gain are ob-
tained. As for ovarian dataset, the average results are 95.20 for y2-statistic and
95.17 for Information Gain. This is consistent with the assumption that the filter
selected top markers is strongly correlated. When used to construct classifier,
such a redundant feature set does not provides much extra information than us-
ing just a subset of it. Based on the experiment results, it is also readily noticed
that GA based methods achieved higher classification accuracy than using filter
ranked features directly. This evidence suggests that beside several top ranked
features more information for sample classification do contained in the rest of
the feature pool and GA based selection scheme be able to identify these “im-
portant” features. When comparing the results of applying multi-objective GA
method directly with the 2000 pre-filtered m/z features and the results of apply-
ing multi-objective GA method with k-mean clustering processed datasets, we
found that the classification accuracy of the later is generally about 2-3 percent
higher with few exceptions. These results indicate that the k-mean clustering
based feature correlation and redundancy reduction process can further improve
the final feature selection and sample classification outcomes.

Table 3. Evaluation accuracy of each method using test datasets

Prostate Dataset
m/z Size X2 X?4+GA  x?4Cluster+GA Info Info+GA Info+Cluster+GA
5 80.88 83.05 £ 3.7 86.63 £2.2  83.69 83.48 + 3.3 85.22 £ 3.1
10 79.28 87.79 £ 1.6 88.26 = 1.4 82.54 86.09 £+ 2.7 88.62 & 1.7
15 81.06 88.63 & 1.3 90.36 + 1.7 81.88 86.46 4+ 3.4 87.76 £ 2.9
20 79.8590.58 £1.5 91.82+1.8 83.1387.97+1.5 90.21 £1.5
25 79.34 89.46 £ 1.0 91.31 +1.9 83.27 88.31 £ 2.0 90.25 + 1.2
Ovarian Dataset
m/z Size x?  Xx?*+CGA x?+Cluster+GA Info Info+GA Info+Cluster+GA
5 94.39 96.88 + 1.4 97.66 = 1.1 94.54 97.13 £ 1.3 97.96 = 1.1
10 95.02 97.08 0.9 98.58 + 0.8 95.49 97.27T + 1.4 98.88 + 0.9
15 95.94 97.22 0.8 98.24 £0.8  94.86 98.63 - 0.6 98.47 £ 0.3
20 95.79 96.48 + 1.0 98.82 + 0.9 95.46 97.26 + 0.8 98.48 + 0.5
25 94.86 96.39 + 1.3 98.12 + 1.3 95.48 98.42 + 0.8 98.32 + 0.9
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Table 4. Top 5 frequently selected m/z biomarkers of the proposed system, using the
Prostate and Ovarian datasets, respectively. Each m/z marker is ranked by selection
frequency, and the overlapped ones are shown in bold.

x2-Statistic Information Gain
Rank No. m/z id selection freq. m/z id selection freq.

1 0.054651894 0.96 125.2173 0.92
2 125.2173 0.76 0.054651894 0.80
3 497.9286 0.64 478.95419 0.72
4 271.33373 0.60 271.33373 0.72
5 478.54579 0.56 362.11416 0.68
1 MZ436.63379 0.88 MZ245.53704 0.94
2 MZ245.53704 0.82 MZ436.63379 0.78
3 MZ4003.6449 0.74 MZ6803.0344 0.72
4 MZ28.900817 0.68 MZ7898.4503 0.56
5 MZ6803.0344 0.62 MZ557.06335 0.56

Table 5. The classification results of prostate dataset (test set) using top 5 m/z markers
selected by the proposed method with y2-statistic and Information Gain, respectively.
Correctly classified samples are in bold.

x2-Statistic Information Gain
Class Samples B NE C4-10 C10- B NE C4-10 C10-
benign (B) 95 93 0 2 0 94 0 1 0

no evidence (NE) 31 2 28 0 1 127 0 3
cancer(4-10) (C4-10) 13 2 0 9 2 3 0 8 2
cancer(10-) (C10-) 21 10 3 1 1 0 3 17

Table @ lists the top 5 most frequently selected m/z markers using the pro-
posed method with y2-statistic and Information Gain, respectively. There are
several overlapped biomarkers (marked with bold type) in the two independent
results despite the use of two different pre-filtering algorithms, indicating the po-
tential disease association of them. For prostate dataset, using these top 5 m/z
markers selected with y2-statistic filtering, the evaluation accuracy with the test
set is 91.88, while using the top 5 m/z markers selected with Information Gain,
the evaluation accuracy with the test set is 91.25. As for ovarian dataset, the
classification accuracy using the top 5 m/z is 98.40 with y2-statistic filtered
dataset and 97.97 with Information Gain filtered dataset. Table [l provides the
confusion matrix of the prostate data classification results.

5 Discussion and Conclusion

In this paper, we proposed a k-mean clustering based feature extraction and
selection approach for the analysis of mass spectrometry dataset. The proposed
method sequentially combines pre-filtering, k-mean clustering based correlation
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reduction and GA based wrapper selection processes. The clustering process
serves as the bridge between filter based pre-selection and final wrapper based
feature selection. It decreases the dimensionality of the pre-filtered dataset while
also reduces the correlation of the m/z markers, outputting a nearly noise-free
and information enriched dataset.

The experimental results suggest that the clustering based correlation reduc-
tion process can improve the sample classification accuracy and the system’s
power in disease related biomarker selection. It also demonstrates the potential
use of this hybrid system in disease related biological pathway identification.
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Abstract. In this paper we propose a modified Markov clustering algo-
rithm for efficient clustering of large protein sequence databases, based
on previously evaluated sequence similarity criteria. The proposed alter-
ation consists in an exponentially decreasing inflation rate, which aims
at helping the quick creation of the hard structure of clusters by using a
strong inflation in the beginning, and at producing fine partitions with
a weaker inflation thereafter. The algorithm, which was tested and val-
idated using the whole SCOP95 database, or randomly selected 10-50%
sections, generally converges within 12-14 iteration cycles and provides
clusters of high quality. Furthermore, a novel generalized formula is given
for the inflation operation, and an efficient matrix symmetrization tech-
nique is presented, in order to improve the partition quality with rela-
tively low amount of extra computations. A large graph layout technique
is also employed for the efficient visualization of the obtained clusters.

Keywords: Markov clustering, protein sequence clustering, sparse ma-
trix, large graph layout, SCOP95 database.

1 Introduction

One of the main goals of functional genomics is to establish protein families in
large databases. Successful classification of protein families can have significant
contributions to the delineation of functional diversity of homologous proteins,
and can provide valuable evolutionary insights as well [9].

By definition, protein families represent groups of molecules showing rele-
vant sequence similarity []. Members of such protein families may serve sim-
ilar or identical biological purposes [12]. Identifying these families is generally
performed by clustering algorithms, which are supported by similarities and/or
dissimilarities, previously computed between all pairs of protein sequences.

Performing an accurate clustering results in such protein families, whose mem-
bers are related by a common evolutionary history [10]. If this condition holds,
well established properties of some proteins in the family may be reliably trans-
ferred to other members whose functions are not well known [I1]. Several pro-
tein clustering methods are currently available in the literature [7I14]. One of
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the greatest obstacle for them represents the multi-domain structures of many
protein families [5].

TRIBE-MCL is an efficient protein sequence clustering method proposed by
Enright et al. [9], based on Markov chain theory [6I7]. The authors assigned a
graph structure to the protein database such a way that each protein has a cor-
responding node, while edge weights in the graph represent a priori computed
similarity values, obtained via BLAST search methods [2]. Clusters were then
obtained by alternately applying two operations to the similarity matrix: infla-
tion and expansion. The former represents a task, which re-evaluates the values
within columns of the matrix by raising higher probabilities and suppressing the
small ones, while the latter aims at favoring longer walks along the graph, which
is obtained via matrix squaring.

In this paper we propose a modification of the TRIBE-MCL algorithm, in
order to enhance its accuracy and improve its time complexity. This is achieved
by introducing a time-varying inflation rate and thus forcing the algorithm to
apply a stronger inflation in the first iteration when the hard structure of the
clusters is established, and reduce inflation strength for fine tuning the cluster
shape in later iterations.

The remainder of this paper is structured as follows: Section 2 takes into
account the functional details of the TRIBE-MCL algorithm and presents the
proposed modifications. Section 3 presents our own considerations upon large
graph layout techniques. Section 4 evaluates and discusses the efficiency and
accuracy of the proposed method. Section 5 presents the conclusions and gives
some hints for further research.

2 The Proposed Markov Clustering Approach

2.1 The TRIBE-MCL Algorithm

TRIBE-MCL is an iterative algorithm, which operates on a directional graph.
The nodes of the graph represent the protein sequences we wish to cluster,
while edges show the similarity between pairs of protein sequences. The edge
lengths are stored in a so called similarity matrix. Theoretically, the initial edge
lengths can be computed using any sequence alignment method. However, the
convergence speed will depend on the initial similarities.

In most of the cases, this initial similarity matrix is not symmetrical. This may
be treated as a problem or not. If one only wishes to cluster the sequences, that is,
to find certain groups of proteins, which show high similarity within the cluster
and low similarity between different clusters, then using symmetrical similarity
matrix is recommendable. Asymmetrical similarity values, however, may reveal
the direction of evolution among the proteins situated within a given cluster.
Consequently, making the similarity matrix symmetrical in every iteration is an
extra step, whose benefits and costs will be tested in the followings.

The TRIBE-MCL algorithm treats the similarity matrix as a stochastic ma-
trix []. In such a matrix, probability or possibility values are stored: in general,
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Si; represents the possibility, that protein 7 becomes protein j during an evolu-
tionary step. A decision has to be made at the beginning, whether S is treated
as a column stochastic matrix or a row stochastic matrix. The difference is sig-
nificant: if S is a column stochastic matrix, the columns are normalized in every
iteration and thus they become probability values of past evolutionary steps: for
example S;; shows what is the probability that protein j was i before the latest
evolutionary step. On the other hand, rows of a column stochastic matrix are not
normalized, so values in row j show the possible outcomes of a next evolutionary
step, and their likelihood values, which are not probabilities as their sum is not
1. In this paper we chose to treat the similarity matrix as a column stochastic
matrix.

The TRIBE-MCL algorithm consists of two main operations, namely the infla-
tion and expansion, which are repeated alternately until a convergence is reached,
that is, clusters become stable. Inflation has the main goal to favor more likely
direct walks along the graph in the detriment of less likely walks, while expansion
reveals possible longer walks along the graph.

2.2 The Inflation Operation

The inflation operation has the main goal to modify the similarity values within
the columns of the similarity matrix such a way, that differences gain some
emphasis. In other words, inflation favors more probable walks over less probable
walks along the protein graph [9]. Literature recommends using the following

inflation operation:
sP)
n+1 ( ik
St =y . (1)

where r represents the inflation rate, which controls the strength of inflation.
The larger the inflation rate, the more favored will be the high similarities.

Besides the inflation itself, an intentional side effect is the normalization of
the columns: whatever the similarity values were before inflation (except for a
zero column, which is unlikely to occur), the column will sum up at one after
the operation.

If we examine the evolution of the number of clusters of different sizes (one
such representation can be seen in Fig. Pfleft)), we can remark, that TRIBE-
MCL has two stages of its runtime: it needs some iterations until the changes
influence the number of clusters significantly. The end of this first stage is shown
by a significant maximum in the numbers or small clusters (not singletons).
The number of iterations in this first stage strongly depends on the inflation
rate: in case of r = 1.1, this first stage may need 7-8 iterations, while in case
of r = 1.5, 3-4 iterations suffice. During the second stage, the number of small
clusters decreases and finally stabilizes after 8-12 iterations.

In our opinion, the inflation rate has to be chosen such a way, that it is large
enough in the first stage, so that the formation of cluster begins quickly and thus
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the first stage doesn’t last too long. On the other hand, in the second stage the
inflation rate has to be small enough, to obtain high-quality clusters. In order
to deal with both these requirements, in this paper we propose the usage of a
variable inflation rate, given by the equation:

r(™ =147 x exp (_n) 7 (2)
T

where 1 + r( represents the initial inflation rate, n is the ordinal number of the
current iteration, and 7 is a time constant. In this paper we use: rp = 2 and
7 = 10, which gives the inflation rate the variation shown in Fig. Bl(right).

This inflation operation could be generalized in the following manner: let
us define a continuous function I : [0, +00) — [0,+0c0), I(0) = 0, I'(z) > 0,
I"(x) > 0 Vz > 0. It can be proved, that the generalized inflation, defined as:

(n)

. 1(85)
Set = . (3)
> 1s5)
P

where I was established according to the above mentioned conditions, favors
high similarities over low ones. Nevertheless, this generalized formula give us a
higher freedom to choose the inflation operation. Obviously, setting I(z) = ="
returns us to ().

2.3 The Expansion Operation

The expansion operation is associated with random walks of higher lengths along
the graph, which may include several steps [9]. It is computed with the normal
matrix squaring operation. It produces new probabilities with all pairs of nodes,
where one node is the point of departure and the other is the destination. Obvi-
ously, we will get high probabilities for pairs of nodes situated within the same
cluster, and low ones for nodes from different clusters.

Expansion needs two instances of the similarity matrix. Consequently this
is the operation, which determines the amount of directly processable protein
sequences, due to the memory limitations of the PC.

2.4 Matrix Symmetry

Even if similarity measures are initially symmetrized, this property gets lost after
the first inflation, due to the nature of the operator, as it treats the similarities
as a column stochastic matrix. If there is any reason (dictated by the biological
scenario) for which symmetrical similarity matrix is required, the following extra
processing step should be inserted in every iteration of the TRIBE-MCL.

1. For any i,j = 1...n, i # j, if [Sy; — Sji| > e, set ST = 50 =
\/ Sij x Sji, where € is a previously set small constant.

2. Normalize the columns of the stochastic matrix.

3. Repeat steps 1-2, until symmetry is reached with ¢ tolerance.
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2.5 Implementation Issues

The amount of protein sequences involved in clustering is theoretically limited
by the following relation:
2x N*xd< M, (4)

where d represents the memory required by one probability value (acceptable
resolution requires 16 bits), and M is the available amount of memory. Consid-
ering 1GB storage space, this means a theoretical limit of N < 16384 proteins.
Most protein databases contain even more data. When the necessary storage for
two similarity matrices required by the expansion is not available, we propose
using a sparse matrix representation. If we suppose three decimal representation
of transition probabilities, a maximum number of 1000 values can be nonzero
in each column, but practically their count will be less with at least an order of
magnitude. So the sparse matrix representation, even if needs three times more
space for a single probability value, can reduce the necessary memory, and can
significantly increase the amount of simultaneously processable proteins.

2.6 Algorithm
The proposed algorithm can be summarized as follows:

Compute initial similarity matrix.

Inflate the similarity data according to Eq. (3.

Expand the similarity data via matrix squaring.

Symmetrize the similarity matrix if desired.

Repeat steps 2-4 until transition probabilities stabilize. Generally 10-15 it-
erations suffice.

Gl o

3 Graph Visualization

By applying the proposed Markov clustering method to subsets of the SCOP95
database, we obtain a few large clusters among the small ones. In order to
visualize the structure of such large clusters, we propose a modified version of
the large graph layout (LGL) algorithm given in [IJ.

The subgraph obtained from the Markov clustering (from now on: subgraph),
representing a large cluster, provides the input data for the proposed layout
generating algorithm.

The proposed algorithm places the nodes within the setting gradually, and
allows them to move according to some attractive and repulsive forces that
interact among them (see Fig.[I]). The magnitude of the attractive forces between
two given nodes only depends on their similarity value, their relative position
only influences the direction of the force. There is also a repulsive force between
any two nodes, whose strength only depends on their physical distance. This
force has the main goal to keep nodes distant from each other. Short distance
implies extremely strong repulsive force, which loses its strength if distances
grow, and at a given distance limit the repulsive force is extinguished.
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These forces are not meant in physical terms, and the equation (8) that de-

scribes the movement of nodes doesn’t correspond to physical laws either.

1.

©w

The computation of the graph is performed according to the following rules:

As a first step, a minimum spanning tree (MST) of the subgraph is generated,
using as weights the dissimilarity values obtained as a negative power of the
computed similarities. This MST will establish the order in which the nodes
will be placed into the layout.

. One of the nodes in the MST needs to be declared central node. This node

could be arbitrarily chosen, however, we always choose the node showing
largest similarities to its neighbors.

The central node is placed into the origin, and it’s frozen in that position.
We look for the neighbors of the central node in the MST, and place them
on a hypersphere having its center in the origin and its radius of unit length.
We let these nodes move without leaving the surface of the hypersphere,
according to the attractive and repulsive forces that interact among them.
Finally these nodes are frozen in their stabilized positions.

We look for the neighbors of the nodes found in the previous step in the MST,
and place them on a double-radius hypersphere according to the following
formula:

v v — v
Unew node = ( “ + parent grandparent > + Uparent +V (5)
‘ |'UQ ‘ | ‘ |vparent - vgrandparent| ‘

where the notation v refers to position vector, {2 represents the set of nodes
already present in the layout, and v is a random noise vector, which assures
that newly introduced nodes will not be placed into identical positions. The
movement of nodes are governed by attractive and repulsive forces among
them. The sum of forces that influence node ny is given by

Fr=Y [FO+FY)] . (6)
1€

where F(a) stands for the attractive force emerging from the similarity be-

tween proteins represented by nodes n; and ng, while F( I8 the repulsive
force born from the mutual positions of nodes n; and ny, and Q=0 —{k}.
The forces influencing node ny are computed as follows:

Fim 3 [T ok < S+ (o= ) x g o= wnl)] ()

S Llvi = o]

where S(n;, ng) = Sik is the similarity value provided by the Markov cluster-
ing, and ¢(-) represents the function that describes the behavior of repulsive
forces: it is considered as an exponentially decreasing function that reaches
the zero value at a given distance. The movement of node ny is described by
the equation

v — v+ At X Fy, (8)
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where At is the considered time step. As a final computation step, the posi-
tion vector vy is brought back to its hypersphere of radius 7:

Tk

Vi < Vg X .
||l

(9)
Nodes are frozen in the stable position they reach in several movement steps.
A single movement step is depicted in Fig. [l

6. Repeat the previous step until all nodes of the subgraph will be included
into the layout.

n,(Vy)

® no((_)))

Fig. 1. Balance of forces of one node in case of a 3-node setting

4 Results and Discussion

The proposed modified TRIBE-MCL method was evaluated using the SCOP95
database [3II3], which contains protein sequences that show at most 95% simi-
larity with each other.

The number of protein sequences in the database is quite large to handle using
a PC. That’s why, in some cases, we decided to randomly choose only a part
(multiples of 10%) of the database to test the efficiency and accuracy of the
clustering.

Tests revealed the efficiency of the proposed algorithm: the first stage, during
which the hard structure is established, usually requires 3 or 4 iteration cycles.
The second stage needs further 8-10 cycles to reach convergence.

Figures2H show the results of the algorithm performed on 40% of the SCOP95
database. Figure 2 (left) shows the varying number of clusters of different sizes
over 20 iterations.

The boundary between the running stages of the algorithm, indicated by the
maxima, are clearly visible at iteration number 3. Figure I (right) indicates the
total number of non-singleton cluster after each cycle. This latter image indicates
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Fig. 2. (left) The evolution of number of different sized clusters, during 20 iteration
cycles. The first stage needed four iterations, while the full convergence required an
8-cycle second stage; (right) Graphical representation of the number of non-singleton

clusters vs. iteration index.
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Fig. 3. (left) The first rising, then converging number of singletons; (right) The variable
inflation rate, represented vs. iteration count
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Fig. 4. The varying inner parameters of the algorithm: the sparseness of the similarity
matrix (left) and the duration in time of each iteration, when the input data was

randomly chosen 40% of SCOP95 database
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Fig. 5. The best sequence alignment found in the largest cluster of randomly chosen
40% of the SCOP95 proteins
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Fig. 6. 3D representation of a given cluster during the iterations of the modified
TRIBE-MCL algorithm: (a) after 2 iterations, (b) after 5 iterations, (c) after 8 it-
erations, (d) after 10 iterations
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iteration 14 to be the one, when convergence is established. Figure Bl (left) shows
the variation of the number of detected isolated protein sequences in the input
data. Figure ] (right) is a graphical representation of the variable inflation rate,
using the parameters proposed in the previous chapter.

Figure [ shows the runtime parameters: on the left side we can see the sparse-
ness of the similarity matrix, when we used four decimals resolution for similarity
values. Sparseness values below 0.5% means that only one out of 200 probabilities
is non-zero during the computations, so the number of simultaneously process-
able proteins can increase 8-10 times, if we turn to sparse matrix representation
within the bounds of the the limited storage space. Figure @ (right) indicates
the time necessary to process each iteration with a PC having Athlon64 3200+
processor and 1GB RAM.

Figure Bl shows the alignment of those two protein sequences, which were
found the most similar ones inside the largest obtained cluster.

Figure[@ presents the aspect of a given cluster at different stages of the Markov
clustering. After two iterations, the graph still consists of a weak union of two
clusters. After five iterations, the set of proteins that would finally belong to
the cluster is mostly established (only one node will leave the cluster after this
point). But the structure of the cluster still undergoes several slight changes, as
shown in the representations of later stages.

Finally, Fig. [ shows a 2D graph representation of the largest cluster found,
produced with the proposed large graph layout algorithm.

*

et *
-

Fig. 7. A 2D graph representation of the largest cluster, consisting of 542 proteins
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5 Conclusions

In this paper we proposed a modification in the TRIBE-MCL algorithm, in the
terms of a variable inflation rate. An exponentially decreasing value of the in-
flation rate was recommended in order to deal with the nature of the problem:
a high inflation rate at the beginning serves the quick establishment of hard
structure of clusters, while a lower inflation rate in the followings serves the
final partition quality. The proposed algorithm was found efficient in time and
accurate in forming protein families. We also proposed a similarity matrix sym-
metrization scheme, for the case when clustering intends to ignore the evolution-
ary direction. Moreover, we also presented a general formulation to the inflation
operation, giving the theoretical conditions of the inflation function that can
replace the simple power function. Future works will aim at implementing and
testing this latter proposal, and at enhancing the LGL algorithm to provide finer
representation of the obtained clusters.
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Abstract. Random Forests, Support Vector Machines and k-Nearest Neighbors
are successful and proven classification techniques that are widely used for dif-
ferent kinds of classification problems. One of them is classification of genomic
and proteomic data that is known as a problem with extremely high dimension-
ality and therefore demands suited classification techniques. In this domain they
are usually combined with gene selection techniques to provide optimal classi-
fication accuracy rates. Another reason for reducing the dimensionality of such
datasets is their interpretability. It is much easier to interpret a small set of
ranked genes than 20 or 30 thousands of unordered genes. In this paper we pre-
sent a classification ensemble of decision trees called Rotation Forest and
evaluate its classification performance on small subsets of ranked genes for 14
genomic and proteomic classification problems. An important feature of Rota-
tion Forest is demonstrated — i.e. robustness and high classification accuracy us-
ing small sets of genes.

Keywords: Gene expression analysis, machine learning, feature selection, en-
semble of classifiers.

1 Introduction

There are many new classification methods and variants of existing techniques for
classification problems. One of them is Random Forests classifier that was presented
in [1] by Breiman and Cutler. It has proven to be fast, robust and very accurate tech-
nique that can be compared with the best classifiers (e.g. Support Vector Machines [2]
or some of the most efficient ensemble based classification techniques) [3]. Most of
these techniques are also used in genomic and proteomic classification problems
where classifiers need to be specialized for high dimensional problems. The other
option is integration of feature pre-selection into classification process where initial
feature set is reduced before the classification is done. Most of the early experiments
using microarray gene expression datasets used simple statistical methods of gene
ranking to reduce the initial set of attributes. Recently more advanced feature selec-
tion methods from the machine learning field are applied to pre-selection step in ge-
nomic and proteomic classification problems. Although a small number of genes is
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preferred, we try to avoid extremely small subsets of genes, like Wang et al. [4],
where subsets with only two or three genes were used for classification.

This paper attempts to evaluate two widely used feature selection techniques to de-
termine the most appropriate number of features that should be retained in pre-
selection step to achieve the best classification performance. Additionally, this paper
introduces one of the most recent classification techniques called Rotation Forest [5]
to genomic and proteomic classification using small sets of genes.

Section 2 of this paper presents a novel ensemble based classification model called
Rotation Forests. The rest of the paper is organized as follows: in section 3 we review
the feature selection and classification methods used in this paper, in section 4 we
present results of our experiments comparing classification accuracy of Rotation For-
ests to three classification methods. Section 5 concludes the paper and gives some
future research directions on usage of Rotation Forests in genomic and proteomic
classification problems.

2 Rotation Forest

Rotation Forest is a novel classification technique that was initially presented by Rod-
riguez et al. [4] and applied to several machine learning problems. In order to obtain
successful ensembles, the member classifiers have to be accurate and diverse. Be-
cause of sampling process in Bagging and Random Forests it is necessary to obtain
diverse classifiers, but using a subset of the examples to train the classifiers can de-
grade the accuracy of the member classifiers. Hence, a natural question is if it is pos-
sible to obtain diverse classifiers without discarding any information in the dataset.

Most ensemble methods can be used with any classification method, but decision
trees are one of the most commonly used. There are ensemble methods designed spe-
cifically for decision trees, such as Random and Rotation Forests. The latter is based
on the sensibility of decision trees to axis rotations; the classifiers obtained with
different rotations of a dataset can be very different. This sensibility is usually consid-
ered as a disadvantage, but it can be very beneficial when the trees are used as mem-
bers of an ensemble. The trees obtained from a rotated dataset can still be accurate,
because they use all the information available in the dataset, but simultaneously they
can be very diverse.

As in Bagging and Random Forests, each member of the ensemble is trained with a
different dataset. These datasets are obtained from a random transformation of the
original training data. In Rotation Forests, the transformation of the dataset consists of
the following steps:

- Features are randomly grouped in k groups.
- For each group of features:
e A new dataset consisting of all examples using sets of features from step
one is created.
e All examples of randomly selected classes are removed from this new
dataset.
e A subset of randomly chosen examples is eliminated from the new data-
set (by default 25% of samples are removed)



Feature Selection and Classification for Small Gene Sets 123

e PCA (Principal Component Analysis) is applied to the remaining sam-
ples in a dataset.
e PCA components are considered as a new set of features. None of the
components is discarded.
- All training samples are transformed using new variables selected by PCA
for each group.
- A classifier is built from transformed training set.
- Another classifier is build by returning to the first step in case final number
of classifiers in ensemble is not reached.

This transformation produces a rotation of the axis. The transformed dataset has as
many examples as the original dataset and all the information that was in the original
dataset remains in the transformed dataset, because none of the components is dis-
carded and all the training examples are used for training all the ensemble methods.

The number of features in each group (or the number of groups) is a parameter of
the method. The optimal value for this parameter depends on the dataset and it could
be selected with an internal cross validation. Nevertheless, in this work the default
value was used, and groups were formed using 3 features. The selection of the opti-
mal value of this parameter would increase notably the time necessary for the training
of the classifiers and would give an advantage of Rotation Forests with respect to
other ensemble methods that do not optimize the value of any parameters.

The elimination of classes and examples of the dataset is done because PCA is a
deterministic method, and it would not be difficult (especially for big ensembles) that
some members of the ensemble had the same (or very similar) grouping of variables.
Hence, an additional source of diversity was needed. This elimination is only done for
the dataset used to do PCA; all the examples are used for training the classifiers in the
ensemble.

3 Feature Selection and Classification Techniques

The main idea of feature selection is to choose a subset of variables that can signifi-
cantly improve the time complexity and accuracy of a classification model. This is
even more important in microarray based classification problems where initial set of
features consists of thousands of gene expression values. With such a large amount of
features it is of special interest to search for a dependency between optimal number of
selected features and accuracy of classification model. There are two groups of feature
selection techniques — filter and wrapper based methods [5]. Filter based methods rely
on information content of features. Different metrics like distance metrics, information
measures, correlation and consistency metrics can be used to get useful subsets when
filter based feature selection is used. In wrapper approach subsets of features are se-
lected based on how well those features classify training samples. The selection is done
using the induction algorithm as a black box. Usually a search for a quality subset is
done using the induction algorithm itself as a part of the evaluation function.
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Symons and Nieselt [6] showed that in most microarray gene expression classifica-
tion problems, filter based approaches outperform wrapper based approaches. In our
experiments the following filter based approaches were used:

- ReliefF
- Support Vector Machine Recursive Feature Elimination (SVM-RFE)

Additional to two feature selection methods a set of four classification techniques
was used in experiments presented in this paper:

- Random Forests

- Rotation Forests

- Support Vector Machines (SVM)
- k-Nearest Neighbors (k-NN)

A machine learning software framework named Weka [7] was used for all experi-
ments described in this paper. Each of the above mentioned methods, except self-
developed Rotation Forest algorithm is already implemented in Weka.

All above mentioned methods except Rotation Forest, that were explained earlier,
are briefly described in the remainder of this section.

3.1 ReliefF

ReliefF feature selection algorithm is based on original Relief algorithm [8] that could
only be used for classification problems with two class values. Basic idea of Relief
algorithm is ranking of features based on their ability to distinguish between instances
that are near to each other. Original algorithm was extended by Kononenko [9] so that
it can deal with multi-class problems and missing values. Later it was further im-
proved by Robnik-Sikonja and Kononenko [10] so that it is suitable for noisy data and
can also be used for regression problems. Default settings for Weka implementation
of ReliefF that also supports feature selection for regression problems were used in
our study.

3.2 Support Vector Machines - Recursive Feature Elimination (SVM-RFE)

SVM in combination with Recursive Feature Elimination (SVM-RFE) were intro-
duced to gene selection in bioinformatics by Guyon et al. [11]. SVM-RFE feature
selection method is based on linear SVM used as the learning algorithm in recursive
selection of nested subsets of features. In the final step of each cycle, all feature
variables are ranked and a pre-selected number of the worst ranked features are elimi-
nated. By default a single feature is eliminated in each round, it is also possible to
remove more than one feature per round. In our experiment a setting where 50% of
the remaining features are removed in each step was used.

3.3 Random Forests

Breiman upgraded the idea of Bagging by combining it with the random feature selec-
tion for Decision Trees. This way he created Random Forests, where each member of
the ensemble is trained on a bootstrap replicate as in bagging. Decision trees are then
grown by selecting the feature to split on at each node from randomly selected
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number of features. Number of chosen features is set to log,(k+1) as in [12], where k
is the total number of features.

Random Forests is an ensemble building method that works well even with noisy
content in the training dataset and is considered as one of the most competitive meth-
ods that can be compared to boosting [13].

3.4 Support Vector Machines (SVM)

SVM are increasingly popular classifiers in many areas, including bioinformatics [2].
The most basic variant of SVM use linear kernel and try to find an optimal hyperplane
that separates samples of different classes. When classes can be linearly separated, the
hyperplane is located so that there is maximal distance between the hyperplane and the
nearest sample of any of the classes. In cases when samples cannot be linearly sepa-
rated, there is no optimal separating hyperplane; in such cases, we try to maximize the
margin but allow some classification errors. For all experiments in this study an
advanced version of SVM called Sequential Minimal Optimization (SMO) proposed
by Platt [14, 15] is used. It offers very quick and reliable learning of the decision mod-
els based on SVM.

3.5 Kk-Nearest Neighbors (k-NN)

Nearest Neighbors classifier is a typical representative of case based classifiers where
all samples are stored for later use in the classification process [16]. It aims to classify
samples according to similarities or distance between them. A class value is defined
using class values of k nearest samples. Similarity to neighboring samples is calcu-
lated using distance between samples that is usually measured using Euclidean dis-
tance metric.

Another important parameter that has to be set is number of neighbors that will be
used for calculation of class value. The most common settings for this parameter are
1, 3 or 5. In our experiments we always use 5 neighbors for class value estimation
whose vote for final class is weighted according to their distance from the neighbor.

k-NN based classifiers are most useful in cases with continuous attribute values
that also include genomic and proteomic datasets. It is also welcome if datasets con-
tain low number of samples (e.g. gene expression datasets), because of high computa-
tional cost of k-NN classification process when number of samples rises.

4 Experiment Settings and Results

In our experiments two feature selection methods from section 3 were tested on 14
publicly available genomic and proteomic datasets presented in Table 1. No modifica-
tion of original data in form of normalization or discretization was needed. All datasets
are available at Kent Ridge Biomedical Data Set Repository [17] where additional
information including references to original work for each of the datasets can be found.
All tests were done using 10-fold cross-validation measuring the classification accu-
racy that can be calculated as a quotient between number of correctly classified and
number of all samples in a testing set. To avoid feature selection bias, as discussed in
Ambroise and McLachlan [18], a separate feature selection process was done for each
training and test set during 10-fold cross validation.
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Table 1. Details for genomic and proteomic datasets from Kent Ridge repository

Dataset Original Work Genes  Patients Classes
ALL Yeoh et al. 12558 327 7
ALLAML Golub et al. 7129 72 2
Breast Van’t Veer et al. 24481 97 2
CNS Mukherjee et al. 7129 60 2
Colon Alon et al. 2000 62 2
DLBCL Alizadeh et al. 4026 47 2
DLBCL-NIH Rosenwald et al. 7399 240 2
DLBCL-Tumor Shipp et al. 6817 77 2
Lung Gordon et al. 12533 181 2
Lung-Harvard Bhattacharjee et al. 12600 203 5
Lung-Michigan Beer et al. 7129 96 2
MLL Armstrong et al. 12582 72 3
Ovarian Petricoin et al. 15154 253 2
Prostate Singh et al. 12600 102 2
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Fig. 1. Average accuracy on all datasets using four classification methods on reduced datasets
with different number of genes (ReliefF feature selection)

Each ensemble (Random Forests and Rotation Forest) consisted of 100 decision
trees, while number of features used for classification ranged from 4 to 512 and was
defined as 2/, where i = 2,...,9.

In the first experiment a set of classification accuracy measurements was done
based on reduced gene sets. ReliefF was used for feature selection using default set-
tings of Weka environment. Averaged classification accuracy for specific feature



Feature Selection and Classification for Small Gene Sets 127

selection settings using k-top most ranked genes, where k ranges from 4 to 512, is
presented in Figure 1. It can be observed that with number of selected features under
16, Rotation Forest outperforms all other methods, while SVM take over for higher
numbers of selected genes. The highest classification accuracy was obtained using
256 most significant genes according to ReliefF, using SVM classifier (89.06%).

To obtain a better picture of dominance between compared methods and to avoid
unreliable averaging of results, we did a comparison using statistical test. Non-
parametric Friedman’s statistical test [19] was used to compute average ranks of
compared methods. Figure 2 presents Friedman’s average ranks for all compared
classifiers and different feature selection settings using ReliefF. It can be seen that
Rotation Forest strongly dominates all other methods in the first three points, while
SVM strongly dominate Rotation Forest in the last two settings. Average ranks shown
in Figure 2 were calculated for results from all 14 datasets using SPSS statistical
tools. Average rank, in our case of four compared methods, can have a value from 1
to 4. If a method hypothetically wins all comparison tests based on average accuracy
it would be assigned an average rank of 4, while method losing all pairwise compari-
sons would score an average rank of 1.

The same settings as in the first experiment were used for the second experiment
where SVM-RFE was used for feature selection tasks. Figure 3 presents results of
average accuracy levels across all 14 datasets. It can be observed that Rotation Forest
classifier is in front all the way up to the point of the highest classification accuracy at
128 selected genes (89,51% accuracy). Similar to the previous experiment the per-
formance of Rotation Forest deteriorates with high numbers of selected features,
where SVM perform better again.
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Fig. 2. Average rank for all four classification methods on reduced datasets with different num-
ber of genes using ReliefF feature selection
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4
3,5
| l\./l\ /
—&— RandFor
25 7 —8— RotFor
5 —#— SVM
>—_x X
/ —>— k-NN
1,5
1 T T T T T T T 1
4 8 16 32 64 128 256 512

Fig. 4. Average ranks using SVM-RFE based feature selection

Friedman test shows significant differences among compared methods again.
When Friedman test hypothesis is rejected, it is usually followed by a pairwise com-
parison of classification methods. This can be done by Wilcoxon signed-rank test [20]
that represents non-parametric alternative to the paired Student t-test for two related
measurements.
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Wilcoxon test was done on all pairwise combinations in the first ReliefF based and
the second SVM-RFE based experiments. In case of ReliefF results a significant
dominance of Rotation Forest and SVM methods compared to Random Forests and k-
NN is shown. However there is no significant difference between Rotation Forest and
SVM (p = 0.828). There is also no significant difference between results of Random
Forests and k-NN (p = 0.167). Results were almost the same for SVM-RFE feature
selection with the only exception — Rotation Forest did not manage to significantly
outperform Random Forests (p = 0.066) although it was performing better.

Figure 4 confirms results from Figure 3 where it can be seen that Rotation Forest
dominates all other classification methods up to the and including a point where 128
most significant genes were selected.

Given the highest accuracy of 89.51% one would assume that a combination of Ro-
tation Forest and SVM-RFE based feature selection using 128 most significant genes
is the best combination. But in many cases biologists are interested in smaller sets of
genes that can be more descriptive and give more information than large sets of genes
that are difficult to interpret.

Figure 5 shows a combination of both best methods (Rotation Forest and SVM) us-
ing average accuracy levels for both feature selection techniques simultaneously. One
should notice that although SVM-RFE achieves better average accuracy overall, it is
evident that ReliefF should be preferred when a small number of selected genes
should be obtained.
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Fig. 5. Simultaneous comparison of ReliefF and SVM-RFE feature selection techniques

5 Conclusions

This paper presents a novel classification method for genomic and proteomic data
classification. The results indicate that Rotation Forests can be considered as one of
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the most useful classification techniques on small gene sets. Another important issue
that was researched in this paper is a problem of finding the optimal number of genes
to get the most out of the classifier. It was shown that there is no optimal solution to
this problem. One can get significantly different results when comparing classification
accuracy when an extremely low number of genes is used to classification accuracy in
higher dimensional problems using different classifiers. It is however practically
impossible to define a fixed number of features that should be selected for optimal
classification performance. On the other hand it was obvious that there are some clas-
sification techniques that should be used when a low number of genes is preferred
(Rotation Forest) and some methods that demand higher number of genes (SVM) for
optimal classification accuracy. It was shown that ReliefF should be used for ex-
tremely small sets of selected features, while SVM-RFE performs better in higher
dimensions. It should also be noticed that SVM-RFE cannot be used for regression
problems, where ReliefF will be the only available solution out of the two presented
feature selection methods.

One of the issues for the future is evaluation of Rotation Forests on even more
datasets. Unfortunately it is not possible to directly use Rotation Forests for feature
selection, but there are other ways of using the power of Rotation Forests. One of
such is their ability to very accurately estimate the similarity of cases and could there-
fore be used for implementation of clustering algorithms. As we know clustering is
also one of the most widely used methods in unsupervised analysis that is being used
in bioinformatics and therefore opens a lot of new areas where Rotation Forests could
be used.
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Abstract. Studying the structure of RNA sequences is an important problem
that helps in understanding the functional properties of RNA. Pseudoknot is one
type of RNA structures that cannot be modeled with Context Free Grammars
(CFG) because it exhibits crossing dependencies. Pseudoknot structures have
functional importance since they appear, for example, in viral genome RNAs
and ribozyme active sites. Tree Adjoining Grammars (TAG) is one example of
a grammatical model that is more expressive than CFG and has the capability of
dealing with crossing dependencies. In this paper, we describe a new inference
algorithm for TAGgna, a sub-model of TAG. We also introduce an RNA struc-
ture identification framework, TAGgnalnf, within which the TAGgy, inference
algorithm constitutes the core of the training phase. We present the results of
using the proposed framework for identifying RNA sequences with pseudoknot
structures. Our results outperform those reported in [14] for the same problem
that employs a different grammatical formalism.

1 Introduction

In recent times there has been an observed acceleration in the RNA structure determi-
nation and analysis [11] owing to its paramount importance. This is partly due to the
discovery of many new functional RNAs, such as miRNAs and tmRNAs [3] [16]
[29]. Another factor that has led to the speeding up of RNA structural research is the
rise of the RNA World Hypothesis [9] which suggests that the current DNA and pro-
tein world has evolved from an RNA based world. This Hypothesis is supported by
the fact that RNA can carry genetic information like DNA and it is capable of catalyz-
ing reactions like proteins (rRNA). Genetic information of some existent viruses is
carried in RNA form [15]. Since the function of bimolecular sequences depends on its
structure, analyzing RNA structures is essential to create new drugs and understand
genetic diseases [6] [20]. Computational methods can provide less expensive solu-
tions to structure analysis than other methods such as nuclear magnetic resonance and
x-ray crystallography.

In the early 90’s, David Searls studied the linguistics of biological sequences [23].
He suggested the use of formal grammars as a tool to model and analyze DNA, RNA,
and proteins. The use of grammars has attracted the attention of many researchers [7]
[26] because it can model long range interactions. In addition, grammatical models
are concise and easy to understand representation of structures of sequence families.
Thus, it is considered to be a natural analytical approach to fully understanding the
structure and properties of these sequences. Results for secondary structure prediction

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 1324143,[2008.
© Springer-Verlag Berlin Heidelberg 2008
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and multiple sequence alignment agree with and sometimes suggest improvements
over traditional methods [21].

Pseudoknot is one type of RNA structures that cannot be modeled with Context
Free Grammars (CFG) because it exhibits crossing dependencies. Pseudoknot struc-
tures have functional importance since they appear, for example, in viral genome
RNAs [15], ribozyme active sites [25], and tmRNA [28]. Among the available re-
search in analyzing pseudoknot structures are the works of Akutsu [2], Dirks and
Pierce [8], and Reeder and Giegerich [18]. These algorithms are not based on formal
grammars. In the area of modeling molecular sequences grammatically, more than
one model, capable of representing pseudoknots, have been presented. Cai et. al. [7]
proposed Parallel Communicating Grammar Systems (PCGS) with an O(n® time
parsing algorithm. Another model which also requires O(n®) parsing time has been
proposed by Rivas and Eddy[19]. Uemura et. al. [26] suggested the use of a sub-
model of TAG, TAGgna. Our solution is based on the TAGgna model.

Recently, there has been a special focus on the use of grammatical inference in bioin-
formatics. Sakakibara has published [22] in which he discusses the general merits of us-
ing grammatical inference in bioinformatics. Brazma et. al. [5] have proposed an ap-
proach to discover simple grammars for families of biological sequences. The
grammatical formalisms they use are subclasses of regular patterns. On the use of gram-
matical inference to analyze RNA structures with Pseudoknots, Laxminarayana et. al.
[13] presented an inference algorithm for Terminal Distinguishable Even Linear Gram-
mars (TDELG), and they have shown how to use this algorithm in an Infer-Test model
for the detection of a pseudoknot structure in an RNA sequence. The experimental results
they presented [14] show 54% sensitivity when using 50% of the RNA sample for train-
ing. The sensitivity rises to 85% only when 90% of the sample is used for training. Speci-
ficity was not reported. This is the same problem as the one we address, and our results
outperform those numbers, as it will be shown. Takakura et. al. have published [24] in
which they give a linear time algorithm for generating probabilistic TAGrna from align-
ment data. They use the inferred grammar to find new members of nc-RNA families,
which is a different problem from the one we address in this paper.

The use of grammatical inference to automate the grammar building step is essential
in facilitating the use of grammatical formalism by biologists. Otherwise, the biologist
will always be dependent on a grammar expert. In this work, we present a complete RNA
structure identification framework, TAGgrnalnf, capable of handling pseudoknot struc-
tures. By structure identification we mean, given an RNA sequence, we answer the ques-
tion of whther it exhibits a certain structure or not. In our approach, the structure is repre-
sented by a TAG which is inferred from a training set. We describe a new polynomial
time inference algorithm for TAGgna Which constitutes the core of the training phase
within the identification framework. We evaluate our solution experimentally through
calculating the sensitivity and specificity of identification.

2 TAG and TAGRNA

Tree Adjoining Grammars (TAGs) were originally introduced, by Joshi et. al. [12], for
use in the field of natural language processing. Uemura et. al. [26] defined a subclass
of TAGs, TAGgna, suitable to model RNA pseudoknot structures. They developed
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an O(n’) time parsing algorithm for TAGgna. Before describing TAGgya we will first
give a brief introduction to the original TAG model.

A Tree Adjoining Grammar (TAG) is defined to be a 5-tuple (T U {e}, N, L, A, S),
where T is a set of terminal symbols, N is a set of non-terminal symbols, € is the
empty string symbol, and S is the starting symbol. [ and A are defined as follows:

I (initial trees): A finite set of finite trees with the internal nodes’ labels belong-
ing to N U {S} , the leaves’ labels belonging to 7' U {€}, and the root is la-
beled with S.

A (auxiliary trees): A finite set of finite trees with the internal nodes’ labels be-
longing to N U {S}, and the leaves’ labels belonging to 7' U {€} except
one leaf node which has the same label as the root. This special leaf node
is called a foot node.

Trees belonging to I U A are called elementary trees. A tree derived by composing
two other trees is called a derived tree. Trees can be composed together using the ad-
joining operation. The adjoining operation composes an auxiliary tree « with a foot
node labeled X with any other tree f that has some internal node with the same label
X. The operation works as follows: we start with the tree  and we extract the sub-tree
rooted at the internal node labeled with X (let that sub-tree be ), and replace it with
the ¢. Then at the foot node of ¢, we reinsert ¥ The adjoining operation is illustrated
in Fig. 1. Let T = { ¢: 3 ie Is.. t can be derived from i}, then L(TAG) consists of
the yield of all the trees in 7.

Fig. 1. The Adjoining Operation

In [26], Extended Simple Linear TAG (ESLTAG) is defined to be a subclass of
TAG with adjoining constraints [27]. In ESLTAG, the adjoining operation can occur
only at internal nodes tagged with the symbol *, and the number of these nodes is re-
stricted. TAGgya is a sub-class of ESLTAG where only five types of elementary trees
are allowed (Fig. 2)'. Each type of tree is responsible for a specific kind of branching
or structural form that an RNA sequence can have.

3 The Structure Identification Framework

We introduce a complete RNA structure identification framework, TAGgryalnf, which
is capable of handling pseudoknot structures. Within this framework, we present a
new inference algorithm for TAGgrna Which constitutes the core of the training phase.

! Tree types of TAGgya will be explained further in section 3.1.2.
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Type 1 Type 2 Type 3
T2u[X.X] T2d[X,X] T3L[X.X] T2R[X,X]
(T2u[X,Y]) (T2d[X,Y]) (T3L[XY]) (T3R[X,Y])
§* T X X X
X* (Y*) )‘( aXA*(Y*) J(\*)a
X* (Y
c a /’\ 2 a/[\ 77 !\5
A
X X X X
Type 4 Type 5

TALu[X,X] T4Ld[X,X] T4Ru[X,X] T4Rd[X,X] T5Ld[X.Y,Z] TSRA[X,Y.Z]
(T4Lu[X,Y]) (TALA[X,Y]) (T4Ru[X.Y]) (TARA[X,Y]) (TSLu[X,Y.Z]) (T5Ru[X.Y.Z])

] L]
X* (Y*) X X* (Y*) X Y (Y*) Y (Y*)
A0 N N T
X X* (Y*) X X*(Y*)
| | | 4 ™
X X X X | Y*(Y) Y* (Y)|

Fig. 2. TAGRNA

Fig. 3 depicts the proposed framework. In the training phase, the inference algorithm
is fed with a positive training set with structural information. The algorithm will gen-
erate a grammar for the provided sample. Then, the same sample along with a nega-
tive sample and the grammar generated by the inference algorithm will go through a
TAG parser. For each input sequence the TAG parser will output a score. These

A) Training Phase

+ve Training Set
-ve Training Set

Score

+ve Training Set | [pnference |CGrammar TAG Scores | Threshold | Threshold
—_— > > —_—

Algorithm Parser "| Inference

Function

B) Identification Phase

TAG Parser
RNA Sequence Yes/No

Grammar &
Score Threshold
Function

Fig. 3. TAGgnalInf : RNA Structure Identification Framework
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scores will be the input to a threshold function inference module. The inferred thresh-
old function will be used in the identification phase.

Several scoring functions can be used. For example, it can be either the number of
base pairs or the minimum free energy (mfe) of the RNA sequence structure. Also, a
probabilistic function can be used to generate the scores. Currently, we use the num-
ber of base pairs as the scoring function. We intend to investigate other alternatives.
The inferred grammar and the scoring threshold function will be used by a TAG
parser in the identification phase. Given an RNA sequence, the identification module
will be able to check if this sequence has a certain structure such as a pseudoknot.

3.1 The Inference Algorithm

The grammar inference adopted here is a three step process. The input is a set of se-
quence data that includes the structure of each sequence, and the output is a grammar
that models the input sample. If the input sample includes at least one sequence repre-
senting each RNA structure in the population being modeled, the output grammar will
be a correct model for the RNA population from which the sample was drawn. For a
population S, a grammar G is considered to be a correct model of S iff S ¢ L(G). For
the purpose of evaluating the inferred grammar within the proposed framework, how-
ever, we calculate the sensitivity and specificity of identification.

The three steps of the inference process are: the pattern generation, the single pat-
tern grammar generation, and the final grammar composition.

3.1.1 Pattern Generation

Definition: Let ( x, x") and ( y,?) be two substring pairs in a pattern p, we call the
two pairs ( x, x’) and ( y,?’) a crossing dependency if i < k < j < [ where i, j, k, and /
are the positions of x, x’, y, and 7, respectively, in p.

The inputs to this phase are: the sequence size, the number of stems in the input
sequence (n), the starting and ending indices of each stem in the sequence repre-
sented as a 4-tuple (I;1,l,m;1,mp), where if x; , x| are the two strands of a stem in
the sequence, /;; and [, are the starting and ending positions of x;, respectively, and m;
and m;, are the starting and ending positions of x/, respectively.

The pattern generation is based on sorting the pairs (I;1, [;) and (m;,m;,) for all val-
ues of i < n resulting in a sorted list P of 2n pairs (p;1, pi). We maintain a link from
each pair of numbers to its corresponding substring symbol x;’s or x/’s. Thus, once
the number pairs are sorted, the x’s are consequently sorted. Because any two inter-
vals (p;1,pi2), (pj1,pj2) are non-overlapping we can perform the sort on the first value in
the pairs, and because we are dealing with integers we can use radix sort. This will
require linear time in the number of stems n. The generated pattern consists of the
sorted x’sand x7’s with w’s inserted, to represent loops in the RNA structure, wher-
ever there is a gap between the numbers p,; and p(;,1);. The number of w’s in a pattern
must be less than or equal 2n + 1. The insertion can be done by copying the sorted x;s
and x/’s sequentially in an array of size 4n + 1. During the sequential copying proc-
ess, we check for gaps and insert w’s as necessary. This also requires linear time in n.
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After the pattern is generated and before any grammar inference can be performed,
we must insert the empty string symbol, €, in the pattern. The empty string appears in
TYPE 1 and TYPE 5 trees of TAGgrna (see Fig. 2). Currently, we support patterns that
have exactly one € symbol. Considering all the crossing dependencies ((x, x7),
( y,?’,)), € is inserted at i + 1 where i is the index of the rightmost x” in the pattern.

An Example
The pseudoknot structure at the gag-pol translational readthrough site of spleen necro-
sis virus [4] has the following pattern

WA Xi Ve Xo W6 X5 X5 W X1 W6 X3

This pattern has two crossing dependencies, (( x1,7(),(m, xjf)) and (( XZ’E)
(X6, )T{)). Because ; comes to the right of E, the € is inserted after ;

The ¢ location identification is facilitated by generating a list, 1inks, in which for
each pair of dependent substrings ( x; ,xT’), links[i] = (j, k) where j and k are the po-
sitions of x; and x/ in the pattern, respectively. The list 1inks is simply constructed
by scanning the pattern once and filling the corresponding entries for each x; and x/
in 1inks as they are scanned in the pattern. Thus, the time required for generating
links is O(n), where n is the number of stems in the pattern. A simple search on
links is performed to determine the position of € which satisfies the above condition.
This also requires linear time in the length of the pattern and consequently linear in

the number of stems n. Thus, the total time required for this phase of the algorithm is
O(n).

3.1.2 Generating Grammar for a Single Pattern

The general idea of the grammar generation for a pattern is to choose the correct types
of trees, from the TAGgns model, that can model dependencies between pairs of sub-
string symbols in the pattern, or simply model independent substrings. The choice is
dependent on the relative positions of the substrings being modeled and the position
of €. If we look at the types of trees in TAGgna, illustrated in Fig. 2, we notice the fol-
lowing. First, there is only one type of initial tree which is of TYPE 1. Thus the gen-
erated grammar will always have one of those trees. TYPE 2 trees can be used to
model dependent pairs of substrings ( x, x”) that appear on opposite sides of €. TYPE
3 trees can be used to model dependent pairs of substrings ( x, x’) that appear on the
same side of €. Finally, TYPE 4 trees can be used to model independent substrings
(loops in the RNA structure) that are represented by w symbols in the generated pat-
tern. As we mentioned above, we currently support patterns that have exactly one €
symbol. TYPE 5 trees can be used to model more complex structures with branching.
At the moment, we do not make use of TYPE 5 Trees.

To generate the grammar for one pattern, the pattern is parsed one symbol at a time.
For each independent substring symbol w or dependent pair of symbols ( x, x"), two aux-
iliary trees are generated. The first tree has the same non-terminal label for the root, foot
node and the adjoining node. This tree can be used recursively to generate terminals
{c, g u, a} in the RNA sequence corresponding to the currently parsed pattern
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substring symbol(s). The second tree is the same as the first one except that it has a dif-
ferent non-terminal label for the adjoining node. This tree allows transitioning to another
substring or pair of substrings in the pattern. Generating a grammar for a single pattern
requires linear time in the length of the pattern and, consequently, the number of stems is
O(n). Algorithmic details and complexity analysis can be found in [1].

3.1.3 Final Grammar Composition

When the whole sample is processed, we will have a set of grammars, each represent-
ing the pattern of a single input example. To generate one grammar, which is repre-
sentative of the whole input sample, we need to combine these grammars. The TAG
union operator, defined in [27] can be used for this purpose. The union of two TAGs
consists of the union of the elementary trees of both grammars.

If the input sample includes at least one sequence representing each RNA structure
in the population being modeled, then the output grammar is a correct model for that
population. For an input sample of size m RNA examples, the total time required by
the algorithm is O(mn) where n is the maximum number of stems in an RNA exam-
ple. Thus the algorithm is linear in the size of the input.

In order to reduce the size of the final grammar, the grammar composition step can
be adjusted to check for input examples that have the same pattern. To accomplish
that, any generated pattern must be saved. When a new example is encountered, a pat-
tern is generated for it. Then, the set of saved patterns is searched. If the same pattern
was generated before, we move to the next input example. If not, a grammar is in-
ferred for the new pattern. The search process requires O(mn) time for one pattern.
Thus, this modification increases the complexity to O(m’°n). Even though this is more
than linear time, this algorithm is practical.

In practice, however, we prefer to keep the generated grammars separate. In later
stages of the training phase and in the identification phase, the TAG parser will parse
the input sequence against each of the generated grammars separately which is
equivalent to parsing it against the union grammar. This will not increase the parsing
complexity. On the contrary, it will help in optimizing it through eliminating the least
effective grammars, as explained in section 3.3.

An Example

The input in this example is the following set of 4-tuples representing stems’ positions
for the delta ribozyme structure of the hepatitis delta virus (Italy variant) as it appears
in the Pseudobase website [4].

(1,7,33,39), (16,19,81,84), (20,22,30,32), (43,49,68,74), (54,57,62,65)

First the corresponding pattern is generated:
Xi WiX2 X3 Wa X5 X EW3Xa WaXs Ws X5 WeX § W1 X3 Ws
Table 1 shows the output trees generated for each substring or pair of substrings in

the above pattern. The substrings appear in the order in which they are processed by
the algorithm.
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Table 1. Output Trees for delta ribozyme structure of the hepatitas delta virus

Substring/Substring Pair Generated Auxiliary Trees
(x, X)) T3L[S,S] & T3L[S,A]
wy T4LA[A.A] & T4Ld[A,B]
w T4Rd[B,B] & T4Rd[B.C]
(e, x5) T2d[C,C] & T2d[C,D]
(26, X5) T3L[D,D] & T3L[D,E]
w) T4LA[E.E] & T4Ld[E.F]
w3 T4Ru[F.F] & T4Ld[E.G]
W, T4Rd[G,G] & T4Rd[G,H]
(x4, X4) T3R[H,H] & T3R[H,]]
W4 T4Ru[L]] & T4Ru[LJ]
We T4Rd[J.J] & T4Rd[J.K]
(26, X5) T3R[K.K] & T3R[K,L]
Wws T4Ru[L,L] & T4Ru[LM]

3.2 The TAG Parser and the Scoring Function

We use a TAG parser in the training phase and the identification phase. In the training
phase, the parser is used to generate a set of scores for the positive and negative train-
ing sequences. The generated scores are then input to a threshold function inference
module. The scoring function used is a simple one that counts the number of base
pairs for the sequence structure under a certain grammar. If there is more than one
possible structure, due to the nondeterministic nature of the grammar, the parser will
output the maximum score. As mentioned in section 3.2.3, a separate grammar for
each pattern resulting from the positive training will be generated. The score for a cer-
tain sequence under the union of a set of grammars will, again, be the maximum of
the scores generated from all grammars in the set.

The parser we used is an implementation of Rajasekaran’s [17] and Vijay-
Shankar and Joshi’s [27] algorithms with some minor modifications. In our imple-
mentation of the TAG parser, in addition to n? matrix, A, maintained by the parser, we
associate a list of 4-tuples with every node in the grammar. For a node o, a tuple
(i,j,k,D) € List(o) iff o € A(l,j.k,1). This idea, borrowed from [17], does not improve
the worst time complexity of the parser which is O(n®); however, it improves the av-
erage run time in practice due to sparsity of the matrix A. Another modification is the
fact that the parser generates a score for each sequence instead of a yes/no output.

3.3 The Threshold Function Inference Module

This module infers a score threshold function Th(l) = p. A sequence s of size 1 is con-
sidered to have the RNA structure represented by a grammar G iff the TAG parser ac-
cepts s under G, with score ps = p. Th(l) is a step function defined as follows:

Th()=p, i <I<j (D
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Since both sensitivity and specificity are important criteria we infer a function
Th(1) that maximizes the sum of sensitivity and specificity. This is achieved through
calculating a function S for all possible paths of Th from I = 0 to I = n, where S is the
maximum gain in specificity - loss in sensitivity resulting from each step the function
Th makes and n is the maximum sequence size. Then Th is constructed by tracing
back the path resulting in maximum S. Calculating maximum S can be done in
O(n’m?) time and O(n’m?) memory using dynamic programming, where m is maxi-
mum reported score for the input sample.

Assume, with out loss of generality, that the number of sequences in the positive
sample and the negative sample are equal. Let S(i,j,p,q) be maximum gain in specific-
ity — loss in sensitivity possible for a threshold function segment that starts at Th(i) =
p, and ends at Th(j) = q. Then, the dynamic programming recurrence formulae are
given below

SG,i,p,q) = S(i,i,q,q) = ( the number of negative samples of length i with
score < q — the number of positive samples of length i with score 2)
< q) / the sample size.

and

S@,j,p,.9) = SG@,i,p,p) + SG.j.9,9) ,j= 1+l

=Max ;<1<m<q (S(+1,j-1,1,m) + S(,i,p,p) + SG.j.9.q) ) ,j = i+2 ©)

3.4 Selecting the Best Grammar Combination

As mentioned earlier, the scores resulting from each grammar for the patterns gener-
ated by the training sequences are reported separately. Instead of inferring the thresh-
old function from the maximum score calculated over all the generated grammars, we
try all possible combinations out of these grammars and pick the combination that gen-
erates the maximum sensitivity + specificity for the training set. This approach has
two advantages. First, it eliminates the least informative and/or nearly redundant
grammars. Meanwhile it enhances the time performance for the identification phase by
reducing the number of grammars, or in other words, the size of the overall grammar.

This idea can further be used to restrict the number of grammars used to preset a
maximum; thus choosing the best combination out of three or four grammars, for ex-
ample. Even though trying out all possible combinations requires exponential time in
the number of grammars, the number of grammars is usually small, resulting in the
feasibility of this solution.

4 Experimental Results

To evaluate the effectiveness of the inferred grammars within TAGgnaInf, we calcu-
late the sensitivity and specificity of identification.
igiviv, 1P and g, AN
Sensitivity = 7P+ FN Specificity = TN+ FP (€))
where TP, TN, FP, and FN are the number of true positives, the number of true nega-
tives, the number of false positives and the number of false negatives respectively.
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We used the grammar inference algorithm to infer a grammar for H-type pseudok-
not from a positive training set with structural information. Then we used positive and
negative training sets to infer the threshold function. The inferred grammar and score
threshold function were applied to a test set of RNA sequences and the sensitivity and
specificity were calculated.

For this experiment, we used these data sources:

- The positive data population of H-type pseudoknot sequences was collected from
Pseudobase [4], the tmRNA database [28], and pseudoknot familes in the Rfam data-
base [10]. We arbitrarily selected sequences from tmRNA and extracted PK1, PK2,
and PK4 from them.

- The negative data population was driven from the Rfam database [10]. We se-
lected non-pseudoknot families taking into consideration that the lengths of these se-
quences would be in the same range as the positive population.

The size of each population was 500 sequences. We randomly divided each of the data
populations to three equal subsets: Training set, test set 1 and test set 2. Table 2 lists the
sensitivity and specificity for each subset and for the whole population. Table 3 lists the
sensitivity and specificity of TAGrnaINF, TAGgrna [26] and PknotsRG (mfe) [18] when
applied to Test set 1. For TAGgyna, and PknotsRG (mfe), we count TP to be the number
of sequences belonging to the positive population with predicted structures exhibiting a
pseudoknot. On the other hand, TN is the number of sequences belonging to the negative
population with predicted structures not exhibiting a pseudoknot.

Results in table 2 indicate that our approach is solid and can result in very accurate
predictions. The same problem has been addressed in [14] using a different grammati-
cal formalism. However, the sensitivity we achieve is superior to that reported in [14].
For instance when the size of the training set is 50% of the available sample, they can
achieve a sensitivity of only 54%. To achieve a sensitivity of 85%, they have to em-
ploy a training set of size 90% of the sample. They do not report specificity results.
Results in table 3 indicate that our approach achieve a good balance between sensitiv-
ity and specificity.

Table 2. Experimental Results for TAGgnsINF

Data Subset Sensitivity Specificity
Training set 87.4% 84.4%
Test set 1 78.4% 80.8%
Test set 2 79.6% 88%
‘Whole Population 81.8% 84.4%

Table 3. Comparative Results for Test set 1

Sensitivity Specificity
TAGrNAINF 78.4% 80.8%
TAGgna 100% 71.3%
PknotsRG (mfe) 41.6% 81.4%
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5 Conclusion

In this paper we have presented a grammatical inference algorithm for TAGgna. We
used the inference algorithm as a module within a complete RNA structure identifica-
tion framework, TAGgrnalnf, capable of identifying pseudoknot structures. The TAG
parser used within TAGgnalnf utilizes a scoring function along with the inferred
grammar. The scoring function currently used is the number of base pairs of the RNA
structure detected by the parser. For a training set and a test set of equal size, our ex-
perimental results outperforms those reported in [14] for the same problem. They use
a different grammatical model.
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Abstract. T-score between classes and gene expressions is widely used
for gene ranking in microarray gene expression data analysis. We propose
to use only support vector points for computation of t-scores for gene
ranking. The proposed method uses backward elimination of features,
similar to Support Vector Machine Recursive Feature Elimination (SVM-
RFE) formulation, but achieves better results than SVM-RFE and t-
score based feature selection on three benchmark cancer datasets.

1 Introduction

Simultaneous measurement of thousands of genes has become possible due to
recent advances in DNA microarray technology. Unfortunately, due to high cost
of experiments, sample sizes are still very small compared to the number of
genes measured. Because of this bottleneck, curse of dimensionality and compu-
tational instabilities occur in microarray data analysis, which make it difficult
to efficiently extract useful information. To overcome such problems, selection
of relevant genes has became extremely important in microarray data analysis.

Various gene selection approaches have been recently proposed by different re-
search groups [I21BIA5LGL7BOI0[TT]. Gene selection methologies can be broadly
classified into two methods: filter methods and wrapper methods [2]. Filter meth-
ods evaluate gene subsets by looking at intrinsic characteristics of data with respect
to class labels [T]. T-score, P-score, mutual information, euclidean distance, and
correlation coefficients are some of the widely used filter criterions [2]. In wrapper
approach, the goodness of gene subset is evaluated by estimating the accuracy and
the selection is embedded in the specific learning method. Wrapper methods are
better in principle but more complex and computationaly expensive. Various al-
gorithms have been developed for gene ranking based on SVM [9[T0,12]. Support
vector machine - recursive feature elimination (SVM-RFE) is one of the widely
used wrapper method [12]. SVM-RFE is a multivariate gene ranking method which
uses SVM classifier for ranking. SVM-RFE has also been applied to peak selection
of mass spectrometry data for cancer classification [I3]. Recently, we proposed a
linear combination of SVM-RFE with minimum redundancy maximum relevancy
based filter criteria to minimize between gene redundancy without affecting clas-
sification performance [IT].
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© Springer-Verlag Berlin Heidelberg 2008



Support Vector Based T-Score for Gene Ranking 145

In filter approach, the standard practice is to consider all the sample points
into gene ranking. But, the success of SVM in classification with its excellent
generalization capability has proved that only boundary points are important
for classification with an optimal margin. We propose a novel method for gene
ranking by incorporating t-score in SVM-RFE based ranking to analyze support
vector points. In this paper, we investigate the effect of t-score based rank-
ing on classification performance while considering only support vector points.
Proposed t-score gene ranking method is formulated in a backward elimination
manner as removal of genes from dataset changes support vector points. As
seen later, the proposed method showed better performance compared to t-score
based or SVM-RFE method on benchmark datasets.

This manuscript is organized as follows: In section 2, we describe the SVM-
RFE method and a detailed description of proposed method. Numerical ex-
perimental procedures and results are discussed in section 3. Finally, section 4
includes the discussion and conclusion.

2 Method

Let D = {x;; :i=1,2,...,n;j = 1,2,...m} denotes the microarray gene expres-
sion dataset where z;; is the expression measurement of ith gene in jth sample,
n represents the total number of measured genes and m denotes the total num-
ber of samples. Let x; = (215, ®2;,. .., %n;) be the gene expressions measured in
the jth sample. In this paper, we address two class classification of tissue sam-
ples in to cancer or benign samples. Let the target class label of jth sample be
y; € {+1,—1} taking values +1 and -1 for being benign and cancerous tissues,
respectively.

2.1 Support Vector Machine Recursive Feature Elimination(SVM-
RFE)

The objective function for the Support Vector Machines maximize the margin
of separation between two classes [14]. The soft-margin SVM is obtained by,

m 1 m m

maxa W(a) = aj — 5 SN arcykyi K (wg, 1) (1)
k=1 k=11=1

subject to 0 < ap < (,forallk=1,...,m (2)

and Zakyk =0 (3)

k=1

where {(zg,yx) : K =1,2,...,m} denotes the training examples. Here, ¢ is SVM
sensitivity parameter, K (.,.) the Kernel function, and «y is a parameter ob-
tained by training SVM. SVM formulation only depends on the support vectors
to define boundaries as parameters oy, is non-zero only for support vector points.
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SVM-RFE technique was developed to rank genes for cancer classification [12].
In SVM-RFE, starting with all genes in the subset, iteratively one can remove
gene with least importance for sample classification, given by the weights. This
SVM weight vector w is computed using «y, corresponding to support vector
points as follows:

W= apyprk (4)
k=1

Support vectors denote data points on the boundaries of and within the sepa-
rating margins. It can be shown that «y are zero for non-support vector points.
If w; represents the corresponding component of above weight vector after nor-
malization, the ith gene with smallest ranking score, w;?, is removed from the
gene subset. For the computational efficiency, more than one feature can be re-
moved at each step [12] though it may have negative effect on performance of
feature selection method if a large portion of features are removed at a time.

2.2 T-Score Based Support Vector Backward Feature Elimination
(SV-RFE)

Support vector points represent samples with 0 < ay < (, i.e., points either lie
on the decision boundary or on the wrong side of the margin. In our method, we
only concentrate on these points to compute the t-score. The non-support vector
points need not be considered for gene ranking. This idea is based on SVM-RFE
method where points only with aj > 0 are used for gene ranking.

Let M and M_ subscripts represent set of support vector points correspond-
ing to positive and negative samples. The ranking score for the proposed method

is given by [2],

|Mi,M+ — M, M_ (5)

2 2
o MM OF g, FMM_OF
My MM

r, =

where p; and o? represent mean and variance of expression values of gene i
in respective support vector groups, (M4 or M_), my, and my;_ denote the
number of positive and negative support vector points respectively.

T-statistics compare means of two sets of samples assuming equal variances for
both sets. Gene which has higher t-score between the desired and undesired class
labels is assumed to have higher class separability. The filter methods utilizing
t-statistics have been proven successful in gene selection [Il2]. In standard t-test,
all the sample points are considered for score computation. Refering to Eq. (@),
instead of taking only M, and M_ points (which are support vector points), the
previous t-statistics based methods use all points in positive and negative class
to compute standard t-score [2].

The psuedocode for t-score based Support Vector Backward Feature Elimina-
tion (SV-RFE) is described in Algorithm 1.
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Algorithm 1. T-score based Support Vector Backward Feature Elimination
Begin : Ranked gene set R = [ ], and gene subset S = [1,2,...,n]
repeat
Train linear SVM with gene set S in input variable
Obtain the support vector points and compute the ranking score r;
Select the gene with smallest ranking score e = arg min(r;)
Update R = [e, R]; S =S — [¢€]
until all genes are ranked
end : output R

Looking from different point of view, the proposed method has some resemb-
lence to original SVM-RFE with certain assumptions. From Eq. @), it is clear
that oy < (. After normalizing « vector, this constraint becomes ap < 1. As-
suming all support vector points have o = 1 and substituting it in Eq. (@),
SVM-RFE weight becomes a simple summation of each gene’s expression val-
ues. Instead of simple summation, we propose to use statistically more correct
t-score based ranking. In a way, proposed method does not use a parameter
obtained from SVM learning and in each iteration, model is trained to obtain
optimum support vector points. Due to this, our method differs from SVM-RFE
significantly. This algorithm is computationally expensive than standard t-score.

3 Experiments and Results

3.1 Data

To evaluate the performance of proposed t-score based SV-RFE method, we
performed extensive experiments on three microarray gene expression datasets,
namely, Colon [I5], Leukemia [I], and Prostate [16] cancer dataset. These are
widely used benchmark datasets to evaluate gene ranking methods. In Colon
cancer, no separate testing set is available. Hence we divided the original dataset
into separate training set and testing set. The number of samples and genes are
given in Table [Il

3.2 Preprocessing

To obtain the support vector points, we normalized the training dataset to zero
mean and unit variance based on gene expression of a particular gene. These
continuous datasets were directly used in SVM-RFE after normalization.

Table 1. Sample Sizes of Three Gene-Expression Datasets

Dataset # Training # Testing # Total Genes
Colon 40 22 2000

Leukemia 38 34 7129

Prostate 102 34 12600
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For t-score computation, we use mean centered gene expression dataset (with-
out shifting by unit variance). For t-score based method, we obtain support
vector points using zero mean unit variance training data while t-score in each
iteration was computed using corresponding sample points in mean centered
original gene expression training set.

3.3 Parameter Estimation

Obtaining optimal support vector points is one of the key steps in the proposed
method. This depends on sensitivity parameter 7 in case of linear SVMs. 7 values
were chosen from finite set {2_207 20 215} using 10-fold cross-validation
(CV). This set was also used for SVM-RFE and test performance evaluation.

CV error is generally employed by either, k-fold CV or Leave-One-Out. In
present work, we use Matthew’s Correlation Coefficient (MC) with 10-fold
cross-validation for training performance evaluation and parameter tuning. MCC
was choosen as the error measure because sample size was small and imbalanced
in lables in most datasets.

To increase the speed of the numerical simulations with both SVM-RFE and
proposed method, we employ following heuristic strategy:

100 if n’ > 10000
Number of genes removed =< 10 if 1000 < n’ < 10000 (6)
1 n/ <1000

where n’ is the number of genes in the gene set.

3.4 Performance Evaluation

Ranking of genes in each dataset was obtained using simple t-score, SVM-RFE,
and proposed method. Only training data was used to rank the genes using a
linear SVM. Using the gene ranking list, we tested gene subsets starting from top
ranked gene and then successively adding one gene at a time in testing subset
till total number of genes in subset equals 100.

Small sample size in gene expression datasets present a peculiar problem while
dividing into training and testing sets. It will not give correct performance eval-
uation if only one set of testing set is used. This is known as ”unfortunate”
partitioning of training and testing sets. To solve this ”unfortunate” partition-
ing problem, we merge the training and testing datasets before testing. After
that, we employ stratified sampling to partition the total samples into separate
training and testing sets by maintaing number of samples in each set as before.
Then, the classifier is trained on the training set and tested on the correspond-
ing testing set. This process is followed for 100 times and performance measure
such as, test accuracy, sensitivity and specificity were computed for these 100
trials. Finally, total number of genes required for best classification accuracy
corresponds to subset with the least average test error.

L MOC = TPXTN—FPxFN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Table 2. Performance of t-score, SVM-RFE and Proposed method on Various Cancer

Datasets

Dataset Measurement

# Genes
Accuracy
Sensitivity
Specificity
# Genes
Accuracy
Sensitivity
Specificity
# Genes
Accuracy
Sensitivity
Specificity

Colon

Leukemia,

Prostate

T-score
95
88.18 4+ 5.29

SVM-RFE Proposed Method

90
91.00 £5.17

82.50 £ 11.92 86.75 £ 10.18
91.43 £6.09 93.43 £5.53

88
96.88 £ 3.44
92.64 £ 8.40
99.85 £1.11

85
93.41 £ 3.79
92.84 £4.93
95.00 £ 7.80

47
97.88 £2.07
95.00 £5.13
99.90 £ 0.70

85
96.24 £+ 3.37
95.88 £ 4.08
97.22 £5.56

83
91.14 + 5.22

87.12 £11.16

93.43 £5.71
64
98.41 +£1.79
96.21 +4.24
99.95 + 0.50
21
97.18 +2.89
96.88 + 3.49
98.00 + 4.57

Table 3. Comparison of accuracies with the published results

Method /Dataset Colon Leukemia Prostate
Accuracy #  of Accuracy #  of Accuracy #  of
Genes Genes Genes
Bayes + KNN [g] 90.32 6 100.00 3 94.12 11
Bayes + SVM [§] 87.10 20 100.00 2 96.08 13
t-test + Fisher Classifier [I9] 88.30 . 88.00 92.00 ...
MMC-RFE + NMC [20] 88.80 100 99.20 100 90.10 10
Proposed Method + SVM 91.14 83 98.41 64 97.18 21

We also compared the results with SVM-RFE method. This method was per-
formed in exactly the same way as that of proposed method except ranking
criteria. In all gene selection methods and testing the classifier, we used LIB-
SVM - 2.84 software [17].

3.5 Results

The proposed method has remarakably good performance than t-score method in
all three gene expression dataset. Both sensitivity and specificity are improved
in all datasets. Figures [[I2] and [3 represent the average test misclassification
error rate in each of the three datasets. Also, except Prostate Cancer dataset,
our method needed less number of genes for classification compared to t-score
method. The proposed method also have comparable performance with SVM-
RFE method.

Table [B] shows a comparison of classification accuracy with other methods
available in the literature. As seen in the table, our method performed reasonably
well in all three datasets. Classification performance is much better in Prostate
cancer dataset. In Leukemia dataset, out method is inferior to Leave one out
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Fig.1. Average misclassification error rate for all three methods on Colon Cancer
Dataset against the number of genes
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Fig. 2. Average misclassification error rate for all three methods on Prostate Cancer
Dataset against the number of genes

(LOO) method but better than both 10-fold and 100-split testing. As compared
and discussed in [I8], LOO gives optimistic accuracy estimations compared to
both k-fold cross validation and bootstrap method.
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Fig. 3. Average misclassification error rate for all three methods on Leukemia Cancer
Dataset against the number of genes

4 Discussion

We propose a support vector based t-score method for gene ranking. We eval-
uated performance of the proposed method on three benchmark datasets and
showed remarkable improvement in accuracy compare to standard t-score. Per-
formance results are quite comparable to SVM-RFE.

In practice, standard t-score based approach considers all the data points in
the training set. But as shown in SVM based classification, only the data points
which lie on the boundary are important for decision making. Based on success
of such strategy, our approach only considers data points obtained from SVM
model. Because of only considering support vector points, statistically we lose
some degree of freedoms. But as shown in the results, only concentrating on
support points improves the classification performance.

Removal of one gene can change support vector points, and hence t-score will
change. To incorporate such effect, we use backward elimination based SVM-
RFE approach with t-score criteria in gene ranking. This approach is different
from standard t-score method where all the genes are ranked in one iteration.

We would like to reemphasize that the proposed method does not use a pa-
rameter obtained from SVM models. As discussed in the methods section, if «
value is assumed to be 1 for all support vector points, SVM-RFE weight criteria
is simple summation of gene expression values. In the proposed method, we use
statistical t-score, which ranks genes based on mean and variance of gene expres-
sion values in cancerous and benign tissue samples. This results improved the
classification performance. Only similarity with SVM-RFE is that, in each iter-
ation, specified numbers of genes were removed and new t-score was calculated
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for new SVM model. As number of support vector points change in each itera-
tion, and hence mean and variance of gene, our method formulation indirectly
changes univariate t-score into multivariate system. It would be interesting to
see if same hypothesis of using only support vectors can be applied with other
filter criteria.

In conclusion, we proposed a novel support vector based t-score computa-
tion in SVM-RFE formulation. Extensive testing on three benchmark cancer
classification gene-expression dataset revealed that proposed method perfoms
significantly better than standard t-score appraoch and results are comparable
with SVM-RFE.
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Abstract. Understanding the mechanisms of protein-DNA interaction is of
critical importance in biology. Transcription factor (TF) binding to a specific
DNA sequence depends on at least two factors: A protein-level DNA-binding
domain and a nucleotide-level specific sequence serving as a TF binding site.
TFs have been classified into families based on these factors. TFs within each
family bind to specific nucleotide sequences in a very similar fashion. Identifi-
cation of the TF family that might bind at a particular nucleotide sequence re-
quires a machine learning approach. Here we considered two sets of features
based on DNA sequences and their physicochemical properties and applied a
one-versus-all SVM (OVA-SVM) with class-wise optimized features to identify
TF family-specific features in DNA sequences. Using this approach, a mean
prediction accuracy of ~80% was achieved, which represents an improvement
of ~7% over previous approaches on the same data.

Keywords: Transcription factor family prediction, multi-class classification.

1 Introduction

Protein-DNA interactions play a central role in many cellular processes including
transcription and translation. A key aspect of transcriptional regulation requires the
binding of a class of proteins (called transcription factors (TFs)) to cis-acting DNA
regulatory sequences (known as transcription factor binding sites (TFBS)). Under-
standing the mechanisms of these interactions and identifying associations between
each TF and DNA regulatory elements are key challenges for experimental and com-
putational biology.

TFBS are usually very short (<12 base pairs) [1] and some proteins are capable of
binding to many TFBSs. Binding of a TF to the appropriate TFBS depends on two
factors: A three-dimensional protein structure of the TF that presents an appropriate
DNA-binding domain and the specific sequence of nucleotides recognized by TF.
Though variability in TFBSs does exist, TFBSs share enough similarity such that they
can be easily recognized in the nucleus by TF proteins. TFs can be classified into
families based on these protein and DNA-binding characteristics and catalogs of
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TFBS and TF proteins can be found including JASPAR [2], Transfac [3]. Transfac
uses the sequence similarities in TFBS as a basis of classification of TFs, whereas
JASPAR uses the binding profiles (discussed below) to classify TFs into families.

Several approaches to identify TFBS and associate them with the binding TF exist.
These include phylogenetic footprinting [4], position-specific scoring matrix (PSSM)-
based approaches [5], Gibbs sampling [6], and expectation-maximization [7]. Phy-
logenetic footprinting has been applied to genomic sequences to identify novel TFBSs
[8]. Clustering the results of phylogenetic footprint analysis on sets of co-regulated
genes can result in novel TFBS as well as the identification and annotation of previ-
ously identified TFBSs [9]. Approaches based on comparative genomics or phyloge-
netic footprinting require genomic sequences from several species and as a result are
computationally intensive. In some cases there may not simply exists sufficient repre-
sentation over the phylogenetic history to generate meaningful comparisons at the
species level.

A PSSM or position-weight matrix (PWM) is used commonly as probabilistic rep-
resentation of a TFBS. These matrices store frequencies of each nucleotide at each
position of the binding site. Such models generally assume independence between
nucleotides over all positions must use a fixed-length (typically arbitrary) TFBS, are
unable to represent sequence properties such as sequence-dependent physicochemical
properties [10].

These methods are used generally to identify TFBS in newly sequenced data and
do not attempt to predict a putative TF for each identified binding site.

Recently, several approaches have been proposed to handle this problem. Narlikar
and Hartemink [11] used sparse multinomial logistic regression (SMLR) [12], to
predict TF family given a set of TFBSs. For a given set of DNA sequences, a set of
nucleic-acid based sequence features were generated. These features were used to
generate the model and predict the TF family.

Sandelin and Wasserman [2] used binding sites profiles to classify well-
characterized TFs into “familial binding profiles.” The database JASPAR was gener-
ated using such “familial binding profiles” with corresponding TFs and associated
binding sites. First a collection of PSSM models for a TF were assembled and simi-
larities between models were calculated. Finally, an assembly algorithm was used to
compile all models into a single familial binding profile. Using this approach, TF
binding sites were classified into 11 families. A brief description of the families ex-
amined in this study is given in the Materials and Methods section below. Prediction
of TF-family for a given set of DNA binding sites can be accomplished using “famil-
ial profiles.”

Tan et al. [13] utilized the information of comparative genomics to connect TFs
with their corresponding TFBSs. Three mutually independent information methods
were used to connect a DNA binding motif to a given TF. Comparative analysis of
multiple genomes was used to generate two of these sources of information and the
third was derived from similarities of TFBS interactions. For a given TF and DNA
motif, the three types of information were combined to obtain the probability that
such a pair was a true pair.

Narlikar and Hartemink [11] showed that the nucleic-acid based features of TFBS
can be used to predict the families of corresponding binding TF. They demonstrated
that the selected features are family-specific. Motivated by these results, we used
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sequence-based conformational and physicochemical features [10, 14] in addition to
the features proposed by Narlikar and Hartemink [11] to develop models with an
SVM-based classifier [15].

The results of this approach were compared directly to SMLR [11]. The addition of
physicochemical features to the nucleic-acid based features led to significant im-
provement in predictive accuracy. The SVM-based classifier outperformed SMLR
when only the nucleic-acid based features were used. Both SVM-based classifier and
SMLR resulted in competitive predictive accuracies using additional set of physico-
chemical features.

2 Materials and Methods

2.1 Datasets

JASPAR is the largest, curated, and open-access collection of eukaryotic TFBS pro-
file matrices [16]. TFBSs are classified in JASPAR into the 11 structural families
shown in Table 1. As part of our experimental design, we only made use of those
TFBS classes with 4 or more samples (see below). Given this requirement, two
TFBS-families (bZIP-cEBP and TRP (MYB)) were removed (Table 1). The remain-
ing 55 TFs from 9 TFBS-families were used for modelling. These families are briefly
described below.

ETS Family: TFs belonging to this family contains a region of 85-90 AAs known as
the erythroblast transformation specific (ETS) domain. This domain is quite rich in
positively-charged and aromatic residues. The ETS domain binds to purine-rich seg-
ments of DNA [17].

bZIP-CREB Family: cAMP responsive element binding proteins (bZIP/CREB) are
conserved, nuclear, bZIP-domain, dimeric transcription factors. TFs of this family

Table 1. TF families of JASPAR database. Abbreviations for some families are provided in
square brackets.

TF Family Number of Samples Considered in this
Study
ETS 7 Yes
bZIP-CREB 4 Yes
REL 5 Yes
Nuclear Receptor [NR] 8 Yes
Forkhead [Fkh] 4 Yes
bZIP-cEBP 3 No
bHLH (zip) 9 Yes
MADS 5 Yes
TRP (MYB) 3 No
Homeobox [Hbox] 7 Yes
HMG 6 Yes

(@)}
—
W
9.}

Total Samples
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contact the DNA through a basic region generally found in the amino-terminus of the
TF. They contain leucine zipper segments consisting of leucine or similar hydropho-
bic AA spaced roughly every 7 or 8 residues.

REL Family: The Rel homology domain is found mainly in eukaryotic TFs. TFs
containing the domain do not use well-defined secondary structure for DNA-binding
[18]. The domain is composed of two immunoglobulin-like beta barrel sub-domains
which grips the DNA in major groove.

Nuclear Receptor: The DNA-binding domain of nuclear receptors is composed of
two zinc finger motifs that differ in size, composition, and function. Each finger con-
tains four cysteine residues coordinating one zinc ion. The zinc coordinating motif is
characterized by two anti-parallel alpha-helices capped by loops at their amino-
terminal ends. Normally TFs of this class function as homo- or heterodimers. Each
monomer typically consists of ligand-binding, DNA-binding, and transcription regu-
latory domains.

Fork head: The fork head domain contains neither homeodomains nor zinc-finger
characteristics of other TFs. It contains a distinct type of DNA binding region of
around 100 AAs and binds B-DNA as monomer.

bHLH (zip): TFs of this family contain a tripartite DNA binding domain consisting
of a basic region, a helix-loop-helix (HLH), and a leucine zipper. The domain medi-
ates dimerization as a prerequisite for DN A-binding. The basic region dictates DNA-
binding specificity. The leucine zipper consists of repeated leucine residues at every
seventh position.

MADS: The MADS box is a highly conserved sequence motif found in a family of
TFs. The conserved domain was recognized after the first four members of the family,
MCM1, AGAMOUS, DEFICIENS, and serum response factor (SRF) and named after
them by taking their initials. TFs belonging to this class function as dimers. The pri-
mary DNA-binding element is an anti-parallel coiled coil of two amphipathic a-
helices, one from each subunit. The MADS domain is a 56-residue motif consisting of
a pair of anti-parallel coiled coil o-helices packed against an anti-parallel, double-
stranded, B-sheet.

Homeobox: The homeodomain binds through a helix-turn-helix (HTH) structure.
HTH motifs are characterized by two a-helices, joined by a short turn. Protein-DNA
contacts are conserved, especially those made by positions R3, RS, 147, Q50, N51 and
M54 [19]. This domain binds to DNA both as monomer and dimer. Some proteins are
capable of both.

HMG: Proteins of this class comprise a region of homology with HMG proteins such
as HMGI. Generally HMG domains bind DNA to non-sequence-specific manner. The
domain exhibits an L-shaped configuration by 3 alpha helices. The 1*" and 2™ helices
contact DNA and the 3™ helix is exposed to solvents.

2.2 Feature Formulation

Nucleic acid-based sequence features were used to represent each TF. Two main sets
of features were defined: DNA features and DNA-Physico features (described in
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greater detail below). Features corresponding to DNA were calculated using only
known binding sites or DNA motifs obtained from the JASPAR database. Flanking
sequences were avoided given there is no general consensus on the notion of an
“ideal” length for such flanking sequences in model development. Only the DNA-
binding domain of TFs was used for feature calculation. For each TF, a list of binding
DNA motifs or sites was obtained from the JASPAR database. Features correspond-
ing to each DNA motif were calculated and average was taken to get single feature
vector representing each TF. All features and their combinations are described in
greater detail below.

1.

DNA Features: We used the same set of features as discussed in [11]. These
features included:

A)

B)

®)

D)

The frequency of subsequence features representing the counts of all
subsequences of length 1 to 5 in each TFBS. Only the four nucleotides
A, T, G, C were considered. The full 15-letter code was not considered
as no consensus sequences in any form were taken as binding sites.
1,364 features were generated in this manner.

Ungapped palindrome features: Binary variables representing the
presence or absence of palindrome subsequence of half-length 3, 4, 5 or
6 spanning entire site and that of palindrome subsequence not spanning
the whole length. Thus there were total 8 such binary features. It is
important to mention here this set of features will be sparse. For
example, the presence of subsequence of half-length 3 spanning entire
site will make the rest 7 binary variables 0.

Gapped palindrome features: The same as the above with one difference
of possibility of gaps. Here gap indicates the insertion of some non-
palindrome nucleotides exactly in the middle of two palindrome halves.
Similar to the previous case, total count of such features was 8.

Special features: Narlikar and Hartemink [11] identified 7 special
sequence features from literature which are found to be over-represented
in the binding sites of certain TF families. These seven features were G .
.G,G..G..G, [GC]..[GC]..[GC], AGGTCA | TGACCT, CA..
TG, TGA . * TCA, and TAAT | ATTA. Here ‘.’ means presence of any
single nucleotide, ‘.*’ means presence of at least one nucleotide, [XY]
means presence of one of the letters X or Y, and ‘XYZ | ABC’ means
presence of one of the strings ‘XYZ’ or ‘ABC’. The presence or absence
of each of these features was used as additional features.

When concatenated, features 1A-D above resulted in a single feature vector of length
1,387. The classifier model using solely this feature vector was referred to as the
“DNA-model”.

2.

DNA-Physico Features: Conformational and physicochemical properties
have been shown to affect the activity of cis-regulatory DNA elements [10,
14]. The mean values of 38 conformational and physicochemical properties
of di-nucleotides were downloaded from the Property subdirectory of the
Activity database [20]. For a given DNA site 'S = s,,55,...,5;..5." of length L a
value representing each of the 38 features was calculated as follows:
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where P, is the gth property of dinucleotides (s; s;,;). There are only 38 such proper-

ties and when these were combined with the DNA feature set above, a total of 1,425

features resulted. The classifier model based on this feature set was referred to as the

“DNA-Physico model.”

2.3 Model Description

Background of SVM, OVA-SVM and SVM-RFE (OVA-RFE). Support vector
machines (SVMs) [21] belong to the family of margin-based classifiers and can often
achieve superior classification performance when compared to other classification
algorithms across many domains. SVMs were originally designed to solve binary
classification problems. Several algorithms have extended binary SVMs for
application in multi-class problems [22-26]. One-versus-all (OVA) is one such simple
and early extension of SVM for multi-class problems [27].

SVM-recursive feature selection (SVM-RFE) [28] was originally proposed for bi-
nary classification problems. The method of SVM-RFE begins with the set of all
features and selectively eliminates one feature at a time. Features are scored and
ranked on squared coefficients sz (j=1,2,....,p) of weight vector w. The feature with
smallest sz is eliminated in each iterative step. The procedure is repeated until a pre-
determined number of features remain. This procedure can also be generalized to
remove more than one feature per step [28]. SVM-RFE is also extended in OVA fash-
ion by many researchers [29-31]. This extension is generally known as OVA-RFE.

Feature selection was performed in OVA-RFE fashion. Selected features were then
used with corresponding OVA-SVM classifiers. Final class-prediction was made using
probabilities scores obtained from OVA-SVMs. We have shown [15] that conversion
of decision function values into probability scores increases predictive performance.
Among the three methods of converting decision function values into probability
scores that were evaluated previously [15]; Platt's approach [32] was determined to
provide better or equivalent predictive accuracy over several data sets. Thus for the
purpose of the current investigation, we used Platt's approach to convert the decision
function values into probability scores.

2.4 Experimental Design

During pre-processing, for each feature type, redundant features with identical values
over all samples were removed. The remaining features were normalized to [-1, 1].
Table 2 lists number of features before and after pre-processing step.

Table 2. Feature Statistics

Feature Type Number of Features  # Features After Pre-processing
DNA 1387 1305
DNA-Physico 1425 1343




160 A. Anand and G.B. Fogel

The performance of all models was assessed using k-fold external cross-validation
(CV) following Ambroise and McLachlan [33] to provide an unbiased estimate of
generalization error. CVs were performed 100 times to provide more reliable esti-
mates of prediction accuracy. A linear kernel was used for the SVM and hence only
one SVM parameter (C) required tuning. For each model, a range of C was evaluated
{107, 10%, 107, 10, 10, 1}. The model and C setting with best average CV (4-fold
CV) accuracy over all 100 runs was selected as the most appropriate setting of C. For
““this purpose, all features were used and no feature selection was performed.

For feature selection, 34 of the data were considered were used for the feature se-
lection process and the best features were re-evaluated on the remaining % of the data
for performance. Average 4-fold accuracy was calculated. This procedure was re-
peated for 100 different stratified (i.e., the class-wise proportion in training set was
kept the same as was in the whole set) partitions of 4-fold. Average CV accuracies
over 100 runs were calculated to estimate the prediction accuracy of models. We
started with all features and successively eliminated 1% of remaining features in each
iteration of OVA-RFE until a minimum of 10 features were left.

For fair comparison to SMLR [11], we used the same normalized data as was used
in OV A-experiments. Different values of the parameter A were tried and the one giv-
ing best average 4-fold CV accuracy over 100 runs was reported. We used SMLR
software [12] available from the http://www.cs.duke.edu/~amink/software/smlr/.

3 Results and Discussion

3.1 Comparison between SMLR and Class-Wise Optimized OVA-SVM

Table 3 lists prediction accuracies obtained by models using different feature-types.
OVA-SVM approach performed significantly better than SMLR using only DNA
features (z-test p-value = 1.65 x 10'43), however there was no significant difference
found between the two approaches when DNA-Physico features was used. The mean
predictive accuracy of SMLR approach improved significantly (from 74.05% + 3.34%
to 81.91% = 2.69%; t-test p-value = 1.68x10™**) with use of DNA-Physico features.

Table 3. Performance comparison of SMLR and Class-wise optimized OVA-SVM

Type of Features OVA-SVM OVA-SVM SMLR
(All-Feats) (Feat-Selection)

DNA 81.44+3.04  81.86+2.77 (773) 74.05+3.34
80.88+2.98 (200)  (A=0.001)
80.06+3.07 (35)

DNA-Physico 81.99+3.07 82.56+2.82 (471) 81.91%2.69
81.73£2.64 (60) (A= 1.0E-5)
80.09 £2.88 (30)
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3.2 DNA-Model and DNA-Physico-Model Features

The addition of physicochemical properties improved mean prediction accuracy,
though not significantly for the OVA-SVM approach (t-test p-value = 0.20). Figure 1
compares the average error obtained by models using different number of DNA and
DNA-Physico features. Feature selection did not lead to any significant improvement
in mean predictive accuracy however; more parsimonious models could be obtained
using far fewer features with similar mean accuracy. For example, using only 35
DNA features, a mean prediction accuracy of 80.06% + 3.07% was generated. Simi-
larly, using 30 DNA-Physico features generated a mean prediction accuracy of
80.09% + 2.88%. To compare the best predictive accuracy obtained by the two mod-
els irrespective of the number of features used, the model using DNA features only
obtained best accuracy of 81.86 (+2.77) by using 773 features per class and the best
accuracy of 82.56 (+£2.82) was obtained by the model using DNA-Physico features
with 471 features per class (Table 3).

26
——DNA
25 —— DNA-Physico

Average Error

1 | 1 1 1 1
0 200 400 600 800 1000 1200 1400

Humber of features per class

Fig. 1. Comparison between DNA and DNA-Physico Models

These results show that the model using DNA-Physico features was always able to
provide slightly improved predictive accuracies than model using DNA features only.
This suggests that the conformational and physicochemical features might influence the
prediction of some of the TF families. We reviewed only the features which were se-
lected more than 50% of the time by DNA-Physico models when using 30 features per
TF family and separated these into conformational or physicochemical features (Table
4) to check our hypothesis. DNA-Physico features appeared to be important for the
bHLH-ZIP family. We compared the prediction accuracy obtained by the two models
for bHLH-ZIP family. The DNA-Physico model obtained an accuracy of 95.78% =+
6.27% whereas the DNA model obtained an accuracy of 90.56% =+ 6.58%. The statisti-
cal significance of this difference was evaluated using a proportion test but no statistical
significance was observed (p-value = 0.49) but reviewing the results as number of cor-
rect predictions made in each partitions shows a significant difference between the two
models. The DNA-model predicts all 9 samples from the bHLH-ZIP family correctly
only 26 times out of the 100 runs whereas the DNA-Physico model corrects all 9 sam-
ples of this family 66 times, for a difference of 40 out of 100 runs (Table 5).
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Table 4. Class-wise statistics of different feature types: Features with frequency more than 200
were considered only. This statistics is obtained from the model using DNA-Physico Features
with 30 features per class.

TF- ETS bZIP- REL NR Fkh bHLH MADS Hbox HMG
Family CREB (zip)

#DNA 28 22 31 26 27 19 27 23 19
Features

#Physico 2 0 0 0 0 5 0 2 0
Features

Table 5. Number of true classifications for bHLH-ZIP family by the two models in 100
partitions. Total number of samples in bHLH-ZIP was 9. Numbers in bracket in the first
column indicates number of features used by OVA-SVM classifier.

# True Classifications 7 8 9
DNA-model (35) 11 63 26
DNA-Physico-model (30) 4 30 66

4 Conclusion

In this paper, features based on the TFBS sequences and their physico-chemical prop-
erties were used to build an OVA-SVM based multi-class classifier to predict the
family of an associated binding TF protein. A detailed study was conducted to inves-
tigate the importance of different feature types for this decision. The performance of
OVA-SVM based multi-class classifier and SMLR were compared and a significant
improvement was found in the performance of SMLR when additional physico-
chemical features were added to the nucleic-acid based features. While OVA-SVM
outperformed SMLR based on only DNA-features, performance of the methods were
competitive when DNA-Physico features were used.
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Abstract. Classifying protein sequences has important applications in
areas such as disease diagnosis, treatment development and drug de-
sign. In this paper we present a highly accurate classifier called the g-
MARS (gapped Markov Chain with Support Vector Machine) protein
classifier. It models the structure of a protein sequence by measuring the
transition probabilities between pairs of amino acids. This results in a
Markov chain style model for each protein sequence. Then, to capture the
similarity among non-exactly matching protein sequences, we show that
this model can be generalized to incorporate gaps in the Markov chain.
We perform a thorough experimental study and compare g-MARS to
several other state-of-the-art protein classifiers. Overall, we demonstrate
that g-MARS has superior accuracy and operates efficiently on a diverse
range of protein families.

1 Introduction

With the development of genome sequencing techniques, biologists have accu-
mulated huge numbers of protein sequences and new ones are being discovered
daily. Predicting the class or the main function of a new protein sequence can
assist experts in understanding its nature. It is a difficult problem, however, and
it is not easy to advance the state of the art. Successful protein classifiers must
be able to compare sequences efficiently, detect important features and also show
good predictive capability.

A number of algorithms have been developed for classifying proteins into
families or into clusters of functions or localizations. The basic assumption
mostly used is the first fact of biological sequence analysis: ”In biomolecular se-
quences (DNA, RNA or amino acid sequences), high sequence similarity usually
implies significant functional or structural similarity.” [7]. So, to create highly-
accurate classifiers, we need a way to compare the similarity of a large number
of diverse sequences precisely and efficiently.

Our contribution. In this paper, we describe a new protein classifier called
the g-MARS (gapped Markov Chain with Support Vector Machine) classifier.
The g-MARS approach has two main stages. Firstly, each protein sequence is
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individually modeled using what we call a “gapped markov chain”, to capture
its statistically important features. Next, a new dataset is derived from the
collection of all gapped markov chains and it is passed to a support vector
machine for decision making. The prime advantage of g-MARS is its superior
accuracy compared to several existing protein classification methods. This is a
claim validated in our experimental study, which considers a diverse range of
protein families with different characteristics. The technique also scales well for
large datasets. We first begin with a review of related work in the area.

Related work. Amino acid composition-based algorithms measure the similar-
ity of proteins from the compositions of their amino acids. For each protein in the
training dataset, the algorithm[6] calculates the frequency of each of its amino
acids. For a new protein to be classified, its amino acid frequency histogram
is calculated and compared with the compositions of the proteins in each class
of training data. The protein is then classified to the class containing the pro-
tein with the smallest composition difference. The shortcomings of this approach
are the loss of the ordering relationship among amino acids and the simplistic
comparison in the composition difference. These compositions may be biased for
small training datasets.

Amino acid composition with gaps []] is an improvement of the pure amino
acid composition algorithm [6]. The first improvement is that it considers pairs of
the amino acids rather than individual ones. The second improvement is that it
uses a support vector machine to make decisions, which is useful to alleviate the
potential bias introduced by the limited information from the training datasets.
The limitation is that the measurement is still based on the percentages of the
pairs of amino acids among the whole protein sequence. When two proteins have
different lengths, although they share some similar sections, certain amino acid
pairs may have composition differences.

The spectrum kernel [I1] is a support vector machine algorithm that calcu-
lates the similarity of two sequences by their common k-mers. In practice, the
spectrum kernel works quite well [T1]. However, there are limitations: it is far
more computationally expensive than the amino acid composition algorithm.
Secondly the choice of k in practice must be small, since the number of k-mers
increase exponentially with k (so k = 3 is generally used). Thirdly, since k-mers
must be contiguous, there can be less tolerance when proteins contain errors or
mutations. In the mismatch kernel[I0], the sharing of the similar k-mers, along
with the identical ones, is used to measure the similarity.

Previous work by Wang et al [I4] presents an interesting, but very general
framework (GMM) for using markov models to classify proteins using amino
acid feature combinations which may include gaps. Our g-MARS algorithm can
roughly fit into this framework, but with a number of key differences: i) GMM
requires the configuration of between six and ten different parameters and does
not provide any general strategy for choosing them, a difficult challenge for a
user . Thus it is better described as a large space of possible algorithms, rather
than a single algorithm (and so it is not feasible to try to experimentally bench-
mark against), ii) Different combinations of features are used. Only the prior and
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posterior pair with the highest order is used for classifying a protein by GMM. In
¢-MARS, however, we consider variable gaps and use all resulting prior-posterior
pairs for the classification decision, iii) The GMM classification/decision model
is essentially a set of prior-posterior pairs which work as rules and classifica-
tion relies on aggregating scores of these rules. In contrast, g-MARS learns a
classification model based on training a support vector machine.

The Fisher kernel [9] combines the support vector machine and the hidden
markov model. Our g-MARS approach is different from the Fisher kernel. Firstly,
we do not use a hidden markov model generated from the whole training dataset.
Instead, we use the gapped markov chain generated from each individual train-
ing protein. Secondly, the ”distance” between two proteins in the SVM is not
calculated directly by the kernel function[d]. It is instead calculated by a classic
relational kernel such as the RBF kernel.

Work[I3/T5] has been done on building a series of classifiers which make use
of frequent substring patterns and the support vector machine. The algorithms
firstly mine the frequent substrings from the training proteins that are frequent
and discriminative for their own class (each pattern is mined with high con-
fidence). Then they reform each sequence (training and testing sequences) by
verifying which patterns are contained in it. An SVM is used for decision mak-
ing on the reformatted dataset.

Preliminaries. A sequence p = ajasas...a, is a length n sequence. Each charac-
ter ag in p is chosen from an alphabet set A and referred to as p(k). Throughout
this paper, we consider protein primary structure (amino acid sequences), but our
technique is easily adapted to classification of other types of sequences as well.

In protein classification problems, a training dataset TrDB contains proteins
whose classes are known to the classifier. The class label for each protein p
is denoted as p.c. A testing dataset TeDB contains proteins whose classes are
unknown to the classifier. The task is to predict the class label of each unknown
protein sequence according to the training dataset. The predicted class label for
each such protein p is denoted as p.pc. Given a testing protein p, if the predicted
class label is the same as its real class label, that is, p.pc = p.c, we say it is
correctly classified by the classifier, otherwise it is misclassified.

If the dataset only contains proteins from two classes, it is a binary-class
classification problem. For the multi-class classification problem, where the test-
ing dataset contains proteins belonging to more than two classes, we choose
proteins from one class and merge the rest of the proteins into another class.
In this way the multi-class classification problem can be reduced to a binary-
class classification problem. The task is then to predict whether a testing pro-
tein belongs to the chosen class or not. The chosen class is called the positive
class (or the target class) and can be denoted as T'. The merged set of in-
stances (named the negative class) containing all other proteins is denoted as
=T. TrDBr = {p € TrDB | p.c = T} is called the training positive set and
TrDB-r = {p € TrDB | p.c # T} is called the training negative set. Corre-
sponding definitions exist for sets of testing instances TeDBp and TeDB_p.
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2 g-MARS Methodology

Training the g-MARS classifier has two main phases. Firstly, g-MARS builds for
each p € TrDB, a gapped markov chain. Secondly, g-MARS passes the vectorial
expressions of the gapped markov chains to a support vector machine (SVM) for
decision making.

Markov chains are a well known method for modeling sequences. The system
consists of a set of states, where each is labelled by a character a € A and a set
of transitions which are associated with some probabilities. From one position to
the next one of the sequence, the system undergoes a change of state (possibly
a self-loop to the same state), according to the transition probability between
the states. An important special case is the first order markov chain, where the
transition probability depends only on the current and the predecessor position,
ie., Prip(i) = ar | p(i—1) = aj,p(i—2) = am,...] = Prip(i) = ar | p(i—1) = a;].

Furthermore, the markov chains we will consider are independent of the se-
quence positions. In other words, the probabilities of a transition from item a,,
to a, do not depend on the position in the sequence where transition occurs.

A markov chain modeling a sequence p consists of two kinds of components.
One is the set of the states {S;} representing each character from A and the other
is the set of transition probabilities {¢;;} between states. The formal definition
of transition probability ¢;; leading from state S; to S; is: t;; = Prp(k) = a; |
p(k—1) = ai.

In order to build a markov chain of the sequence p, we have to decide the
probability of each pair of the states. A maximum likelihood estimation pro-
cedure is applied to calculate these probabilities: ¢;; = 217%, where ¢;; is the
number of times amino acid j follows amino acid 7 in p and ) | & Cik is the number
of times the amino acid i is followed by any other amino acid.

Example 1. Consider the sequence p = ABACCAB. The markov chain for p
has three states and we have tyq = 0, tap = g, tac = é, tpa = 1, tgp = 0,
tpo =0, tca = %, tep =0 and toe = é

The purpose of building the markov chain for each protein is that similar global
or local structures of two proteins can be captured by their markov chains. E.g.,
the probability for amino acid X followed by amino acid Y can be discriminative
for proteins from two different classes. This is true if the proteins from the same
class share a lot of common sections and those common sections are different
between different classes. One issue is that it is rare for many proteins from the
same class to share long common sections. The common parts may be similar,
but not exactly the same. An example to further illustrate is:

Example 2. Consider two sequences py = ABC and pos = ADC. The first
order markov chains of them are quite different. For py, the non-zero probability
transitions aretap = 1 and tpo = 1. For pa, the non-zero probability transitions
are tap = 1 and tpc = 1. There is no common non-zero transition probability
between the markov chains of p1 and ps. However p; and ps share two out of
three characters, which may indicate some similarity.
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2.1 Introduction to Gapped Markov Chains

To overcome the limitation of traditional markov chains which only model suc-
cessive state transitions, we modify the traditional markov chain in two ways.
The first is to model the ending of the sequence and the second is to add the
concept of gaps.

Modelling the ending of the sequence. In Example[T] the transition proba-
bility ¢t 4 is 1, meaning that in sequence p, if B is followed by any amino acid, it
must be A. This does not consider the last character p(7), which has no character
following. A more complete model should illustrate that in p, the probability for
B to be followed by A is 0.5 and the probability for B to be followed by nothing
is 0.5. Thib can be reflected by changing the transition probability definition to
t;; = 7, where ¢;; is the number of times amino acid j follows amino acid 4 in
p and CZ is the number of times the amino acid i appears in p.

Although we consider the ending of the sequence, our markov chain won’t
contain the null (end of sequence) state and state transitions from other states
to the null state (null transitions). There are two reasons: Firstly, when the
transitions from one state to another non-null state are determined, its null
transitions are also implicitly determined. Including the the null transition is
redundant. Secondly, by removing the null transitions, we reduce the model size,
which benefits for the classification process used later. In practice, the exclusion
of these transitions does not impair classification accuracy.

Since we remove the null state and the null transitions, the sum of all the
out-going transition probabilities in our markov chain model won’t necessarily
be 1. This is different from the markov chain introduced in the last section. From
another point of view, the "rest” of the probability of a state goes to the null
state which is "hidden”.

The concept of gaps. In a g-gapped markov chain, we determine the proba-
bilities of amino acid transitions, where there may be gaps between the amino
acid pairs being considered. In particular, we allow contiguous (with no gap),
jumping of one amino acid (with the gap as 1), jumping of two amino acids (with
the gap as 2) and so on up to the g-th gap. The state transition probabilities

k
are redefined as tk = Cci_j , 0<k<g, where tk is the probability of a transition

from amino acid 7 to amino acid j with gap as k in p; ¥ is the number of times
amino acid ¢ has gap k to amino to amino acid j in p. cl is the number of times
amino acid ¢ appears in p.

Suppose we allowed a character () called ” The-Character-Don’t-Care”. Our
gapped markov chain can be used to directly model sequences containing (). An
example is given in Example

Example 3. Given a sequence p = ABOBC, the probability for it to be produced
by a gapped markov chain can be calculated as Pr(p) = t% g * thp * t%a. The
probability of p can be directly reflected by the gapped markov chain. Note that the
probability of p could also be calculated by the traditional markov chain indirectly:

PT(p) =tap * (Zz (tBi * tiB)) *xtpC.
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The purpose of being able to model sequences containing ) is to capture the
approximate similarity between protein sequences.

Example 4. Consider two sequences py = ABC and ps = ADC. Comparing
contiguous amino acid pairs gives no similarity between their transition probabil-
ities (c.f. Example[d). If we ignore their second characters, the sequences become
p) = AOC and py = ADC, which are the same. This commonality is reflected
when we compare p1 and p2 allowing gaps in the markov chain: for gap equal to
1, we have the non-zero transition probabilities of p1 as t% gz =1, t%- = 1 and
tYe = 1. The non-zero transition probabilities of ps are t%, =1, tho =1 and
the = 1. We can see py and ps now share one common transition probability.

Given that we can generate a g-gapped markov chain for a sequence, how do we
compare two markov chains to obtain the similarity between two sequences? A
direct way would be, for each pair of states, compare their transition probabilities
and count the number which are identical to get a score of the similarity of the
two sequences. F.g., considering p; = ABC and p, = ADC' from the previous
example, the number of transitions having the same non-zero probability under
a 0-gapped markov chain model is 0, so the similarity of p; and py under gap 0
would be 0. The similarity score for a 1-gapped markov chain model would be
1, because they share exactly one common transition, namely t,140~

In practice, we should not expect two similar proteins to share many such
common transition probabilities. Instead, we would expect transition probabil-
ities of proteins from the same class to have smaller variance and transition
probabilities of proteins from different classes to have larger variance. SVMs are
good at detecting such differences and so we use them for deriving a decision
hyperplane that can separate gapped markov chain features of proteins from
different classes.

Support vector machines using classic kernel functions require the input for-
mat to be vectors. We must therefore be able to represent gapped markov chains
as vectors. This is straightforward: simply form a vector where each dimension
corresponds to a transition and the value for that dimension is the probability
of the transition. Transitions are annotated with gaps, so t9 , is considered to
be a different dimension to ¢!y ,. The ordering of the transitions does not matter
as long as it is consistent for all the sequences in TrDB as well as TeDB.

Differences between gapped markov chains and traditional markov
chains. As we can see, there are two main differences between our gapped
markov chain and traditional markov chains. First of all, the summation of
all out-going transition probabilities of a state is not necessarily to be 1 in our
gapped markov chain, but it is a property of traditional markov chains. Secondly,
the traditional markov chains describe successive states of a system. Our gapped
markov chain can do that because any gapped markov chain contains the 0-th
transition matrix, which is the traditional markov chain. But it can also model
sequences containing ). As we discussed earlier, these two changes enhance their
suitability for protein classification.
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Differences between sequence modeling by gapped markov chains and
by amino acid compositions. Recall the amino acid pair composition technique
[8] we discussed earlier. There are several differences between that technique and
our gapped markov chain technique. In the former case, the discriminative informa-
tion is measured by the frequencies of the amino acid pairs. If the amino acid pairs
are treated as patterns, these algorithms model each protein by their length-2 pat-
tern frequencies. The model can be interpreted as: given an ordered pair of amino
acids, how likely is it that this pair occurs in the protein? In our case, the discrim-
inative information is measured by the probabilities of the amino acid transitions.
The gapped markov chain models each protein by these pairwise amino acid tran-
sition probabilities. The model can be interpreted as: given a specific amino acid
m, how likely is it that another amino acid n follows it? An important advantage is
that the probability model is much less likely to be affected by the protein lengths.

2.2 The g-MARS Algorithm

¢-MARS takes a set of training data TrDB and a gap parameter g as the input.
For each protein in TrDB, g-MARS builds a g-gap markov chain. The associated
vector for this chain has (g + 1) * 20 * 20 dimensions (unlike the k2° dimensions
for the Spectrum kernel[IT]). This is because there are 20 % 20 possible amino
acid pairs and we need to consider transitions with gap up to g for for each
pair. In practice, we can easily set g to be as large as 10 and not incur dimen-
sionality overload in classification. The markov chains for proteins from TrDBp
and TrDB_p are passed as input to an SVM and it builds a classification model
using these inputs. Any kernels available for the traditional SVM can be used,
such as linear and RBF kernels. Building a g-gap markov chain for a set of n
proteins requires O(n* g=1) time, where [ is the average length of the n proteins.
The training time for g-MARS is the markov chain building time plus the SVM
training time. Given a testing protein, the same g-gap markov chain is computed
and passed to the SVM and it makes the classification decision is made by the
SVM. The testing time for a length [ protein in g-MARS is the markov chain
building time(O(g x 1)) plus the SVM prediction time.

Although the discussion above is for the binary-class classification problem, g-
MARS can be easily generalized to handle the multi-class classification problem.
We turn the m-class classification problem into m reduced binary-class classifi-
cation problems. Each time we pick one class out from the m classes as T' and
merge all the rest of the proteins as —7'. In this way, way we build m SVMs, one
for each target class. Given a testing protein, if there is an SVM classifying it to
its target class, we classify it to that class. If more than one SVM classifies it to
their target class, we classify it to the class with the highest score.

3 Experimental Results

Datasets. In order to test the general performance of g-MARS, we choose sev-
eral different benchmark datasets, which cover a diverse range of characteristics.
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The first set of data is chosen from PSORTbD [4]. It contains proteins from dif-
ferent localizations of the bacteria. We pick out the proteins from the outer
membrane of the Gram negative as the positive class and merge the proteins
from the inner membrane, cytoplasmic and extra-cellular of the Gram negative
as the negative class. Part of this data was used to evaluate the classifiers built
on frequent substring patterns [I3IT5]. The positive class contains 352 proteins
and the negative class contains 1013 proteins. The second set of data is proteins
from different subcellular localizations from the Proteome Analyst Project [12].
We choose the proteins from the extracellular localization (127 proteins) as the
positive class and the proteins from the intracellular localization as the negative
class (3166 proteins). The third set of data is the outer membrane proteins ver-
sus the globular proteins which was used to evaluate the classifier built on amino
acid compositions [6]. It contains 377 proteins from bacterial outer membrane
and 674 Globular proteins.

The fourth set of data uses the G Protein-Coupled Receptor (GPCR) [2], the
biggest known protein family. The GPCR database contains five level-0 GPCR
classes (level-0 subfamilies). The largest subfamily is the Class A Rhodopsin like
subfamily. It can be further divided into 16 level 1 subfamilies and more level 2
subfamilies. Classifiers have been developed to classify GPCR proteins from non-
GPCR ones, the GPCR proteins from level 1 subfamilies, as well as the GPCR
proteins from level 2 subfamilies [2]. We perform two experiments on this data.
For the first experiment, we try to classify proteins from the level-0 subfamilies.
Besides the five GPCR level-0 subfamilies, we add a non-GPCR family in order
to test the ability for g-MARS to separate the GPCR proteins from non-GPCR
ones. All six families can be obtained from http://www.gpcr.org [5]. For the sec-
ond experiment, we try to classify proteins from the level 2 subfamilies. We
select 4 level-2 subfamilies belonging to the Amine subfamily under level-0 sub-
family Class A Rhodopsin like, namely, acetylcholine, adrenoceptors, dopamine
and serotonin. These two experiments are multi-class classification problems.
The specification of all the five experiments is listed in Tables [l and

Algorithms. We compare the accuracy of g-MARS against several algorithms:
i) the spectrum kernel [IT](Spectrum for short), which has been claimed to be
better than Fisher kernel [I1], ii) an amino acid composition classifier [6](AAC
for short), iii) an amino acid pair composition with gap constraints classifier
[B](AAPC for short), iv) simple markov chain classifier [3](MC for short), v) Fre-
quent Substring Pattern based SVM [I5](FS for short), vi) Generalised markov
model (GMM [I4]). The reasons for choosing these algorithms are: 1.g-MARS,
AAPC and FS are all SVM-based hybrid algorithms. The difference between
them is the way they ”translate” sequences into vectors. 2.Spectrum is a famous
protein classifier which makes use of the SVM and self-defined kernel function.
3.The AAC, GMM and MC methods are not based on support vector machines.
They simply sum up the scores computed in each way up to make decisions.
They are simple, well-known methods. We implemented all algorithms in Java
using JDK version 1.4. All the experiments were conducted on a UNIX system
with a 3.0GHz CPU and 1.5GB memory. We used the LIBSVM [I] Java package.
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Table 1. G Protein-Coupled Receptor dataset list

Subfamily #protein % of Dataset
Class A Rhodopsin like 1884 69.4%
Amine
Acetylcholine 66 15%
Adrenoceptors 120 27.3%
Dopamine 94 21.4%
Serotonin 159 36.2%
Class B Secretin like 309 11.4%
Class C Metabotropic glutamate/
pheromone 206 7.6%
Class D Fungal pheromone 65 2.4%
Class E cAMP receptors 10 0.4%
Class F Frizzled/Smoothened
family 130 4.8%
Class Z Archaeal/bacterial/
fungal opsins(Non-GPCR) 110 4.1%
Total 2714 100%

Table 2. Binary-class classification dataset list

Dataset Description # Protein % of Dataset
D -D D -D D -D
Outer Membrane Inner Membrane, Extra- 352 1013 25.8% 74.2%
Proteins (OMP)* cellular, Cytoplasm
Extracellular pro- Intracellular proteins 127 3166 3.9% 96.1%
teins
Outer Membrane Globular proteins 377 674 35.9% 64.1%
Proteins (OMP)*

MC required no parameter settings. For the Spectrum kernel, we used k = 3.
For g-MARS, AAC and AAPC, for each dataset we used the gap that gave the
best average performance (according to f-measure, see below), using 5-fold cross
validation with a verification dataset (a subset of the training data whose class
labels are known to the classifiers, but which is not used in training). For the
FS algorithm we mined the frequent substring patterns from the target class
having minimum length as 3, minimum support as either 0.1% or 3 (whichever
is greater) and minimum confidence of 90% [I5]. For g¢-MARS, FS and AAPC,
we used the RBF kernel. The gamma and cost parameters for this kernel were
chosen using the tool in the LIBSVM package [I]. For ¢g-MARS, one can use
gamma as 0.0078125 and cost as 32.0 or 2048.0 to expect generally good per-
formance. For GMM, we tested the three configurations provided by the authors.
The first of these (standard single item 6th order Markov model) produced the
best results in all datasets and we list its performance in the tables.
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Table 3. Results of the three binary-class experiments

OMP vs. Inn+Ext+Cyt Extra vs. Intra OMP vs. Globular
Alg. A%* P% [R% |F% ||[A% |P% |R% |F% ||[A% |P% |R% |F%
2-MARS [[95.16(94.97(85.8 [90.15|(98.66(93.68|70.08|80.18/|96.76|95.98|94.96|95.47
Spectrum|{94.36(92.83(84.66|88.56(98.15(92.31|56.69|70.24|/95.62|95.59(|92.04|93.78
FS 90.04(79.35(82.95|81.11|[98  |95.52|50.39|65.98|/91.53|82.88/|96.29|89.08
AAC 78.38|51.49(78.69|62.25(|88.59(18.64|58.27(28.24|/80.02|67.88|84.08|75.12
AAPC (|95.6 [94.24(88.35(91.2 |(98.45(93.18|64.57|76.28|92.86|85.78|96.02|90.61
MC 82.49(61.06|88.64(72.31({94.02|36.74|76.38|49.62(/86.77(76.44|91.25|83.19
GMM  ([34.10(42.74(100 |59.89|(97.40|65.20|39.40|36.25|/90.00|88.55|77.34|82.27
x A: accuracy, P: precision, R: recall, F: f-measure.

Evaluation. In order to give a comprehensive analysis of how good the classi-
fiers are, we use 4 metrics accuracy (a), precision (p), recall (r) and f-measure (f)

Zs~: [{tc TeDB|t.pe=t.c}| _ {tcTeDBr|t.pe=T}|
| TeDB, ; P= |qcTeDBjt.pe=T}|
_ [{tcTeDBr|t.pe=T}| . f= 2spr
B {tcTeDBr} - (ptr)”

For multi-class classification, a different overall accuracy measurement is used:
[{tcTeDBr, |t.pc=t.c}|

a= ZTi \TeDB, . The accuracy for each target class T; is calculated
as: a; = ¢ TeDBr,|t.p =t The accuracy measurement tells how many pro-
|TeDBr,|

teins are classified correctly overall. For the rare-class classification case, preci-
sion and recall are more meaningful. When comparing algorithms, the f measure
is a standard way of combining precision and recall to get a single measure. We
used stratified 5-fold cross validation for testing.

Performance on binary-class data. The accuracies of the five algorithms
on the 3 binary-class classification problems are listed in Table Bl g-MARS per-
forms strongly for the first set of data, the outer membrane proteins vs. the inner
membrane, extracellular and the cytoplasm proteins. In this set the amino acid
pair composition algorithm works quite well. g-MARS gives generally good per-
formances on all the datasets, because the discriminative information of markov
chains in g¢-MARS does not rely on any particular property of proteins being in
specific domains. The MC classifier given in the last row uses the log odd ratio
score to classify the proteins [3]. The performance tells that simply adding up
the score ratios from different classes does not give good answers. This partly
shows the superiority of using the SVM to make the decisions.

Performance on GPCR subfamilies. The classification results for the GPCR
level-2 and level-0 subfamilies are given in Tables @] and [l respectively. The
diversities of subfamilies are greater for level-0 proteins than for level-2 proteins.
That is the reason why generally we gain better results for level-2 proteins.
There are certain subfamilies in level-0 that are easily separated from other
subfamilies such as Class E cAMP receptors. Most of the classifiers do not make
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Table 4. The accuracy (%) of the GPCR level 2 subfamilies prediction

Level-2 Subfam- g¢-MARS Spectrum FS AAC AAPC MC GMM
ily

Acetylcholine 100 95.45 95.45  87.88 93.93 9545 85.52
Adrenoceptors 100 100 100 62.5 100 95.83 83.67
Dopamine 98.93 95.74 94.68 76.6 85.11 85.11 80.21
Serotonin 98.11 100 97.48  77.99 9497 94.34 75.48

Table 5. The accuracy (%) of the GPCR level 0 subfamilies prediction.

Level-0 Subfamily \ g-MARS Spectrum FS AAC AAPC MC GMM
Class A Rhodopsin like 99.84  99.52 98.57 178.66 99.73 91.77 77.93
Class B Secretin like 99.38  98.06 9547 60.2 9546 96.12 94.00

Class C Metabotropic gluta-|98.06  95.15 91.26 76.21 97.09 93.69 82.70
mate/pheromone
Class D Fungal pheromone [89.23 86.15 81.54 89.23 83.07 95.38 76.20

Class E cAMP receptors 100 100 100 90 90 100  83.00
Class F Frizzled/Smoothen-|98.46  97.69 96.15 93.85 92.31 90.77 85.53
ed family

Class Z Archaeal/bacterial|96.36 ~ 94.55 86.36 92.73 92.73 95.45 90.12
/fungal opsins (non-GPCR)

mistakes for proteins from this family. By looking at this family we know that the
structures of the proteins within this family are quite different from proteins of
other families. Some proteins contain long contiguous asparagine and histidine.
The performances for most classifiers are quite good for identifying which protein
belongs to Class A Rhodopsin like subfamily (Hight percentages in the first row of
Table[). This is due to the abundant proteins of this family. So as an observation
about Table[Bl we can say that for the classifiers tested here, having more testing
data means a more accurate the model can be built. The more distinctive the
data is, the easier it is for the model to make correct decision. This is generally
true for most feature-based classifiers. From both the tables we can also see that
g-MARS performs generally better than all the other classifiers.

T-test. We conducted t-tests with a 95% confidence on the results. g¢-MARS
wins 16 times, draws 9 times and loses 0 times. The Spectrum ranks the second
best with 11 wins, 14 draws and 1 loses. The third best algorithm is the AAPC
and the performance is 8 times winning, 14 times drawing and 3 times losing.
From a statistical point of view, g-MARS wins the most which means it performs
generally the best. Comparing directly against the Spectrum, g-MARS wins on
1 dataset and on the rest draws. It’s running time is generally at least 10% faster
than the Spectrum, even for high gaps.

How to choose the proper gap. The gap can be chosen by performing cross
validation on the training dataset. Set aside a portion of training data as test
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Fig. 1. g-MARS performance for varying gap on OMP vs. Inner, Extra, Cytoplasm
dataset

data, try different gaps and choose the one which yields best accuracy. We can
also make some general remarks about gap behaviour. Figure[llshows the change
in accuracy for g-MARS with various gaps. For gap 0, which is the case in the
traditional markov chain, the performance is poor. With the increase of the gap,
overall performance becomes stable. The f-measure achieves its peak value when
the gap is set to 11. So instead of using cross validation, one could also begin
by using the gap as 7 and then increase and decrease the gap from this value,
finishing when the result remains stable (changes are smaller than a certain 6).

Running time. For classifiers working on large volumes of data, time efficiency is
an important factor. We discussed the time complexity of g-MARS in Section[2:2
We also measured the running time for g-MARS on the OMP vs. Inner, Extra and
Cytoplasm dataset with various gaps. The time includes the time 5-fold cross val-
idation. and increases roughly linearly with the increment of the gap. For gap as
0, the executable time is less than 25 seconds and for the largest gap it only takes
slightly more than 350 seconds, which is quite acceptable.

4 Conclusion and Future Work

In this paper we have extended the traditional markov chain to the gapped
markov chain. We proposed the g-MARS classifier, which uses gapped markov
chains and support vector machines to classify proteins. Compared to other
work, it has the following merits: It is computationally efficient and can han-
dle large volumes of proteins. It does not need prior knowledge to achieve good
performance and can be generalized to any sequence classification problem. The
growth of the gap length increases the dimension of the vectors linearly rather
than exponentially like the Spectrum kernel, so it is realistic to use large gaps.
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Experimental results show it has generally superior accuracy for a range of pro-
tein datasets with diverse characteristics. Overall, g-MARS is a very practical
algorithm to handle protein classification.
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Abstract. The protein-protein interactions (PPIs) are generally assumed
to be mediated by domain-domain interactions (DDIs). Many computa-
tional methods have been proposed based on this assumption to predict
DDIs from available data of PPIs. However, most of the existing methods
are generative methods that consider only PPI data without taking into ac-
count non-PPIs. In this paper, we propose a novel discriminative method
for predicting DDIs from both PPIs and non-PPIs, which improves the pre-
diction reliability. In particular, the DDI identification is formalized as a
feature selection problem, which is equivalent to the parsimonious prin-
ciple and is able to predict both DDIs and PPIs in a systematic and ac-
curate manner. The numerical results on benchmark dataset demonstrate
that formulating DDI prediction as a feature selection problem can predict
DDIs from PPIs in a reliable way, which in turn is able to verify and further
predict PPIs based on inferred DDIs.

Keywords: Discriminative approach, domain-domain interaction, fea-
ture selection, protein-protein interaction.

1 Introduction

Proteins exert their functions by interacting with each other [I]. Generally, one pro-
tein interacts with its partner by binding one of its domains to the domain(s) in its
target protein. In other words, proteins interact with each other through domain-
domain interactions (DDIs) [2] [B]. Recently, many computational methods have
been proposed to identify domain interactions from protein interactions. For ex-
ample, Sprinzak and Margalit [4] proposed the Association method for predicting
domain interactions based on the frequency of observed protein interactions that
contain the pair of domains. Deng et al. [b] presented a maximum likelihood esti-
mation (MLE) method as well as an Expectation-Maximization (EM) algorithm
to infer underlying domain interactions from protein interactions. Liu et al. [6]
combined protein interactions from multiple species to identify interacting domain
pairs. Riley et al. [[7] developed a new method, namely Domain Pair Exclusion
Analysis (DPEA), to predict domain interactions based on all of the protein in-
teractions from Database of Interacting Proteins (DIP) [8], where a new score,
i.e. E~value, is developed to assess the contribution of each possible domain pair
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© Springer-Verlag Berlin Heidelberg 2008
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to the likelihood of a set of observed protein interactions. It is shown that the
DPEA method outperforms both MLE [5] and Association method [4]. Recently,
Guimaries et al. [9] developed a linear programming model, namely Parsimonious
Explanation (PE), to predict domain interactions based on the parsimonious prin-
ciple with the assumption that a given set of protein-protein interactions are ac-
complished through the minimal set of domain interactions. The PE method is
shown to outperform DPEA [7], Association [4] and MLE [5] based on numeri-
cal simulations. Moreover, Lee et al. [I0] developed a Bayesian approach to pre-
dict high confidence domain interactions based on the integration of multiple data
sources from multiple species, where the integration of multiple data sources sig-
nificantly improves the prediction accuracy compared with single data source anal-
ysis.

The methods described above assume that protein interactions are mediated
by domain-domain interactions, and they try to identify the DDIs underlying the
PPIs. Despite the success on specific datasets, most of the existing computational
methods are generative methods, where a model is constructed based on the
protein-protein interaction data with the assumption that proteins interact with
each other through domain-domain interactions. However, the existing methods
use only available data of PPIs without the consideration of the non-PPIs, which
may result in imbalance problem of information [I1] [12]. Since the proteins are
assumed to interact through domain interactions, domain pairs occurring in the
non-PPIs are more likely false DDIs [7]. Therefore, the non-PPI data can provide
insight into the domain interaction.

In this paper, we proposed a novel discriminative approach, namely domain
interaction prediction in a discriminative way (DIDD), to predict domain in-
teractions based on protein interactions. Different from the existing methods,
both PPIs and non-PPIs are considered in DIDD, thereby not only alleviating
the imbalance problem of information but also improving prediction accuracy.
In particular, DDI prediction is formulated as a feature selection problem in ma-
chine learning, which is in consistent with parsimonious principle that protein
interactions are accomplished through the minimum set of domain interactions.
In feature selection, the possible domain pairs are assessed according to their
contributions to the discrimination between PPIs and non-PPIs. The proposed
method is able to predict DDIs based on PPIs, which in turn can predict and
verify PPIs based on the inferred DDIs, i.e. selected features in this case. The
numerical results on benchmark datasets demonstrate the effectiveness and effi-
ciency of the proposed method.

The rest of the paper is organized as follows: Section 2 describes the meth-
ods that are proposed for identifying DDIs from PPIs; Section 3 presents the
numerical results on benchmark dataset; The conclusions are drawn finally.

2 Methods

The idea behind DDI identification in PPIs is that PPIs are mediated by DDIs.
Therefore, the domain pairs that best discriminate PPIs and non-PPIs are more
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likely the true DDIs. The PE [J] method assumes that the given protein interac-
tions can be approximately accomplished by the minimum set of domain-domain
interactions, which is in consistent with the idea behind feature selection that
tries to find out as few informative features (e.g. DDIs) as possible for classifica-
tion (e.g. discrimination between PPIs and non-PPIs). However, feature selection
works in a discriminative way that take into account non-PPIs. Therefore, higher
prediction accuracy is expected.

2.1 Feature Vector Construction

The discrimination between PPIs and non-PPIs is actually a binary classification
problem. To utilize the discriminative methods, the positive samples (i.e. PPIs)
and negative samples (i.e. non-PPIs) should be represented as feature vectors. In
this work, each sample is a protein pair (either interacting pair or non-interacting
pair) and is represented as a vector. The positive samples are PPIs from protein
interaction database, whereas the negative samples are protein pairs that are ran-
domly generated except the known PPIs. The rationality behind the method gen-
erating negative samples is that only one out of six hundred randomly generated
protein pairs is possibly the true PPI, and this method has also been employed
widely in the literature [I3] [14]. For the PPIs, all the possible combinations of
two domains are found and kept in order, where each domain pair exists in at
least one interacting protein pair. After getting all the domain pairs, each sample
is represented as a feature vector, where the feature value is 1 if the corresponding
domain pair occurs in the sample and otherwise 0.

2.2 Classifier

After constructing the feature vectors, we need to design classifier to discrimi-
nate the PPIs from non-PPIs. It can be seen that the vectors generated above
have following properties: 1) sparse content, i.e. most of the feature values are
0; 2) high dimension due to the large number of possible combinations among
domains; 3) few positive samples but large number of negative smaples. There-
fore, the conventional classifiers such as Support Vector Machines and Nearest
neighbor classifier cannot be used here.

In this paper, we designed a simple classifier to discriminate PPIs from non-
PPIs based on the specific data structure and the assumption that DDIs mediate
PPIs. For a given protein pair vector x;, the class label y; corresponding to it

can be defined as:

1, if x> 1,

v = 2 i 1)

—1, otherwise,
where x;; is the value of the jth feature in the ith sample. The idea behind the
classifier is that if the domain combination corresponding to z;; is the true DDI
and the protein pair x; contains the domain combination (i.e. z;; = 1 in this
case), then the protein pair x; is an interacting pair and y; = 1 accordingly.
Since the classifier does not involve any model training procedure, there is not
any problem of overfitting.
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2.3 Feature Selection

Given a set of PPIs and non-PPIs, we want to find out which domain combina-
tions mediate the PPIs, i.e. the putative DDIs. With the constructed vectors and
the assumption that PPIs are mediated by DDIs, we can formulate DDI predic-
tion as a feature selection problem. In feature selection, the purpose is to find
out as few informative features as possible to build a reliable and accurate learn-
ing model. In this case, feature selection aims to find out the domain pairs that
discriminate PPIs from non-PPIs. It can be seen that the idea behind feature
selection is equivelant to the parsimonious principle that the domain-domain
interactions are well approximated by the minimum set of DDIs mediating the
given set of PPIs [9]. However, non-PPIs are also taken into account in this work.
The domain pairs kept in feature selection are assumed to be the putative DDIs.

Considering the specific data structure and imbalance between positive and
negative samples, the unbalanced correlation score proposed in [I5] is utilized to
rank the features, which is defined as:

Sj = Z‘Tij—A Z Lij (2)

yi=1 yi=—1

where s; is the score for the jth feature, y; is the label for sample x;, x;; is the
value for the jth feature in vector x;, and A is a penalty parameter to punish the
occurrance of the feature in negative samples. Generally, a large value is adopted
for A, e.g. A = 5 in this work. The higher the score s; is, the higher feature j
is ranked. The idea behind the method is that the more frequently the feature
occurs in positive samples and less in negative samples, the more informative it
is, thereby more likely true DDIs.

2.4 Performance Evaluation

To see the performance of the classifier, the following measures are adopted in
this work, including precision, recall, F'1-measure:

recision = e (3)
b T TP+ FP
TP
= 4
reca TP+ FN (4)

Fl— 2 x prcim.'sion x recall (5)
precision + recall
where T'P means the number of positive samples that are predicted correctly, F'IV
means the number of positive samples that are predicted as negative samples,
F' P means the number of negative samples that are predicted as positive samples,
and F'P means the number of negative samples that are predicted correctly.
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3 Results and Discussion

To test the performance of the proposed method, the DIDD method was applied
to predict DDIs based on a set of protein-protein interactions from 69 organisms,
which was constructed by Riley and colleagues [7]. This dataset is denoted as
“Riley test set” here, and was also used by the PE method [9]. The Riley test set
contains all the protein interactions from DIP database [§], and domains were
assigned to proteins by employing the Pfam hidden markov model profiles [16].
Note that only Pfam-A domains were assigned to the proteins here. Table [T lists
the datasets used in this work, where PPI denotes protein-protein interactions,
DDI denotes domain-domain interactions, proteins are proteins involved in PPIs,
and number represents the number of PPIs, non-PPIs, proteins and potential
DDIs used in this work.

Table 1. The datasets used in this work

PPIs non-PPIs Proteins Potential DDIs
Number 26,032 11,651,400 11,403 27,617

The DIDD method was first applied to predict the DIP protein interactions
by selecting informative features (i.e. domain pairs), where the unbalanced cor-
relation score [I5] was employed in feature selection. This procedure continues
until the prediction accuracy does not improve any more. Consequently, the do-
main pairs corresponding to the selected features were seen as putative DDIs.
With the iPfam dataset as the gold standard, we compared DIDD with previous
methods, i.e. DPEA and PE methods, with respect to precision and recall, where
the results by PE are those predicted with PPI reliability of 50% and pw-score
< 0.01, and the top 3005 predictions by DPEA are seen as its predictions. For
fair comparison, only the predictions by PE and DPEA that involve Pfam-A
domains are considered. In particular, we investigated the number of difficult
predictions by different methods as described in [9] and [7], where the necessity
of assessing predictions with respect to the difficulty has been justified in [7]. In
this work, the definition of difficult prediction described in [9] was adopted to
validate the proposed method, and a DDI is assumed to be difficult to predict if
the domain pair is not contained in any single-domain interacting protein pair.
Table [ summarizes the prediction results by different methods on this dataset.
From the results, we can see that the DIDD method outperforms the other two
methods. Especially, DIDD can predict more difficult tasks compared with other
two methods. The results clearly demonstrate the prediction power of the pro-
posed method especially on difficult gold standard pairs, and thereby is a good
complement to existing methods. Furthermore, the results also demonstrate that
the non-PPIs can really help to improve the prediction accuracy.

In addition, to test the performance of DIDD, the datasets from DOMINE [17]
database were employed to test how much of our predictions can be validated by
at least one other existing computational method. DOMINE is a database that
contains known and predicted domain interactions, including DDIs from 3DID
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Table 2. Comparison of different methods on DDI prediction based on Riley test set

method precision recall difficult predictions

DPEA 10.21% 23.63% 5
PE 12.21% 29.63% 5
DIDD  20.80% 29.76% 157

Table 3. Comparison of various methods on Riley test set, where percentage means the
percentage of predictions that can be validated by at least one other existing method.

Methods DIDD DPEA+PE RCDP Bayesian
Percentage 50.71%  23.80%  39.60% 41.50%

Table 4. Performance of various methods in predicting PPIs based on inferred DDIs
for the Riley test set

Methods precision recall F1

DIDD  100.00% 6.07% 11.44%
DPEA 3.30% 16.24% 5.48%
PE 3.68% 19.19% 6.17%

[18], iPfam [19] and those predicted by different computational approaches. In
this example, the DIDD method was compared against DPEA [7], PE [9], RCDP
[20] and Bayesian approach [I0]. Table [3 shows the comparison of various meth-
ods on how much of their prediction can be validated by at least one other
existing computational method, where the statistics of the other methods are
from the DOMINE database [I7]. From the results, we can see that most of our
predictions have been validated by at least one other computational method and
has higher prediction accuracy compared with other methods, which confirms
the efficiency and effectiveness of DIDD. In the DOMINE [I7] database, each
predicted or known DDI is associated with a confidence score. To see the perfor-
mance of DIDD, we further investigated how much of the our predictions have
high confidence scores. Figure [Il shows the distribution of confidence scores for
the predictions by DIDD, where we can see that a relatively small number of our
predictions have low confidence scores, which clearly demonstrate the prediction
power of DIDD.

In addition, to validate the predicted DDIs by the proposed method, we pre-
dicted PPIs based on the inferred DDIs. In addition, DIDD was compared against
PE and DPEA in predicting PPIs based on the inferred DDIs to test the predicted
DDIs. In this work, the classifier and samples (i.e PPIs and non-PPIs) used by
DIDD were employed to test the predicted DDIs by PE [9] and DPEA [7], where
the inferred DDIs were treated as the selected features as described in Methods.
Table @l shows the comparison of performance of various methods in predicting
PPIs based on inferred DDIs. From Table], it can be seen that the proposed DIDD
method outperforms other existing methods in discriminating the PPIs and non-
PPIs based on inferred DDIs. The DIDD method got high precision means that
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Prediction results validated in DOMINE

Low Confidence
High Confidence

Medium Confidence

Fig. 1. Distribution of confidence scores for the predictions by DIDD on Riley test set

most of its predictions are true DDIs, while a low recall means that DIDD only pre-
dict a small number of domain pairs as domain interactions. The results demon-
strate that the DDIs predicted by DIDD are more possibly the true DDIs that
mediate PPIs compared against other existing methods, which confirms the effec-
tiveness and efficiency of DIDD in predicting DDIs from PPIs. Furthermore, the
DIDD can also validate and predict PPIs based on the inferred DDIs.

4 Conclusions

Understanding PPIs at domain level can provide insight into protein function
and evolutionary history of PPIs. In this paper, a novel method, namely domain
interaction prediction in a discriminative way (DIDD), is presented for predicting
DDIs from data of available PPIs. Unlike existing methods, DIDD considers both
PPIs and non-PPIs. Since PPIs are typically assumed to be mediated by DDIs,
the domain combinations occurring in the non-PPIs are more possibly false DDIs.
Therefore, higher prediction accuracy is expected for DIDD by taking non-PPIs
into account. In particular, in this work, DDI prediction is formalized as feature
selection, which is in consistent with parsimonious principle that DDIs can be
approximated by the minimum set of DDIs that mediate the given PPIs [9].
By selecting the informative features, DIDD can predict those DDIs that really
mediate the given PPIs, and in turn help to verify and predict PPIs based on
the inferred DDIs. The results on benchmark data prove the predictive power
of our method. In addition, the overlap between the predictions by DIDD and
published results demonstrate the effectiveness and efficiency of the proposed
method.
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Abstract. The increasing growth of data on protein-protein interaction
(PPI) networks has boosted research on their comparative analysis. In
particular, recent studies proposed models and algorithms for perform-
ing network alignment, the comparison of networks across species for
discovering conserved modules. Common approaches for this task con-
struct a merged representation of the considered networks, called align-
ment graph, and search the alignment graph for conserved networks of
interest using greedy techniques. In this paper we propose a modular ap-
proach to this task. First, each network to be compared is divided into
small subnets which are likely to contain conserved modules. To this
aim, we develop an algorithm for dividing PPI networks that combines
a graph theoretical property(articulation) with a biological one (orthol-
ogy). Next, network alignment is performed on pairs of resulting subnets
from different species. We tackle this task by means of a state-of-the-art
alignment graph model for constructing alignment graphs, and an exact
algorithm for searching in the alignment graph. Results of experiments
show the ability of this approach to discover accurate conserved mod-
ules, and substantiate the importance of the notions of orthology and
articulation for performing comparative network analysis in a modular
fashion.

Keywords: Protein network dividing, modular network alignment.

1 Introduction

With the exponential increase of data on protein interactions obtained from
advanced technologies, data on thousands of interactions in human and most
model species have become available (e.g. [1l2]). PPI networks offer a powerful
representation for better understanding modular organization of cells, for pre-
dicting biological functions and for providing insight into a variety of biochemical
processes.

Recent studies consider a comparative approach for the analysis of PPI net-
works from different species in order to discover common protein groups which
are likely to be related to shared relevant functional modules [3I4/5].
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This problem is also known as pairwise network alignment. Algorithms for
this task typically construct a merged graph representation of the networks to
be compared, called alignment (or orthology) graph, and model the problem as
an optimization problem on such graph. Due to the computational intractability
of such optimization problem, greedy algorithms are commonly used [GI7IS9IT0].

1.1 Problem Statement

Conserved modules, discovered by computational techniques such as [0], have
in general small size compared to the size of the PPI network they belong to.
Moreover, PPI networks are known to have a scale-free topology where most
proteins participate in a small number of interaction while a few proteins, called
hubs, contains a high number of interaction. As indicated by recent studies,
hubs whose removal disconnects the PPI network (articulation hubs) are likely
to appear in conserved interaction patterns [ITIT2]. These observations motivate
the focus of this paper on the problem of performing modular network alignment.
Specifically, we propose a two phases approach for this task: divide and align.
The divide phase transforms each PPI network into a set of small subnets which
are expected to cover conserved complexes. The align phase uses an existing
evolution-based alignment graph model to merge suitable pairs of subnets from
each species, and an exact search technique for extracting conserved modules
from each alignment graph.

1.2 Contributions

We introduce an heuristic algorithm for dividing a PPI network into subnets,
which combines biological (orthology) and graph theoretical (articulation) infor-
mation. The algorithm starts by identifying groups of orthologous articulations,
called centers, which are expanded into subsets consisting of orthologous nodes.

The algorithm automatically determines the number of subsets and has the
property of being parameterless.

We use this algorithm for performing network alignment, by merging pairs
of resulting subnets from different species, and applying exact optimization for
searching conserved modules across species. We introduce a new notion, modu-
lar alignment, because we align only particular PPI subnets achieving conserved
modules inside of them while current methods of global or local network align-
ment try to align whole PPI networks.

In order to test the performance of this approach, we consider an instance of
the method that uses a state-of-the-art evolution-based alignment graph model
[6]. Results of experiments show effectiveness of the proposed approach, which is
capable of detecting accurate conserved complexes. Furthermore, we show that
improved performance can be achieved by merging modules detected with our
algorithm with those identified by Koyuturk et al. algorithm [6]. In general,
these results substantiate the important role of the notions of orthology and
articulation in modular comparative PPI network analysis.
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1.3 Related Work

Recent overviews of approaches and issues in comparative biological networks
analysis are presented in [4l5]. Based on the general formulation of network
alignment proposed in [3], a number of techniques for (local and global) network
alignment have been introduced [GI7ISQITOIT3].

Techniques for local network alignment commonly construct an orthology
graph, which provides a merged representation of the given PPI networks, and
search for conserved subnets using greedy techniques [GI7I8I9IT0].

While the above algorithms focus on alignment of whole global networks, we
focus on 'modular’ network alignment. Modular network alignment is an align-
ment of particular subnets of given networks to be compared. To the best of our
knowledge, we propose the first algorithm which directly tackles the modularity
issue in network alignment in the meaning that dividing step achieves conserved
modules inside of particular subnets and therefore one can perform only modular
alignment for local network alignment problem.

Many papers have investigated the importance of hubs in PPI networks and
functional groups [T2[T4ITHITETTITS|. In particular, it has been shown that hubs
with a central role in the network architecture are three times more likely to
be essential than proteins with only a small number of links to other proteins
[16]. Moreover, if we take functional groups in PPI networks, then, amongst
all functional groups, cellular organization proteins have the largest presence
in hubs whose removal disconnects the network [I2]. Computational techniques
for identifying functional modules in PPI networks generally search for clusters
of proteins forming dense components [T9J20]. The scale-free topology of PPI
networks makes difficult to isolate modules hidden inside the central core [21].
In [22] several multi-level graph partitioning algorithms are described addressing
the difficulty of partitioning scale-free graphs.

The approach we propose differs from the above mentioned works because
it does not address (directly) the problem of identifying functional modules in
a PPI network, but uses homology information and articulations for dividing
PPI networks into subnets in order to perform network alignment in a modular
fashion.

2 Graph Theoretic Background

Given a graph G = (U, E), nodes joined by an edge are called adjacent. A
neighbor of a node u is a node adjacent to u. The degree of u is the number of
elements in E containing the vertex u.

Let G(U, E) be a connected undirected graph. A vertex u € U is called artic-
ulation if the graph resulting by removing this vertex from G and all its edges,
is not connected.

A tree is a connected graph not containing any circle. A tree is called rooted
tree if one vertex of the tree has been designated as the root. Given a rooted tree
T(V,F), the depth of a vertex v € V is the number of edges from the root to
v without repetition of edges. Leaves of the tree T" are vertices which have only
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Spanning tree Centered tree

Fig. 1. Examples of spanning and centered tree in the same graph. The dark grey
node in the left figure represents a root. Dark grey nodes in the right figure represent a
center. Numbers indicate depths of nodes in trees. Solid edges are edges of a spanning
tree. Dash edges are other edges of the graph.

one neighbor. The depth of a tree is the highest depth of its leaves. A spanning
tree T(V, F') of a connected undirected graph G(U, E) is a tree where V = U
and FF C F.

Given an edge-weighted (or node-weighted) graph G(U, E) with a scoring
function w:e € E — R (or w:u € U — RN). Total weight w(G) of G is the sum
of weights of all edges (or nodes) in the graph:

w(G) =" wle) (or w(@) =Y wlu)).

VecE VueU

Suppose a connected undirected graph G(U, F') and a vertex u € U are given.
Let N(u) a set of all neighbors of w and N’(u) C N(u) be. A center of u is the
set C(u) = N'(u) U {u}.

Observe that a center can be expanded to a spanning tree of G(U, E). More-
over, the center as an initial set of expansion can be consider as a root if we
merge all vertices of center to one node. Such spanning tree created from a cen-
ter, called centered tree, has zero depth all vertices of center and the vertices of
i- depth are new nodes added in ith iteration of expansion to the spanning tree.
Therefore a centered tree , can be generated as follows:

— The 0-depth of the centered tree is the center
— The i-th depth of the centred tree consists of all neighbors of (i —1)-th depth
which are not yet in any lower depth of the centered tree yet.

Examples of a spanning and centered tree are on Figure [l

A PPI network is represented by an undirected graph G(U, E). U denotes the
set of proteins and E denotes set of edges, where an edge uu’ € E represents
the interaction between v € U and «' € U. Given PPI networks G(U, E) and
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H(V,F). A vertex uw € U is orthologous if there exists at least one vertex v € V
such that uv is an orthologous pair. Orthologous articulation is an orthologous
vertex which is an articulation. An orthology path is a path containing only
orthologous vertices.

3 From Orthologous Articulations through Centers to
Trees

Given a PPI network G(U, E) and the set of vertices O C U, which are orthol-
ogous w.r.t. the vertices of the other PPI network to be compared with G. Let
n = |O|. We generate centers from orthologous articulations, and expand them
into centered subtrees containing only orthologous proteins. The resulting algo-
rithm, called Divide, is sketched in pseudo-code in Algorithm 1, and described
in more detail below.

Computing Articulations (Line 1). Computation of articulations can be per-
formed in linear time by using, e.g., Tarjan’s algorithm described in [23] or [24].

Greedy Construction of Centers (Lines 3-10). The degree (in G) of all or-
thologous articulations is then used for selecting seeds for the construction of
centers. Networks with scale-free topology appear to have edges between hubs
systematically suppressed, while those between a hub and a low-connected pro-
tein seem favored [25]. Guided by this observation, we greedily construct centers
by joining one orthologous articulation hub with its orthologous articulation
neighbors, which will more likely have low degree.

Specifically, let A be the set of orthologous articulations of G. The first cen-
ter consists of the element of A with highest degree and all its neighbors in A.
The other centers are generated iteratively by considering, at each iteration, the
element of A with highest degree among those which do not occur in any of
the centers constructed so far, together with all its neighbors in A which do not
already occur in any other center. The process terminates when all elements of A
are in at least one center. Then an unambiguous label is assigned to each center.

Initial Expansion (Lines 11-16). By construction, centers cover all orthologous
articulations. Articulation hubs are often present in conserved subnets detected
by means of comparative methods such as [6]. Therefore, assuming that the
majority of the remaining nodes belonging to conserved modules are neighbors
of articulation hubs, we add to each center all its neighboring ortholog proteins,
regardless whether they are or not articulations. We perform this step for all
centers in parallel.

We mark these new added proteins with the label of the centers to which they
have been added. These new added proteins form the first depth centered trees.

Observe that there may be a non-empty overlap between first depth centered
trees (as illustrated in the right part of Figure ().
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Fig. 2. Examples of centers of centered trees (left figure) and of their initial expansion
(right figure). Seeds of centers are solid nodes. Dark grey nodes are the rest of centers
connected to a seed by solid edges. Light grey nodes are orthologous proteins which are
not articulations. Empty nodes are non-orthologous proteins. Dot edges are the rest
of edges in the graph. In the second (right) graph dash edges indicate the expansion
and connect nodes of centers (zero depth centered trees) with nodes of the first depth
centered trees. Nodes on the grey background indicate the overlap among centered
trees.

Parallel Expanding of Trees (Lines 17-27). Successive depths of trees are
generated by expanding all nodes with only one label which occur in the last
depth of each (actual) centered tree. We add to the corresponding trees all
orthologous neighbors of these nodes which are not yet labelled. Then we assign
to the newly added nodes the labels of the centered trees they belong to. This
process is repeated until it is impossible to add unlabeled orthologous proteins
to at least one centered tree.

Observe that each iteration yields to possible overlap between newly created
depths (see the left part of Figure [).

Assigning Remaining Nodes to Trees (Lines 28-42). The remaining or-
thologous nodes, that is, those not yet labelled, are processed as follows. First,
unlabeled nodes which are neighbors of multi-labelled nodes are added to the
corresponding centered trees. Then the newly added nodes are marked with
these labels. This process is iterated until there are no unlabeled neighbors of
multi-labelled nodes.

Nodes which are not neighbors of any labelled protein are still unlabeled.
We assume that they may possibly be part of conserved complexes which do
not contain articulations. Hence we create new subtrees by joining together all
unlabeled orthologous neighbor proteins.

An example of these final steps is shown on the right part of Figure

Complexity. The algorithm divides only orthologs of a given PPI network where
the number of all orthologs is n = |O|. It performs a parallel breadth-first search
(BFS). It general, BFS has O(|V| + |E|) complexity, where V and E denote
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Fig. 3. Examples of parallel expansion of trees (left figure) and of the final assigning
remaining nodes (right figure). Seeds of centers are solid nodes. Dark grey nodes are
the rest of centers connected to a seed by solid edges. Light grey nodes are orthologous
proteins which are not articulations. Empty nodes are non-orthologous proteins. Dash
edges indicate the process of expansion. Dot edges are the rest of edges in the graph.
Nodes on the grey background create the overlap. Numbers are labels of trees assigned
to nodes during expansion.

the number of nodes and edges, respectively. However, Divide constructs trees
considering only orthologous nodes, so the number of edges, which are traversed,
is |O’| — 1, where |O’| is the number of orthologs vertices of the constructed
subtree. The possible overlap between trees can increase the number of traversed
edges and visited vertices. In the worse case all orthologous vertices are visited
by each center (all nodes are in the overlap). So, if the number of centers is k,
the complexity of Divide is O(kn).

4 Divide and Align Algorithm

The Divide algorithm divides orthologous proteins of the PPI network into over-
lapping subtrees. We separately apply this algorithm to each of the two PPI
networks from the distinct species to be compared. Nodes of each constructed
subtree induce a PPI subnetwork. Pairs of such induced subnetworks from dif-
ferent species are merged into small orthology graphs if at least two orthologous
pairs exist between proteins of those subnetworks.

To this aim we use a common approach, based on the construction of a
weighted metagraph between two PPI networks of different species. In this meta-
graph each node corresponds to an homologous pair of proteins, one from each
of the two PPI networks. The metagraph is called alignment or orthology graph.
Weights are assigned either to edges, like in [0], or to nodes, like in [7], of the
alignment graph using a scoring function. The function transforms conservation
and eventually also evolution information to one real value for each edge or node.

In our experiments we use the evolution-based alignment graph model intro-
duced in [6]. In that model, a weighted alignment graph is constructed from a
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Algorithm 1 Divide algorithm
Input: G: PPI network, O: orthologous nodes of G
Output: S: list of subsets of O

1: A = { orthologous articulations of G}

2: 8 =<>

3: repeat {Construction of centers}

4 root = element of A with highest degree not already occurring in S
5: s ={root} U { neighbors of root in A not already occurring in S}
6: S =<s,8>

7: until all members of A occur in S

8 d=0

9: Assign depth d to all elements of S
10: Assign label I to each s in S and to all its elements
11: for sin S do
12: s = sU{ all neighbors of s in O}
13:  Assign label s to all neighbors of s in O
14: end for
15: d=1
16: Assign depth d to all elements of S having yet no depth assigned
17: repeat {Expand one depth centered trees from nodes with one label}
18: N = { unlabeled neighbors in O of elements in s of depth d having only one label }
19:  for nin N do

20: Assign to n all labels of its neighbors of depth d having only one label
21: for ls € n do

22: s=sU{n}

23: end for

24:  end for

25: d=d+1

26:  Assign depth d to all elements of S having yet no depth assigned

27: until S does not change

28: repeat {Expand centered trees from nodes multiple labels}

29: R = { unlabeled proteins in O with at least one multi-labelled protein as neighbor }
30: for rin R do

31: Assign to r all labels of its neighbors
32: for I € r do

33: s=sU{r}

34: end for

35:  end for

36: until S does not change

37: repeat

38:  choose an unlabeled element u of O

39:  t = {u} U {all elements of O which can be reached alongside an orthology path from u}
40: Assign label I; to t and to all its elements

41: S=<t8>

42: until O does not contain any unlabeled node

pair of PPI networks and a similarity score S, which quantifies the likelihood
that two proteins are orthologous. A node in the alignment graph is a pair of
ortholog proteins. Each edge in the alignment graph is assigned a weight that is
the sum of three scoring terms: for protein duplication, mismatches for possible
divergence in function, and match of a conserved pair of orthologous interactions.
We refer to [0] for a detailed description of these terms. Induced subgraphs of
the resulting weighted alignment graph with total weight greater than a given
threshold are considered as relevant alignments. This problem is reduced to the
optimization problem of finding a maximal induced subgraph. In [6], an approx-
imation greedy algorithm based on local search is used because the maximum
induced subgraph problem is NP-complete. This greedy algorithm selects at first
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one seed which can likely contribute at most to the overall weight of a poten-
tial subgraph. Such seed is expanded by adding (removing) nodes to (from) the
subgraph while the actual subgraph weight increases.

In this study, after the diving step and aligning possible pairs of PPI subnet-
works a set of small alignment graphs is produced. We use exact optimization
[26] for searching in those graphs. We call the resulting algorithm DivA (Divide
and Align).

Finally, redundant alignments are filtered out as done, e.g., in [6]. A subgraph
(i1 is said to be redundant if there exists another subgraph G5 which contains %
of its nodes, where r is a threshold value that determines the extent of allowed
overlap between discovered protein complexes. In such a case we say that Gy is
redundant for Gs.

5 Experimental Results

In order to assess the performance of our approach, we use the state-of-the-art
framework for comparative network analysis proposed in [6], called MaWish. The
two following PPI networks, already compared in [0], are considered: Saccha-
romyces cerevisiae and Caenorhabditis elegans, which were obtained from BIND
[1] and DIP [2] molecular interaction databases. The corresponding networks
consist of 5157 proteins and 18192 interactions, and 3345 proteins and 5988 in-
teractions, respectively. All these data are available at the webpage of MawWisH.
Moreover, the data already contain the list of potential orthologous and paralo-
gous pairs, which are derived using BLAST E-values (for more details see [I1]).
2746 potential orthologous pairs created by 792 proteins in S. cerevisiae and 633
proteins in C. elegans are identified.

5.1 Divide Phase

Results of application of the Divide algorithm to these networks are summarized
as follows.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, and
83 centers are identified. Expansion of these centers into centered trees results
in 639 covered orthologs. The algorithm assigns the remaining 153 orthologous
proteins to 152 new subtrees.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, are com-
puted, and 112 centers are constructed from them. Expansion of these centers
into centered trees results in 339 covered orthologs. The algorithm assigns the
remaining orthologous 294 proteins to 288 new subtrees.

We observe that the last remaining orthologs assigned to subtrees are ’isolated’
nodes, in the sense that they are rather distant from each other and not reachable
from ortholog paths stemming from centers.

The divide part of algorithm run only less than half of a second on a desktop
machine (AMD Athlon 64 Processor 3500+, 2 GB RAM) in practical.

! www.cs.purdue.edu/homes/koyuturk /mawish /.



196 P. Jancura, J. Heringa, and E. Marchiori

5.2 Alignment Phase

We obtain 235 subtrees for Saccharomyces cerevisiae and 400 subtrees of Caenor-
habditis elegans. Nodes of each such tree induce a PPI subnetwork. By constructing
alignment graphs between each two PPI subnetworks containing more than one
ortholog pair, we obtain 884 alignment graphs, where the biggest one consists of
only 31 nodes. For each of such alignment graphs, the maximum weighted induced
subgraph is computed by exact optimization. Zero weight threshold is used for
considering an induced subgraph a legal alignment. Redundant graphs are filtered
using 7 = 80% as the threshold for redundancy. In this way DivA discovers 72
alignments.

The computation of induced subgraphs by an exact search took a few minutes
compared to around a second in MaWish on a desktop machine (AMD Athlon
64 Processor 3500+, 2 GB RAM).

DivA vs MaWish DivA vs MaWish
redundantalignments between S, cerevsiae and C. elegans nonvedundnt alignments between S, cerevsiae and C. elegans

0 rofned by MaWis! 16 Mansh Tosuld |
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Fig. 4. Left figure: Distribution of pairs of weights of paired redundant alignments,
one obtained from MaWish and one from DivA. Weights of alignments found by DivA
are on the z-axis, those found by MaWish on the y-azis. Right figure: Interval weight
distributions of non-redundant alignments discovered by MaWish (solid bars) and DivA
(empty bars). The x-axis show weight intervals, the y-axis the number of alignments
in each interval.

5.3 Comparison between DivA and MaWish

We performed network alignment with MaWish using parameter values as re-
ported in [IT]. The algorithm discovered 83 conserved subnets.

A paired redundant alignment is a pair (G1,G2) of alignments, with G dis-
covered by DivA and G2 discovered by MaWish, such that either GGy is redundant
for G5 or vice versa. For a paired redundant alignment (G, G2) we say that Gy
refines G if the total weight of GG; is bigger than the total weight of Gs.

DivA finds 14 new alignments not detected by MaWish. Figure [l shows the
best new alignment found by DivA (left) and the alignment of DivA which best
refines an alignment of MaWish.
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- L Saccharomyces cerevisiae Caenorhabditis elegans
Saccharomyces cerevisiae Caenorhabditis elegans K

PRES8 F25H2.9

C36B1.4

Fig. 5. Left: The best new alignment. Dash lines mark orthologous pairs. Solid line
is protein-protein interaction. Right: The refined alignment with the greatest weight.
Dash lines mark orthologous pairs. Solid line is protein-protein interaction. A loop on
a protein means duplication.

There are 58 paired redundant alignments, whose total weights are plotted
in the left part of Figure @ Among these, 40 (55.6%) are equal (crosses in the
diagonal), and 18 (25%) different. 5 (6.9%) (diamonds below the diagonal) with
better DivA alignment weight, and 12 (16.7%) (circles above the diagonal) with
better MaWish alignment weight (for 1 pair it is undecidable because of rounding
errors during computation).

The right plot of Figure ll shows the binned distribution of total weights of
the 14 (19.4%) found by DivA but not MaWish, and 28 found by MaWish and
not by DivA. The overall weight average of the DivA ones (1.197) is greater than
the overall average of the MaWish ones (0.7501), indicating the ability of DivA
to find high score subnets, possibly due to the exact search strategy used.

Of the 14 new alignments detected by DivA, 8 of them have a intersection
with a true MIPS complex (cf. Table [l). Three of these alignments (6., 12. and
14.) have equal (sub)module in their true S. cerevisiae complex.

Table 1. HG= hypergeometric, Size = number of alignment nodes of an alignment, N
= number of proteins of alignment nodes which are annotated in the best (according
to hypergeometric score) true S. cerevisiae’s MIPS complex of the alignment. M =
number of proteins of alignment nodes in S. cerevisiae. Intersection = |N|/|M]|.

Align. Score Size |M]| MIPS category Intersection —log(HG)
1. 428 8 4 20S proteasome 100(%) 7.25
4. 165 5 2 19/22S regulator 100(%) 3.45
6. 141 5 2 19/22S regulator 50(%) 1.71
7. 062 2 2 20S proteasome 100(%) 3.56
8 061 2 2 Replication fork complexes 100(%) 3.22
9. 053 2 2 19/22S regulator 100(%) 3.45
12. 043 2 2 19/22S regulator 50(%) 1.71
14. 039 2 2 19/22S regulator 50(%) 1.71
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Table 2. True complexes associated to MaWish refined alignments

Align. Score Size |M| MIPS category Intersection —log(HG)

1. 446 10 10 Cdec28p complexes  10(%) 1.47
2. 0.62 2 2 Casein kinase II 100(%) 4.81
3. 038 2 2 SNFI complex 50(%) 2.16

Table 3. True complexes associated to DivA refined alignments

Align. Score Size |M| MIPS category Intersection —log(HG)

1. 6.35 15 11 Cdc28p complexes  9(%) 1.47
2. 126 4 4 Casein kinase II ~ 100(%) 10.39
3. 081 3 2 SNFI complex 50(%) 2.16

From the refined alignments, three of them have intersection with a true MIPS
complex.

Note that alignments 1. and 3. in both Table [ and Bl have equal hypergeo-
metric score, showing that the coverage, that is, number of proteins of an align-
ment contained in its best true MIPS module, does not change. Alignment 2. in
Table 2] covers 50% of the true complex, while its refinement in Table [B] covers
the entire true complex (Casein kinase II, consisting of 4 proteins).

Three of these alignments have equal (sub)module in their true S. cerevisiae
complex.

By considering the union of all alignments of MaWish and DivA and by filtering
out the redundant ones, 97 alignments are obtained, from which 26% consist of
new or refined DivA ones. In particular, conserved modules of three new true
MIPS classes are detected: replication fork complexes, mRNA splicing, SCF-
MET30 complex. Moreover, the alignment by MaWish which covers 50% of the
true complex Casein kinase II (this complex consists of 4 proteins) is refined by
DivA in such a way that the entire true complex is covered (all four proteins).

In this experiment we searched for the best solution in each orthology graph
only. A full-search, where all possible solutions are found for each orthology
graph, has been used in [27]. This yielded to a considerable increase of the
number of results. Statistical evaluation of those results indicated their biological
relevance. In general, the results show that DivA can be successfully applied to
'refine’ state-of-the-art algorithms for network alignment.

6 Conclusion

The comparative experimental analysis with MaWish indicates that DivA is able
to discover new alignments which seem to be on average more conserved because
of higher weight than those discovered by MaWish but not by DivA. Improved
performance is shown to be achieved by combining results of MaWish and DivA,
yielding new and refined alignments.
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The selection of centers is biased on the orthology information but it can

be changed for another property. Hence the divide algorithm can be applied to
perform modular network alignment of other type of networks.

Finally, we considered here an instance of our approach based on the evolution-

based alignment graph model by Koyuturk et al. [II]. We intend to analyze
instances of our approach based on other methods, such as [1].

Acknowledgments

We would like to thank Mehmet Koyuturk for discussion on the MaWish code.

References

10.

11.

. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue,

C.W.V.: Bind-the biomolecular interaction network database. Nucleic Acids
Res. 29(1), 242-245 (2001)

. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: Dip,

the database of interacting proteins: a research tool for studying cellular networks
of protein interactions. Nucleic Acids Research 30(1), 303-305 (2002)

Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,
Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proceedings of the National Academy of Science 100,
11394-11399 (2003)

. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network

comparison. Nature Biotechnology 24(4), 427-433 (2006)

Srinivasan, B.S., Shah, N.H., Flannick, J., Abeliuk, E., Novak, A., Batzoglou, S.:
Current Progress in Network Research: toward Reference Networks for kKey Model
Organisms. Brief. in Bioinformatics (Advance access, 2007)

Koyutiirk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein
interaction networks guided by models of evolution. In: Miyano, S., Mesirov, J.,
Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS
(LNBI), vol. 3500, pp. 48-65. Springer, Heidelberg (2005)

Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of pro-
tein complexes by comparative analysis of yeast and bacterial protein interaction
data. Journal of Computional Biology 12(6), 835-846 (2005)

Hirsh, E., Sharan, R.: Identification of conserved protein complexes based on a
model of protein network evolution. Bioinformatics 23(2), 170-176 (2007)
Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T.,
Karp, R.M., Ideker, T.: From the Cover: Conserved patterns of protein interaction
in multiple species. Proceedings of the National Academy of Sciences 102(6), 1974~
1979 (2005)

Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graem-
lin: General and robust alignment of multiple large interaction networks. Genome
Res. 16(9), 1169-1181 (2006)

Koyutiirk, M., Kim, Y., Topkara, U., Subramaniam, S., Grama, A., Szpankowski,
W.: Pairwise alignment of protein interaction networks. Journal of Computional
Biology 13(2), 182-199 (2006)



200

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

P. Jancura, J. Heringa, and E. Marchiori

Przulj, N.: Knowledge Discovery in Proteomics: Graph Theory Analysis of Protein-
Protein Interactions. CRC Press, Boca Raton (2005)

Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction
networks by matching neighborhood topology, pp. 16-31 (2007)

Przulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein
interactions. Bioinformatics 20(3), 340-384 (2004)

Rathod, A.J., Fukami, C.: Mathematical properties of networks of protein inter-
actions. CS374 Fall 2005 Lecture 9, Computer Science Department, Stanford Uni-
versity (2005)

Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in
protein networks. NATURE v 411, 41 (2001)

Ekman, D., Light, S., Bjorklund, A.K., Elofsson, A.: What properties character-
ize the hub proteins of the protein-protein interaction network of saccharomyces
cerevisiae? Genome Biology 7(6), R45 (2006)

Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving functional mod-
ularity in protein-protein interactions graphs using hub-induced subgraphs. In:
Fiirnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 371-382. Springer, Heidelberg (2006)

Bader, G.D., Lssig, M., Wagner, A.: Structure and evolution of protein interac-
tion networks: a statistical model for link dynamics and gene duplications. BMC
Evolutionary Biology 4(51) (2004)

Li, X.L., Tan, S.H., Foo, C.S., Ng, S.K.: Interaction graph mining for protein
complexes using local clique merging. Genome Informatics 16(2), 260-269 (2005)
Yook, S.H., Oltvai, Z.N., Barabsi, A.L.: Functional and topological characterization
of protein interaction networks. PROTEOMICS 4, 928-942 (2004)

Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law
graphs. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS) (2006)

Tarjan, R.: Depth-first search and linear graph algorithms. STAM Journal on Com-
puting 1(2), 146-160 (1972)

Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372-378 (1973)

Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296, 910-913 (2002)

Wolsey, L.A.: Integer Programming, 1st edn. Wiley, Chichester (1998)

Jancura, P., Heringa, J., Marchiori, E.: Divide, align and full-search for discovering
conserved protein complexes. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008.
LNCS, vol. 4973, pp. 71-82. Springer, Heidelberg (2008)



Constraint Minimization for Efficient Modeling of Gene
Regulatory Network

Ramesh Raml, Madhu Chettyl, and Dieter Bulach?

! Gippsland School of IT, Monash University,
Churchill, Victoria 3842, Australia
{Ramesh.ram,Madhu.chetty}@infotech.monash.edu.au
2 CSIRO Livestock Industries, Australian Animal Health Laboratory,
5 Portarlington Rd, Geelong VIC 3220, Australia
Dieter.Bulach@csiro.au

Abstract. Due to various complexities, as well as noise and high dimensionality,
reconstructing a gene regulatory network (GRN) from a high-throughput microar-
ray data becomes computationally intensive. In our earlier work on causal model
approach for GRN reconstruction, we had shown the superiority of Markov blanket
(MB) algorithm compared to the algorithm using the existing Y and V causal mod-
els. In this paper, we show the MB algorithm can be enhanced further by applica-
tion of the proposed constraint logic minimization (CLM) technique. We describe a
framework for minimizing the constraint logic involved (condition independent
tests) by exploiting the Markov blanket learning methods developed for a Bayesian
network (BN). The constraint relationships are represented in the form of logic us-
ing K-map and with the aid of CLM increase the algorithm efficiency and the accu-
racy. We show improved results by investigations on both the synthetic as well as
the real life yeast cell cycle data sets.

Keywords: Causal model, Markov blanket, Constraint minimization, Gene
regulatory network.

1 Introduction

Gene regulatory networks (GRNs) represent gene-gene regulatory interactions in a
genome to display relationships between various gene activities. Amongst different
approaches available, these networks can also be modeled accurately by Markov blan-
ket (MB) graph a powerful versatile method for modeling any dynamic physical sys-
tem. This technique was first proposed by Sprites et al [1] who stated that MB can
adequately represent all connections and interactions in a network. Since then, the
work on MB has been rapidly expanding with a focus on the study of causality which
plays an important role in modeling, analysis and design of GRNs. Learning any
Markov blanket Bayesian network structure and inferring gene networks [2, 3] in-
volves application of constraints. Although these constraints are typically conditional-
independence statements, the non-independence based constraints may also be entailed
by the structure where latent variables exist [3]. The conditional independence tests
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used in practice are statistical tests such as partial correlation, mutual information, and
conditional probabilities etc. that indicate a causal influence. In order to use the condi-
tional independence tests to reconstruct the structure, several assumptions have to be
made, e.g. causal sufficiency, causal Markov and faithfulness [2]. With these as-
sumptions, we can ascertain the existence of an edge, its direction and whether it is
positive or negative. The Sprites-Glymour-Scheines (SGS) algorithm [1], used for
obtaining a causal DAG from a dataset, assumes that graphs are acyclical. It is formu-
lated using the concept of d-separation [2] in which all possible combinations are tried
before determining the existence of an edge between every pair of variables in the
dataset. However, the SGS algorithm fails to always assign directions to each of the
edges. This limitation of SGS algorithm is overcome by the inductive causation (IC)
algorithm [3], which is capable of assigning directions. Some algorithms do not make
use of independence tests but take into account d-separation in order to discover struc-
ture from data [2]. For example, Cheng ef al [4], applied mutual information instead
of conditional independence tests. All these algorithms are referred as constraint-
based algorithms [1, 4]. Constraint-based algorithms have certain limitations such as
poor robustness or computation time which increases exponentially with the number
of constraints. These limitations make these approaches impractical for large datasets
of tens or even hundreds of variables.

In our recently proposed causal model [5, 6] approach for constructing GRN , the
network was inferred by applying the following three sequential steps to identify the
sub-structures of a larger network: i) Perform conditional independence (CI) tests for
each node’s Markov blanket ii) Assign direction to the edges and iii) Assign sign of
regulation to the edges. However, due to the huge size of network search space and
the limited amount of microarray data, it was impractical to test each and every con-
straint. Moreover, with the increase in the condition set needed for causal discovery,
more and more CI tests had to be performed, resulting eventually in lower accuracy.

By simplifying the complex logic involved with the constraints in the Markov
blanket algorithm, the computational efficiency of the MB algorithm [6] can be en-
hanced thereby resulting in improved accuracy for network reconstruction. In this
paper, we propose a technique for minimizing the constraints and hence the condition
set needed for testing the structure with respect to data. The statistical tests following
the logic is translated into a Boolean function after which a logic gate minimization
technique such as K-map [7] is applied and the minimized logic is translated back to
the constraints and used on the data. We have achieved this by a novel independence-
based algorithm which we refer here as the Markov blanket-Constraint Logic Minimi-
sation (MB-CLM) algorithm. The MB-CLM algorithm heuristically uses Markov
Blanket neighborhood of a node and makes model evaluation simple. In order to
evaluate and validate a Markov Blanket, there is invariably a need for checking a set
of conditions. However, from the available set of alternatives, it is possible to have a
potentially smaller set of conditions that can establish the desired conclusion for the
given network but with a faster computation speed and increased reliability. This is
because a conditioning set S splits the data set into 2° partitions. With a smaller condi-
tioning set, the data set is split into larger partitions thereby making dependence tests
more reliable. This smaller or minimal set will fulfill the necessary and sufficient
conditions required for GRN reconstruction.
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The rest of the paper is organized as follows. Section 2 provides a background on
causal model and also explains the fundamentals of the technique of logic minimiza-
tion. Section 3 describes the methodology. Section 4 gives the results of the experi-
ments from the synthetic and real datasets. Finally, Section 5 provides conclusion and
the future work.

2 Background

In this section, we briefly present the causal model approach for GRN reconstruction
and also the notion of Markov blanket both of which are important for understanding
the MB-CLM algorithm.

2.1 Causal Model Approach

A causal GRN structure is represented by a directed graph whose nodes represent the
genes and the directed edges between nodes indicate the causal relationships. Pearl
et al and Sprites et al [1, 2] proposed algorithms to infer a causal structure from ex-
perimental data by using partial correlations, if the underlying causal structure is a
directed acyclic graph (DAG). Recently, we reported a technique for causal modeling
by means of a novel scoring function [5]. In this work, the central step of determining
the fitness of the data given a whole network, is decomposed into a task of determin-
ing a set of scores of the local models that includes: i) Fitness of structure ii) Direc-
tion of causality and iii) Sign (positive/ negative) of regulation. The task of network
reconstruction is cast into a search for candidate gene networks with high scores. This
highly computationally expensive search is usually carried out stochastically by using,
for example a genetic algorithm (GA). The search creates and evolves different net-
works and eventually obtains a network that best fits the microarray data. Due to the
stochastic nature of the GA, the GA is repeated several times and the resulting net-
work structures are combined in a predefined manner to reconstruct the final gene
network. While evaluating the fitness, the putative network is actually decomposed
into MB and conditional independence tests are applied in order to detect whether or
not connections are direct or indirect. The direction and sign of regulation are recov-
ered by estimating the time delay and correlation between expression profiles of pairs
of genes. The entire methodology has already been validated by using a synthetic
dataset reported in our earlier work [6] and Saccharomyces cerevisiae (yeast) [8] mi-
croarray dataset. The results of validation are found to be in agreement with the
known biological findings.

2.2 Markov Blanket

A Markov blanket [2], central to the concept of causal modeling, includes the node X
under consideration and also its parents and children. It is denoted as MB(X) and is a
minimal set of variables such that every other variable is independent of X given
MB(X), i.e.

VY e (X, X )\{MB(X),X},X L Y | MB(X)
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Fig. 1. Markov Blanket of X

An example of MB is shown in Fig. 1. Several studies [9-11] have sought to iden-
tify the MB of a target node (X in Fig. 1) by filtering nodes using statistical decisions
from conditional independence tests. In Fig.1, the shaded nodes (black) are Markov
blanket neighbours since there is either an edge or a child in common between target
node and shaded node. The non-shaded nodes (white) are independent of the target
node, X. A MB DAG can be constructed by combining the MB’s of all the nodes in
the dataset.

A MB for a node X in a GRN dataset has two important features. First, all the
nodes within a MB have a similar set of dependencies and therefore exhibit a similar
behavior. In a similar manner, genes in a cell are also organized into small groups and
the sets of genes required for a similar biological function or response are co-
regulated by the same inputs in order to coordinate their joint activity. In other words,
the MB neighbours (shaded nodes in Fig. 1) of a target node (gene) show the gene
expression patterns emerging only due to a disruption of that gene. Second, they can
also have a causal interpretation: a directed edge from one gene to another, X—Y,
represents the claim that X is a direct cause of Y with respect to other genes in a DAG.
Keeping other genes fixed, if X is varied by an intervention (e.g., activation or repres-
sion), then both X and Y would co-vary [1, 2]. A MB DAG can thus provide both bio-
logical and causal insight into relations between a reduced set of predictor nodes (par-
ents, children, spouses) and the target node.

The technique of logic gate minimisation, well known for electronic circuit mini-
misation, and on which the proposed constraint logic minimisation algorithm is based,
is presented next.

3 Logic Gate Minimization Technique

The proposed CLM algorithm is uses the K-map technique applied for logic gate
minimisation. To illustrate the minimisation technique, let us consider an arbitrarily
chosen four input Boolean network. Let the network be, for example, characterized by
the following Boolean function to give an output of 1(i.e. true output):

f(a,b,c,d)= > 'm(0,3,4,7,8,11,15) (D
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cd
ab 0 0 1 1
0 1 1 0

0 1 1

0
0 1 1

1
1 1

1
0 1 1

1

Fig. 2. K-Map for the function given by Eqn. (1)

Here, f is the boolean function. a, b, ¢ and d are the four independent inputs. The
numbers on the RHS are minterms (i.e. decimal value equivalent of the 4 bit inputs).
For example, the value 3 on RHS, means that the four bit input combination of 0011
(i.e. a’b’cd or the decimal equivalent value of 3) results in 1. m indicates that all the
values within bracket are minterms.

The above equation indicates that any combination of the inputs with values of
either 0, 3, 4, 7, 8, 11 or 15 would result in a true output. Since the default value of a
is considered as 1, it implies that a’=0. Thus, the above function in Eqn. 1 can be
expanded as

f=a'b'c'd'+a'b'cd+a'bc'd'+ a'bcd+abc'd'+ab'cd+abcd 2)

The above equation is known as a Sum of Product (SOP) equation and the products
are the minterms mentioned above.

The K-map for the above function is shown in Fig. 2. All rows and columns in the
K-map above are unique since only one variable changes its value within its square.
The relevant K-map elements are given a value of 1 to include all possible constraints
with true outputs. The first row, for example has input a = 0 (i.e. a’) and input b = 0
(i.e. b’). Similarly column 3, for example has both ¢ = 1 and d =1. Thus, an element,
for example in row 1, column 3 corresponds to input a’b’cd =1. It can be noted that
this corresponds to the second term on RHS in Eqn. (2) above. It can be further noted
that between two adjacent columns (or rows), only one of the variables changes its
value. For example, in Fig. 2, the input cd given as 00, 01, 11, 10 in the columns
ensures that there is only one input change.

Now let us consider grouping the common terms and minimisation of the function
using the K-map shown in Fig. 2. By grouping:

i) Four 1 in column 3 (all rows), we get the common term cd
ii) Two 1 in column 1 (row 1 and row 2), we get common term a'c'd’

Considering the above groupings, we can rearrange the RHS terms from Eqn.(2)

appropriately to facilitate logic minimisation. Further, noting that
a+a’=1 3)
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We can simplify Eqn. 2 as follows:
f(a,b,c,d) = (a'b'cd+abcd+a'bcd+ab'cd)+(a'b'c'd'+a'bc'd’) +ab'c'd’
= cd(a'b'+ab+a'b+ab')+ a'c'd' (b+b')+ ab'c'd’
=cd +a'c'd' +ab'c'd' )
Since the constraint when applied to the MB scoring for GRN reconstruction will
also evaluate to either true or false, the principles of logic gate minimisation presented
in this section can easily be extended and applied to GRN modeling. The variables a,

b, ¢, d in Eqn. (4) above will correspond to constraints that can be either CI tests or
tests involving delays and directions. This technique is presented next.

4 Method

In our GRN reconstruction method reported earlier [6, 12], the network is evaluated at
the MB of every node with respect to data resulting in a set of constraints to be
satisfied per MB. In general, all these constraints should always be satisfied to vali-
date a true MB with respect to data. Since the dataset under consideration is noisy and
high dimentional, it is acceptable if all the constraints are not necessarily satisfied for
MB validation. For example, consider a MB having say three constraints. A
combination of say two constraints may leave the evaluation of third constraint (don’t
care) unnecessary. However, if the two constraints fail, only then the need to
evaluate the third constraint may arise. Since the Markov blanket scoring can be
viewed as a logic circuit minimisation, we can get a function similar to Eqn. 1 and
the underlying logic constraints can thus be represented using K-map explained in the
previous section for optimising the computations. In order to show how this can be
achieved, the algorithm for learning MB is presented next.

4.1 The Markov Blanket Network Inference Algorithm

A static causal directed acyclic graph (CDAG) model for representing GRN consists
of nodes representing genes and arc giving direction and sign of regulation. A matrix
element E(a,b) of the gene expression matrix E indicates the expression ratio of gene
a at time b. The overall inference approach (Learn_MB algorithm) is as follows:

i)  Gene Expression Matrix E: Obtain E corresponding to the set of nodes from
dataset D that are affected by node X. This set involves parents, children and
spouse nodes of node X.

ii) Causal relation R: In the putative MB network H(X), the causal relationships
are defined as gene a affects gene b either directly or indirectly. We thus create
n binary causal relation R using the causal relationship.

iii) Adjacency matrix A: The adjacency matrix A is derived directly from the bi-
nary relation R. If there is a relation that gene a affects gene b, then the value
of element (a, b) in the adjacency matrix A is setto 1, i.e. A(a, b) =1.

iv) Skeleton matrix S: A skeleton matrix S includes direct and indirect effects ob-
served in a putative MB. The adjacency matrix A (of size n X n where n is the
number of nodes in the MB) includes direct relationship between genes. The
indirect effects are included as follows: The row i and column j in adjacency
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matrix A and skeleton matrix S represent direct and indirect causal relationship
between gene i and gene j respectively. For example, consider an indirect rela-
tionship between gene i and k (where k is any other column corresponding to
gene k) such that A(i, j) and A(j, k) both equal 1. Then S(i,k) is set to Bi-
nary{A(i, j) AND A(j, k)} (for k=1, . ., n). In this manner, all indirect effects
are captured in the skeleton matrix S from the adjacency matrix A.

Constraints set C: The direct and indirect effects from adjacency matrix A and
skeleton matrix S are converted as conditional dependence (CD) and condi-
tional independence (CI) constraints respectively. A conditioning set is needed
for each of the constraints which will contain all the nodes in H(X) minus the
variables involved in the constraint. For example, if there is an indirect rela-
tion, such that gene a and b are conditionally independent then the condition
set is given as H(X)-{a,b}. The outcome of the CI and CD constraints is either
a 1 (constraint fits the data) or a O otherwise. The test is done using statistical
methods namely partial correlation. The constraints that are not CI or CD de-
termine the direction and sign of the arcs in the MB and are similar in nature to
independence tests. In our case, the direction and sign between gene a and b is
obtained by the following two equations:

f(diru(a,b),diro(a,b)) =011 (5)
f(sgnu(a,b),sgnn(a,b))=011 (6)

In Eqn. (5), the function f compares the direction between the putative network
H and the dataset D while in Eqn. (6), f compares the sign. Furthermore, there
are additional constraints which compare estimated time delay with the actual
time delay. All these constraints comprise the constraint set C.

Constraint set reduction: If a relation exists such that gene b and d are condi-
tionally independent (conditioned on gene a) and further gene ¢ and d are
conditionally independent (conditioned on gene a), then gene b and c are con-
ditionally dependent (conditioned on gene @). Such tests are therefore unneces-
sary to implement and can be eliminated from the constraint set C resulting in
updating the Adjacency matrix A and the Skeleton matrix S. Further, the con-
dition set for the CI and CD constraints is also reduced such that the CI/CD
test outcome is independent of the removal of a variable from the condition set
and is in conformance with d-separation theory [2].

Constraints Evaluation: Next, a table of constraint set C is created. Here, the
combination of constraints that entail the validity of the putative Markov blan-
ket with respect to the dataset or otherwise are computed. A threshold value
(explained in Section 4.2 below) is used when constraints are tested with re-
spect to data.

viii) Fitness Score: Comparison based on the value of each element in the skeleton

matrix and the evaluation table determines the goodness of fit. This will show
if the putative network is consistent with the experiment data D and the causal
relation R.
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4.2 MB Threshold Setting

We now discuss the factors involved in determining the threshold value used in step
vii) of the MB algorithm presented above. The p-values, commonly used in any statis-
tical analysis, are used for determining the threshold. For large p-values, the
Learn_MB algorithm begins to rapidly increase the number of false positives without
any corresponding increase in true positives. An appropriate value for the MB thresh-
old, producing a near optimal result, can be selected a-priori using the Bonferroni-
corrected p-value based on the number of potential network interactions. Alternatively,
the threshold can be identified by analyzing the distribution of MB scores as a function
of the length of the shortest path connecting each gene pair (degree of connectivity).
The algorithm depends on the MB being enriched for directly matching interaction
among genes and decreases rapidly with its distance from the hub. There is no unique
choice for the threshold which can separate directly and indirectly interacting genes,
and most methods that attempt to use a single threshold either recover many indirect
connections or miss a substantial number of direct ones.

4.3 Complexity Analysis and Discussion of the Plain MB Algorithm

The order of complexity for each conditional dependence/independence test taken is
O(nD), where D is the dataset of input to the algorithm. The computations are re-
quired for constructing the table of constraints and for each combination of the vari-
ables (genes) included in the constraint test that exists in the data set. As a worst case
scenario, each dependence test uses O(D) space to store each variable combination of
the conditioning constraint set that appears in the data.

The number of constraints tested is usually reported as a measure of the perform-
ance of Bayesian net reconstruction algorithms [1, 4]. To determine the number of
tests in this algorithm, we assume that the steps 2 and 3 go through MB variables
(parents, children, spouses) in an unspecified but fixed order. Therefore, the order of
the entire algorithm is O(n) in the number of independence tests. The algorithm bene-
fits by further computational optimizations from constraint minimization using the
proposed K-map technique.

In the next section, we present the CLM algorithm which when combined with
learn_MB algorithm presented earlier results in an integrated MB-CLM algorithm.

4.4 CLM Algorithm

The Constraint minimization approach is given as follows:

1. Obtain the Markov blanket H(X). Let the set of constraints be C.
Get the constraint set C from step v) of Learn_MB algorithm in section 3.1
3. Assign binary codes for constraints in constraint set C. Use the constraint
evaluation table to generate a truth table and the logic diagram.
Perform minimization with the help of K-map.
Remove unnecessary constraints before performing constraint evaluation.
6. Execute the minimized logic on the dataset D.

wos
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1.C «< 0

2.LEARN _MB Step F » C
3.CLM phase « C

4. LEARN_MB Step G « Cmin

Fig. 3. Learn_MB and CLM integration step

In Fig. 3, C represents the set of constraints. Initially, the constraints are obtained
from the Learn_MB algorithm. The above mentioned CLM approach, shown as a
CLM phase, takes the constraint set C as input and returns a minimized set C,,;, back
to the learn_MB algorithm for evaluation and validation.

S5 Experiments and Results

For examining the effect of the minimization technique on the GRN reconstruction,
simulations are next conducted using both, the synthetic and the real datasets. The
synthetic datasets are realistic and are generated by systematic approach reported ear-
lier [12] for synthetic GRN modeling. The real life data set chosen for investigations
is the widely studied yeast cell cycle data set.

5.1 Synthetic Datasets

Figure 4 shows an example of reconstruction of an artificially constructed synthetic
network using MB-CLM technique. Figure 4a shows the original synthetic network.
Amongst various network architectures possible, we chose a network type referred as
random network. The generated network is of 3x3 dimensions with an up/down
branching factor of 2. The branching factor refers to the number of parents, children
and spouses connected to a node. The up branching factor specifies the number of
parents of each node directly above it, excluding nodes in the boundary of the net-
work as they are exogenous (without parents). Figure 4b shows the logic circuit corre-
sponding to the constraints involved and Fig. 4c shows the reconstructed network
using MB-CLM algorithm.

In our simulations we used plain MB algorithm and MB-CLM algorithm with a
MB threshold value of 0.90 in both cases and tested the algorithms using synthetic
network 5 x 4 nodes and corresponding synthetic data of upto 100 samples.

(a) Synthetic network (b) Logic circuit (c) Reconstructed Network

Fig. 4. Synthetic network and minimized constraint logic
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Fig. 5. Simulation Results

Figure 5a shows a plot of the number of nodes of the MB incorrectly included or
excluded for plain Learn_MB algorithm and MB-CLM algorithm, averaged over all
nodes in the domain. It can be observed that due to the constraint minimization, the
accuracy of results have increased, as a result the number of nodes incorrectly in-
cluded is less for the MB-CLM algorithm compared to the Learn_MB algorithm.
Hence, there is better accuracy and reliability with the MB-CLM algorithm. On the
other hand, as can be seen from Fig.5a, the use of Learn_MB algorithm resulted in a
slightly higher number of missing nodes. Although the nodes incorrectly included are
very low for both Learn_MB and MB-CLM algorithm, the nodes incorrectly excluded
fall more rapidly with increasing sample size in the case of MB-CLM algorithm com-
pared to Learn_MB algorithm. From Fig. 5b, it can be observed that MB 12 has very
high constraints which are minimized by MB-CLM algorithm. The CLM algorithm
thus can help with large reduction of constraints in certain circumstances. The effect
on percentage Direction Error (DE) by increasing MB (via branching factor increase)
is shown in Fig. 5c. DE for the MB and the MB-CLM algorithm remains close for
lower branching factors but decreases slightly for MB-CLM algorithm with increase
in branching factor. The decrease is due to the large number of parents for each node
(i.e. more V structures) which provides greater opportunities to recover the direction-
ality of an edge with increased number of tests.
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5.2 Real Datasets

For testing MB-CLM algorithm for inferring genetic regulatory interactions using real
life data set, studies were also carried on the dataset from Spellman et al. (1998) [8] ob-
tained for S.cerevisiae cell cultures that were synchronized by three different methods.

In our study, we considered a group of 20 important genes (CLB2, CLN1, SIC1,
LB6, CLB1, SWI4, CDC34, SWI5, CDC20, CLN2, MCM1, CLB5, SWI6, LB4,
CLN3, BP1, SKP1, CDC28, HCT1) to be involved in cell-cycle regulation of
S.cerevisiae. The same set of genes has been used by Chen et al. (2000)[13], who
presented a complete model of the cell-cycle events. We applied the MB-CLM to
learn the models from the data, for each gene in the dataset, considering all other
genes in the dataset as candidate regulators. The MB of genes is obtained by Gibbs
variable selection procedure, and then the model evaluation is performed using the
proposed algorithm. We investigated the effect of CLM algorithm on the correctness
of reconstruction. For small models 1 and 2 (i.e. models with branching factor <=2),
CLM algorithm did not make any significant impact. However, for the large model 4,
which has a large condition set, the incorporation of CLM algorithm helped discover
new regulatory relations for some genes which were undetected when only MB algo-
rithm was used. The available biological knowledge also validated the existence of
these new regulatory interactions learned from the model. Highly accurate regulatory
interactions were also discovered for the seven genes CLN1, CLN2, CLB1, CLB2,
CLB5, SWI5 and SWI4. These results are observed to be consistent with the available
biological knowledge. These inferred genetic interactions as well as the activatory
connections amongst the genes CLN1, CLN2, CLB5 and CLB6 can be seen in Fig.6.

Fig. 6. GRN reconstruction
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The time delay learning when CLM algorithm was used revealed the activatory in-
fluences CLN1—CLN2, CLB6—CLB5, CLN1—CLB6 and CLN3—CLB6 (CLN3 is
also the Gl-specific cyclin). These find support in the literature [14-19]. The time
delay learning was also able to infer the inhibitory influence of SIC1 on the genes
CLBI1, CLB2 and SWI5 [18]. The plus/ minus learning using the CLM algorithm
showed a positive relation between the genes SIC1, CDC20 and CDC34. The gene
CDC20 is required for proteolytic degradation of G1 regulators which explains the
negative connections discovered by CLM from gene CDC20 to SWI6 and MCM1,
both of which are encoding transcription factors. The gene CDC20 is transcribed in
the late S/G2 phase, whereas the genes CLN2 and CLBS5 are expressed in G1 phase,
supporting the negative connection between CDC20 and these genes.

6 Conclusion

In this paper, a Markov blanket (MB) based constraint minimization algorithm (MB-
CLM algorithm) for efficiently learning the GRN is presented. The CLM algorithm
initially uses the original Learn_MB algorithm to convert a putative MB structure into
a set of constraints which are then tested against the given data. The MB-CLM heuris-
tically minimizes this constraint set using K-map logic minimization technique to
improve MB inference resulting in a superior GRN reconstruction. The performance
of MB-CLM algorithm is investigated using both the synthetic data and real data
(yeast). Experiments with synthetic data show that the number of nodes incorrectly
included (or excluded) with only MB algorithm reduces significantly when CLM al-
gorithm is incorporated. Simulations studies with yeast data discovered new regula-
tory relations when CLM algorithm was used. Using MB-CLM algorithm, both the
time delay learning algorithm and the plus/minus learning algorithm revealed interac-
tions which were not reconstructed with MB algorithm. These newly discovered rela-
tions were validated to be correct by the biological knowledge. Thus, in the MB-CLM
algorithm improves the overall process of GRN reconstruction.
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Abstract. Inference of Gene Regulatory Networks (GRN) is important
in understanding signal transduction pathways. This involves predicting
the correct sequence of interactions and identifying all interacting genes.
Using only gene expression data is insufficient, so additional sources of
data like protein-protein interaction network (PPIN) are required. In
this paper, we model time delayed interactions using a skip-chain model
which finds missing edges between non-consecutive time points based on
PPIN. Highest Viterbi approximation is used to select skip-edges. The
k-skip validation model checks for k missing genes between a predicted in-
teraction, giving us advantages of validation as well as expansion of GRN.
The method is demonstrated on a cell-division cycle data of S.cerevisiae
(yeast). Comparison of the present method, with a previous approach of
modeling PPIN by using a Gibbs prior are given.

Keywords: Dynamic Bayesian networks, Gene Regulatory networks,
Higher-order Markov chains, Protein-Protein interactions, Viterbi algo-
rithm.

1 Introduction

Most processes of signal transduction involve ordered sequences of biochemical re-
actions inside the cell, which are carried out by an ensemble of enzymes activated
by secondary messengers, resulting in signal transduction pathways. The DNA
in a cell contains genes which are converted to mRNA (expressed genes) through
transcription and then translated into proteins. Consequently, signal transduction
pathways are often interpreted in terms of gene regulatory networks (GRN) and
protein-protein interaction networks (PPIN). High throughput techniques allow
generation of both gene and protein interaction data simultaneously. Studies that
use both gene and protein expressions have been mostly devoted to a single type of
data while the other type of data is restricted to validation [, [2], [3]. Using a sin-
gle data source of interactions has its own limitations and could create errorsin the
analysis of the interactome. This is due to two main reasons: firstly, both microar-
ray and PPI data have a lot of noise due to measurement errors, varied transcrip-
tional response in the cell and inter-functional phenomena. Secondly, complex for-
mation and other critical interactions that regulate biological processes take place

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 214 2008.
© Springer-Verlag Berlin Heidelberg 2008
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at the protein level. A protein being a product of a gene, a joint mining of gene
regulatory networks and protein interaction networks could reveal genes that are
co-expressed and their proteins also interact. Clusters and interactions found by
joint mining will be more reliable than those found by using only one type of data.
We may thereby have high confidence of finding gene clusters that are regulated
by the same mechanism and belong to the same biological process.

Fusion of GRN and PPIN has been attempted by using Naive Bayes where
genes are partitioned into different pathways [I]. Likelihood of the data becomes
higher when genes in the same pathway have similar expression profiles and are
interacting. The unified model is learned using Expectation Maximization algo-
rithm. This method however requires the user to specify the number of pathways
which is often unknown. Cross-graph mining [2] can achieve integration by look-
ing for partial cliques in both GRN and PPIN simultaneously. A weighted score
of SVM classification of gene expression and functional classification of PPI was
suggested in [3]. The weights are determined by simulated annealing. Prior mod-
eling of PPIN into Bayesian learning has been done using Gibbs distribution [4].
A Gibbs random field equivalent to a first-order Markov random field is used
to represent the prior graph. This approach is insufficient because many time-
delayed interactions are known to exist.

In this paper, we extend skip-chain sequence models [5] and use Viterbi ap-
proximation of dynamic Bayesian networks (DBN) to include time delayed inter-
action edges based on PPIN data. The method is demonstrated by using yeast
cell cycle data, where genes are differentially expressed in each phase. Genes in
one phase regulate by activation/inhibition genes in the next phase resulting in
a cycle. A comparison is done with prior modeling of PPIN using Gibbs distribu-
tion. The method almost doubles the sensitivity and is robust to the increase in
number of genes. The paper is organized as follows. Section 2 discusses Bayesian
networks (BN), dynamic Bayesian networks(DBN) and their extension to higher-
order. Section 3 explains the different models: we first discuss prediction of GRN
using skip-chain models and our extension to fuse prior knowledge of PPIN. Next
we describe the k-skip validation model of GRN based on PPIN. In section 4, we
demonstrate our approach on 5 different datasets from yeast cell cycle. A com-
parison is done with prior modeling of PPIN using Gibbs distribution. Lastly,
we make our conclusions in section 5.

2 Modeling GRN with Higher-Order Bayesian Networks

Microarray experiments simultaneously measure expression patterns of thou-
sands of genes over different experimental conditions or over time. Let us consider
a set of n such genes G = {g1,92, ..., gn}, and time-series gene expression data
of length m for all the genes. Let the microarray data matrix X = [z1, J;g...xn]T
in which row vector z; = (2.1, Z; 2, ..., Ti,m ) corresponds to gene expression time
series of gene g; where x;; denotes the expression level at time ¢. Let the set
of parents (or genes regulating) of gene ¢ be denoted as a; and the number of
states the nodes in a; take be g;.
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2.1 Bayesian Networks (BN)

A BN is a graphical model that can represent a joint multivariate probability
distribution by capturing the properties of conditional independencies among
the variables. It is a directed acyclic graph (DAG) having a structure S and a
set of conditional distributions. BN can appropriately model the genes as nodes
in the network and edge as causal interaction’s between them.

The Bayesian network decomposes the joint probability of genes into the prod-
uct of conditional probabilities by using the chain rule and independence of
non-descendant genes, given their parents

p(xlax27""axn) = Hp(xl‘ahe’b) (1)
i=1

where p(z;]a;, 0;) is the conditional probability of gene expression x; given its
parents, and 6; denotes the parameters of the conditional probabilities.

The optimal structure is obtained by maximizing the posterior probability for
S. From Bayes theorem,

maxp(S|X) = max p(S)p(X|S) (2)

where p(S) is the prior probability of the network structure. Given the set of
conditional distributions with parameters 6§ = {6;|i = 1,2,...n}, the likelihood
can be written as

p(X]S,0) = / p(X|S.6)p(6]5)d6 3)

Let us assume that gene expressions carry discrete levels of gene expression
@iy = k where k € {1,2, ...,d} and d denotes the maximum level of expression
of any gene. Let 6,1 = p(x;: = k|a; = j) and Njj;;, be the number of instances
of 051, that occur in the training data. Using the property of decomposability,

p(X|S,0) = II[IIIQ;k (4)
i=1j=1k=1
Assuming global and local parameter independence,
n n  q; d
p(615) = [ [ w(6:l5) = HHp 6;515) = [T 1T 11 »(6ise) (5)
i=1 i=1j=1 i=1j=1k=1
Substituting Eq. (4) and Eq. (5) into Eq. (3) gives

p(X|S) = HH/H%WwM% (6

i=1j5=1

N
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We can approximate the integral by using maximum likelihood estimate known
as Bayesian Information criterion (BIC)[6]. We can estimate 6,1, as
Nijk
Zk 1 Niji

Taking the log-likelihood, gives us the following expression:

(7)

Oijr =

n d

BIC =logp(X|S,0) = ZZZkalog Niji (8)

i=1 j=1k=1 Zkl ijk

Hence the likelihood approximation of the score needs no prior over parameters
as the posterior probability captures information of the prior. The likelihood
approximation is known to be good when using large amounts of data. However,
if the dataset is small it will over-penalize.

The acyclic condition in BN does not allow self regulation and feedback, which
are characteristic of GRN. To overcome this, dynamic Bayesian networks (DBN)
are used in which a transition network from one time point to the next charac-
terizes the GRN.

2.2 Dynamic Bayesian Networks (DBN)

A first-order dynamic Bayesian network (DBN) is defined by a pair of structures
(St, Si41) corresponding to time instances ¢ and ¢ + 1 and a transition network
of interactions between the two networks. The DBN structure is obtained by
unrolling the transition network over time (Figure[l]). In slice ¢, the parents of
x;+ are those specified in the initial network S;, and in slice ¢ 4 1, the parents of
x;+ are those genes in slice ¢ corresponding to parents of x; ; in S;. The transition
network of interactions between time instances ¢ and ¢ 4+ 1 is given by

0;) 9)

p(-ri,la "Nvfi,m) =

where ¢ = 0 corresponds to the dummy initial state.
The metric for a DBN can hence be defined as

m n g N D

p(X|S,0) = HHHH%? vt (10)

where Ni(;,;tﬂ) correspond to the transition network (S;, Sy4+1). The first-order
DBN has 2n nodes.

The first-order Markov DBN can be extended to a higher-order to allow
higher-order interactions among variables. For an r-order Markov DBN, given
a node x;, its parents are chosen from the set of variables X[t — r]|J X[t — r —
1]... X[t — 1], where X[t] is a column of gene expression matrix at time ¢. We
assume r-order stationary Markov chain. With this assumption an r-order tran-
sition network has (r + 1) x n nodes (Figure [I), where n is number of genes.
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Skip-chain model

— — — — - Linear edge

Viterbi path

Fig. 1. Illustration of six time points and three genes of G1-S phase of cell-cycle in
a dynamic Bayesian network. The dashed edges are linear r = 1,2 order edges found
by linear features. The solid directed edge is an example of skip-edge over four time
points which models a long-distant dependency. The bold directed line shows a skip
path computed by Viterbi algorithm.

Now Njji can include cases from any of the previous r time slices. As 7 increases
the search space becomes extremely large. In order to address this problem we
propose skip-chain sequence models.

3 Fusion of GRN and PPIN
3.1 Skip-Chain Sequence Model

A higher-order DBN is unable to accomodate long-distance dependencies because
the number of parameters increases with the order. For example, if order is r, for
binary gene expressions with a maximum ¢ parents, there will be r¢ parameters
for each gene. To overcome the explosion of parameters, a skip-chain sequence
model [7] augments a linear chain with skip-features that represent long range
dependencies. It then simply factorizes the prediction probability into linear and
skip features. The number of skip-features can be implemented based on prior
knowledge as given in PPIN.

Linear-chain feature functions f,(x;, a;;—y.),t) represent local dependencies
that are consistent with an r-order Markov assumption of gene expressions.
These represent dependencies between nearby time points and cannot represent
higher-order dependencies like activation, inhibition or feedback, which occur
throughout the time-series of the pathway. We relax the above assumption by
using skip-chain feature functions g,/ (i, a;, s¢,t) which exploit dependencies
between genes that are arbitrarily distant at time instances s; and ¢ respectively.
Such a skip-feature models variable length Markov chain upto m — 1 order where
m is number of time points. The score of the structure is a weighted sum of linear
and skip-edge scores:

’

U
Ing xz‘az ZA fu Tiy Qj(t—r:t) + Z Moy 9o xuaustat) (11)

u=1 u' =1

where A\, and p,/ are weights for corresponding features.
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Inspired by a previous application of skip-chain models to summarise group
meetings [5], we achieve fusion by designing an interaction skip feature (g, g5,
st,t) between genes g; and g;, having similar expressions at two different time
points s; and ¢ where s; € {1,2,3,..,t—2}. We further constrain that these genes
must be interacting as indicated by the PPIN. In the next section, we discuss
how a Viterbi approximation is used to determine the optimal skip features.

3.2 Skip-Edge Determination

In the skip-chain models, higher-order interactions are represented by skip-edges.
We used Viterbi approximation of a DBN [8] to determine the optimal skip-
features, as the maximum a posterior forward path through the trellis. This lets
us compare different time-delayed skip-features between two genes. An example
of such a path to model a fourth order interaction is shown in Figure [[l The
Viterbi algorithm first calculates log transition probabilities from the data. The
transition probability from gene g;,t — 1 to g;,t at is defined as
P(@idlzji1) = (12)
Zj':l L

where n; j; denotes number of occurrences where x; ¢y = x;;,—1 = 1 in the dis-
cretized gene expression data.

Then, forward state transitions I’ that give minimum transition probability
at each time point is chosen:

I' = arg mjinp(ffi,t\ﬂfj,tfl) (13)

And the skip-edge score is the negative of the total transition probabilities at
the last time point:

t
g(mivaivstat) = - Z loglt (]‘4)

’
t =s¢

where the parent set a; has only one gene at time point s;. As there can be
many time-delayed skip features between two genes, we choose the time delay
which has the highest normalized a posterior probability. Normalization is done
by dividing the total probability by length of skip-edge.

The linear feature model is obtained from the Bayesian network:

f(@i, ai—r), t) = logp(wilai, 0;) (15)

where a; is parent set from any of previous r time points. The score of the
structure now becomes

Ing(xl‘al) X f(xla Qi(t—r:t); t) + ,U’g(xh g, St t) (16)
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Since we have a single parameter p, it can be simply determined by repeated
trial.

In Figure [ the edges of three genes in the first six time points can be viewed.
The dashed edges are linear r = 1,2 order edges. The solid directed edge is
an example of skip-edge over three time points which models a long-distant
dependency.

3.3 k-Skip Validation

Validation of GRN is often done with the use of experimentally verified interac-
tions listed in corresponding PPIN. It is presumed that probabilistic influence
flows in the graph and genes g; and g; maybe connected if there is an unblocked
path g; — g1 — g2 — .... = gr — g; in the PPIN. Since PPI data available is
undirectional, the true structure of S is predicted by using a k-skip validation
model [9]. The k-skip validation model looks for one or more genes that are
skipped when predicting an interaction.

Consider two genes, g; and g;, interacting in the GRN, The k-skip validation
model checks for a cascade of k genes (g1, g2, ...., gx) such that any gene g. in
the cascade interacts with the next gene g.1 where ¢ € {1,2,..,k — 1}. Lastly
g; must interact with g, and g; to interact with g;. Some examples are shown
in Figure 2t Interaction Cln3-Cdc28 is predicted using microarray data and is
also found in PPIN; Mbpl-Cln3 is not found in PPIN, however a 1-skip form
Mbp1-Swi4-ClIn3 exists in PPIN; Similarly a 2-skip form of Exg2-Htb2 will be
Exg2-Hsp82-Spt15-Htb2.

A DBN chooses parent-child relations with the highest likelihood based on the
time-series microarray data and assumes a first-order Markov chain. However,
many time-delayed interactions are known to exist and this causes skipping of
genes. The k-skip validation could expand a predicted GRN as well as correct
using information from PPIN. It has been previously reported that 1-skip and
2-skip forms are common in predicted GRN.

k-skip Validation

— PPN

@ @ — — — Predicted GRN

; Leni) o
2-skip Exg?2 Hsp82] Spt15 Htb2
Q it B

Fig. 2. k-skip validation model looks for one or more genes in the PPIN that were
skipped while predicting gene interaction. Dashed lines are predicted false positives of
GRN and solid lines are PPIN.
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4 Results and Discussion

We evaluated our method on a dataset acquired in cell-cycle regulation of yeast
[10]. The microarray dataset was taken from Spellman et al. [I0] which has
mRNA measurements of 6,178 genes under different experimental settings. The
expression values range from -2 to 42, which were normalized and discretized
into levels O(under-expression) and 1(over-expression), respectively. We chose
24 time points of cde-15 cell cycle arrest ranging from 10 to 290 min. Yeast
cell-division cycle consists of four main phases: genome duplication (S phase),
and nuclear division (M phase), separated by two gap phases (G1 and G2). The
S-G1-M-G2-S form a cycle for cell duplication. Phase specific gene expression
profiles were extracted based on the list given in [I0]. The PPIN dataset for
validation was downloaded from BioGRID (Biological General Repository for
Interaction Datasets) [I1]. It has over 50,000 experimental as well as literature-
derived interactions for the genome. Phase specific prior PPIN for the pathway
was derived from the validation set. Using phase specific PPIN network and gene
expression profiles, we looked for skip-edges.

For expression data discretized into two levels O(under-expressed) and 1(over-
expressed), we consider 7 time points (9 to 16) of peak activity for 118 genes in
G1 phase of cell-cycle. Table 1 shows that a skip feature captures the correlation
among non-consecutive time points. A chi-square test shows that consecutive
time points ¢ and ¢ — 1 were not significantly correlated with a p-value 0.77, while
noncosecutive time points s; and ¢ where s; € {1,2,3,...,t — 2} are correlated
with a p-value less than 0.001. It can be seen that there are 9146 skip-edges.

A genetic algorithm (GA) was implemented to find the optimal structure of
the instantaneous network of GRN [I2]. A solution individual C' = {c¢;i;}nxn
where ¢;; € {0,1,...,7} denotes the strength of the interaction between genes 4
and j, and 0 means no interaction. We used highest time-delay as the order of an
interaction in PPIN and a random order for unknown interactions. Each individ-
ual in the GA allowed upto three parents for a gene. The GA chooses the network
with best combination of skip and linear edges (Eq.[IG]). Simulation was done at
different numbers of individuals (N) and generations (G) (N=200/300/400 and

Table 1. Contingency tables for 118 genes in G1 phase, at peak activity (time points
9 to 16) for yeast cell cycle data. Chi-square test shows that the adjacent expressions
;¢ and x;;—1 are not correlated with p-value = 0.77, however expressions at far away
time points z;+ and x;s, where s¢ € {1,2,3,...,t — 2} clearly influence each other with
a p-value < 0.001.

it = 0 x;+ = 1 Chi-square P-value
Linear edge
Tji—1=1 518 1954 0.08 p=0.77
zj0o1=0 152 554
Skip edge 96.46 p < 0.001
Ti. =1 2848 9146
zjs, =0 2512 10918
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Fig. 3. k-skip validation to compare Gibbs prior and skip-chain models on five datasets
in yeast cell-cycle: (a) 16 genes from G1-S phase (b) 36 genes from S phase (c) 34 genes
from G2 phase (d) 60 genes from M phase and (e) 118 genes from G1 phase. Number
of correct predictions by skip-chain is almost twice those predicted by Gibbs prior.

G=300/400/500). The GA stops when the maximum number of generations is
reached or if the score does not change for 20 consecutive generations. The best
prediction among all five runs was considered.

Previously, PPIN have been fused with GRN using Markov random field as the
prior network [4]. The interaction potential for a PPIN validated interaction is
defined by the user. The entropy P(.S) then becomes a sum of interaction poten-
tials for a predicted GRN. Appropriate weights of the PPI edge in Gibbs random
field and skip-chain DBN which gave best prediction were got by repeated trial.
The appropriate weight for 16 genes with 4678 skip-edges was found to be 40,
as further increase in weight did not improve prediction. We approximately used
80 for 36 genes, 160 for 60 genes and so on.

The above procedure was carried out for five sets of genes (i) 16 genes in
G1-S phase (ii) 36 genes in S phase (iii) 34 genes in G2 phase (iv) 60 genes
in M phase and (v) 118 genes in G1 phase (Figure B]). For all five datasets
our method outperformed the previous approach of fusing PPIN as a Gibbs
prior. The sensitivity approximately doubles in all cases while the specificity
remains high (Table 2). We conclude that the method is robust to the increase
in the number of genes. Unlike Gibbs prior, the skip-chain model consider’s



Fusion of Gene Regulatory and Protein Interaction Networks 223

Table 2. Comparison of fusion of GRN and PPIN for Yeast cell cycle data by using a
Gibbs prior and skip-chain model

Gibbs prior Skip-chain model
Number of Genes Sensitivity Specificity Sensitivity Specificity
16 G1-S 0.35 0.73 0.65 0.93
36 S 0.59 0.86 0.74 0.88
34 G2 0.34 0.88 0.99 0.99
60 M 0.1 0.9 0.3 0.9
118 G1 0.1 0.95 0.21 0.96
a) Effect of Markov order b) Effect of # of states
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Fig. 4. k-skip validation of a predicted GRN for 16 G1-S phase genes of Yeast cell cycle
(a) Increasing the order of a linear edge decreases the number of correct predictions.
(b) Increasing the number of discrete states does not show any significant change in
prediction performance.

the time delayed interaction between two genes. It is also able to distinguish
between different interactions while Gibbs prior assigns equal weights to all PPIN
interactions. We only found 1-skip or 2-skip cascades and no 3-skip cascades were
found in all the datasets. The number of 2-skip was also higher in the larger
networks (see Figure [)).

A few interactions were seen outside the prior network, suggesting missing
members of a pathway. Increasing the Markov order of the DBN causes overfit-
ting, this could be because of redundant effects of skip-chain and the higher-order
DBN(Figure[dh). Here we have considered binary states {0, 1} to represent under
expression and over expression of a gene. Increasing the number of states did
not give a significant increase in performance (Figure @b). It might however be
useful when applied to other datasets with higher noise.

5 Conclusion

Higher-order dependencies are significant for time-series gene expression data
analysis when deriving gene regulatory networks. We propose a method for ef-
fective fusion of GRN and PPIN by introducing skip-edges found on PPIN into
GRN predicted by first-order DBN modeling. This almost doubles the sensitivity
of GRN, compared to the earlier modeling using Gibbs distribution while the
number of false positives remains same.
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Feature functions are a good way to include prior knowledge into a gene-
regulatory network. The method is found to be robust when applied to larger
networks. The approach is computationally efficient. Here, we have only con-
sidered interactions where both genes have similar expression at different time
points. Similar modeling can be done for activation, inhibition and feedback
events of causal networks of genes.
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Abstract. Network-based phylogenetic analysis typically involves representing
metabolic networks as graphs and analyzing the characteristics of vertex sets
using set theoretic measures. Such approaches, however, fail to take into account
the structural characteristics of graphs. In this paper we propose a new pattern
recognition technique, TopEVM, to help representing metabolic networks as
weighted vectors. We assign weights according to co-occurrence patterns and
topology patterns of enzymes, where the former are determined in a manner
similar to the 7f-Idf approach used in document clustering, and the latter are
determined using the degree centrality of enzymes. By comparing the weighted
vectors of organisms, we determine the evolutionary distances and construct the
phylogenetic trees. The resulting TopEVM trees are compared to the previous
NCE trees with the NCBI Taxonomy trees as reference. It shows that TopEVM
can construct trees much closer to the NCBI Taxonomy trees than the previous
NCE methods.

Keywords: TopEVM, phylogenetic analysis, metabolic network, co-occurrence
pattern, document clustering, topology pattern, degree centrality, evolutionary
distance.

1 Introduction

The objective of phylogenetic analysis is to reconstruct the evolutionary relationship
among different species and to display them in a tree-structured model called a phy-
logenetic tree [1]. Applications include the design of new drugs and the reconstruction
of the history of infectious diseases [2]. Most previous research [3] in this area has been
based on sequence alignment but these sequence-based approaches are easily influ-
enced by horizontal gene transfer (HGT) [4, 5]. An alternative to this is network-based
phylogenetics analysis, which compares the homogeneous biological networks of or-
ganisms. They often make use of metabolic networks and take the quantified difference
between these networks as the evolutionary distance.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 225{236,[2008.
© Springer-Verlag Berlin Heidelberg 2008
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A metabolic network is a hierarchical, graph-represented abstract of an actual me-
tabolism. Composed of thousands of metabolites, enzymes, reactions and the rela-
tionships among them, global metabolic networks are too large and complicated to be
compared element by element. So, for comparison purposes, the vertex sets of graphs,
rather than the entire graph, is common to use. In such cases, the evolutionary distances
are determined by applying set theoretic measures [6-10]. For example, Aguilar et al
[11] treat the organisms as enzyme sets from the view of metabolism, building a binary
vector for each organism according to the presence or absence of the enzymatic func-
tions. Using the NCE (Number of Common Enzymes) method and a normalized
Hamming distance, they construct phylogenetic trees by creating a distance matrix for
each metabolic class. Forst et al [8] construct ‘clean’ metabolite-reaction bipartite
graphs to represent metabolic networks. Using the Jaccard distance as the evolutionary
distance measure, they construct the distance matrix by taking organisms as reaction
sets. Tohsato [7] consider metabolic networks as enzymatic reaction sets. Also using
the Jaccard distance, she determines the evolutionary distance matrix and constructed
phylogenetic trees. One drawback of such set-theoretic methods is that they do not
usually take into account the edge information, and therefore they do not have enough
topological characteristics for the network comparison, especially the topological im-
portance of vertices [9, 12, 13].

In this paper we propose a new pattern recognition technique, TopEVM, for use in
phylogenetic analysis. TopEVM avoids a common drawback of set-theoretic methods in
that it takes account of the structural characteristics of graphs by representing metabolic
networks as weighted vectors. We assign the weights based on the co-occurrence and
topology patterns of enzymes in organisms, where the co-occurrence patterns are de-
termined using a method similar to the Tf-Idf approach in the document clustering and
the enzyme topology patterns are determined according to the degree of centrality of
enzymes. By comparing the weighted vectors of organisms, we determine the evolu-
tionary distance matrices for the construction of phylogenetic trees. Comparing to the
previous set-theoretic methods, TopEVM can produce phylogenetic trees closer to the
taxonomy trees of NCBL

The remainder of this paper is organized as follows. Section 2 elaborates the
TopEVM approach. Section 3 describes our experiments and results. Section 4 provides
conclusion and outlines directions for the future work.

2 TopEVM: Constructing Phylogenetic Trees by Using Enzyme
Co-occurrence and Topology Patterns

In this section we describe the operation of the TopEVM approach, which proposes the
use of a frequency weighting scheme and a topological vector. This approach proceeds
from the observation that it is possible to regard the construction of species trees in
phylogeny as similar to the process of distance-based clustering of organisms which
may in turn be seen as analogous to document clustering, with an organism as a
document and an enzyme as a term. This allows us to apply feature extraction ap-
proaches and the hierarchical clustering methods to the construction of phylogenetic
trees.
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Fig. 1. The TopEVM approach

The first step in the Top EVM approach is to set up a matrix to record how frequently
an enzyme occurs in a given collection of organisms, and extract enzyme co-occurrence
patterns according to this matrix. By analogy with the Tf-Idf weighting scheme used in
document clustering, we define Inverse organism frequency (lof), a weight vector, to
extract enzyme co-occurrence patterns. In the second step TopEVM uses a topological
weight vector, TopW, to extract topologically important enzymes, the enzyme topology
patterns, for use as features. This is done by representing metabolic networks as en-
zyme graphs and then counting the degree centrality, one measure of topological im-
portance, of enzymes. The next step is to normalize the enzyme co-occurrence and
topology weighting schemes. These are then used to convert the original frequency
matrix into a new matrix in which rows denote the final Topology-weighted Enzyme
Vector Model (TopEVM) of organisms. Finally a distance matrix is established by
comparing the TopEVM of organisms with Soergel Distance as the distance measure.
The distance matrix is used to construct the phylogenetic trees by use of some dis-
tance-based clustering approach, e.g., Neighbor Joining (NJ) method. Figure 1 shows
the flow of the entire procedure.

2.1 Inverse Organism Frequency: Extracting Enzyme Co-occurrence Patterns

The first step to extract the co-occurrence patterns of enzymes is to set up a matrix to
record how frequently an enzyme occurs in a given collection of organisms. For this
purpose, we define Enzyme Vector Space to denote the organism-enzyme frequency
matrix and Enzyme Vector Model to denote the organisms as enzyme frequency vectors.
It should be noted that we make two assumptions in the definitions. First, we assume that
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enzymes are arranged in the ascending order of their EC numbers' and the order is kept
constant. Second, we assume that organisms in the collection are arranged in an arbi-
trary but constant order.

Enzyme Vector Space. Let O be a collection of m organisms o;, i = 1..m. Let E be all
the n enzymes e, j = 1..n, of at least one organism in O. The Enzyme Vector Space O™
is defined through the organism-enzyme frequency matrix, EF, where ef; is the
frequency of the j enzyme, j = I..n, in the i organism.

Enzyme Vector Model. Given an enzyme vector space O™ and its organism-enzyme
frequency matrix, EF, the enzyme frequency vector for the i” organism o; is defined as
the i" row of EF. We call this representation of organisms as Enzyme Vector Model.

Document clustering generally assumes that the total term frequency is not always in-
dicative of a term’s information content. To account for this disparity, the Inverse
document frequency (Idf) weighting scheme is often applied [14]. We find a similar
situation when we compare the enzyme frequency vectors of organisms. That is to say,
the frequency of an enzyme appeared in all the organisms cannot be assumed to indi-
cate its information content. To deal with this, we apply a weighting scheme in this
study, which is similar to the Idf weighting scheme. We call this the Inverse organism
frequency (lof) weighting scheme and define it as follows.

J1n

Organism Frequency. Given an enzyme vector space O™ and its organism-enzyme
frequency matrix EF, the Organism Frequency (of;) of a given enzyme e;, j = 1..n, is
defined as the number of organisms that contain the enzyme e;.

Inverse Organism Frequency. Given a enzyme vector space O™ and its
organism-enzyme frequency matrix EF, the Inverse organism frequency (lof;) of a
given enzyme e;, j = /..n, is defined as the logarithm of the quotient of dividing the total
organism number by its organism frequency (of)). That is,

Iof. =1 m 1
Of_l Og(/z*‘i I(efy >0)J ( )

1 if .cond.is. fulfilled

0 otherwise

and

where I(,) denotes the indicator function, ](mnd) :{

Zil (ef;50) is the organism frequency of e; , namely of;.

Once lof; has been assigned to enzyme e;, the original frequency of enzyme e; in
organism o;, namely ef;, can be transformed into a new weighted frequency ef;;’,

eij': Iofj-el.j (2)

Since the lof weighting scheme gives lower weights to the enzymes found in a large
number of organisms and higher weights to those found in fewer organisms, the lof
weights emphasize organism-specific enzymes.

' The EC (Enzyme Commission) number is a numerical classification scheme for enzymes.
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2.2 Topology Weight: Extracting Enzyme Topology Patterns

Some enzymes in a metabolic network will have a higher average connectivity than
others [15]. On the assumption that this higher average connectivity represents topo-
logical important information, we define Topology Vector Space to denote the organ-
ism-enzyme topology matrix and Topology weight (TopW) weighting scheme to select
more strongly connected enzymes.

Topology Vector Space. Let R be a collection of m metabolic networks. r; is con-
structed for the i™ organism o;, i = I..m. Let E be the collection of all the n enzymes e;,
j = 1..n, which are contained by at least one metabolic network in R. The Topology
Vector Space R™ is defined through the organism-enzyme topology matrix, T, where #;
is the topological importance of the j” enzyme in the metabolic network of the i” or-
ganism, j = I..n.

In this study, the degree centrality, the number of direct neighbors of a node [16], is
regarded as the measure of the node’s topological importance. In order to distinguish
the absent enzymes from the present enzymes with degree as ‘0’, we assign the degree
centrality of the absent enzymes as ‘-1’ in the topology matrix 7'

mn

Topology Weight. Given a topology vector space R™ and its organism-enzyme
topology matrix T, the Topology weight (TopW;) of the given enzyme e;, j = I..n, is

defined as:
3, .I(,,Zy
TopW, =<"" 2
opW, zi Iy o ()

where [ 0 is an indicator function defined as in Eq 1, and 2_1“ 0 is the total number of
metabolic networks in R containing enzyme e;.

The TopW weighting scheme gives higher weights to the enzymes with higher av-
erage degree, which strengthens the importance of more highly-connected enzymes.

2.3 Normalization: Eliminating the Influence of Vector Length on Distance

The difference of the vector length can influence the calculation of the distance be-
tween vectors. Iof and TopW weighting schemes help select the ‘important’ enzymes as
the features of organisms, but result in the organism vectors with different lengths.
Therefore, it is necessary to normalize the weighted organism vectors before calcu-
lating the distance between them.

Let X denotes the weighted and normalized organism-enzyme frequency matrix,
where the element x;;, i = I..m, j = I..n, is given by

w, X f.
= -’—f”, w; = lof , xTopW,

i 3)
/ Zk (Wk X Jix )2

The rows in X are the final representative of organism vectors.

ijs
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2.4 Soergel Distance: Calculating the Evolutionary Distance

Soergel distance is one of the distance measures which are commonly used to calculate
the evolutionary distance, a crucial measure of the similarity of organism vectors. It has
the advantages that its range is limited to O~1 and it obeys the triangular inequality [17].

Suppose X4 and Xp are two vectors of equal length n, the Soergel Distance between
them is defined as:

n
Z ‘xjA - ij‘
__
- n
2 max (x.fA ’ lei)
=

D,y “)

The distance matrix can be established by calculating the Soergel distance between
organism vectors pair-wisely. It can be used to construct the phylogenetic trees using a
suitable distance-based clustering algorithm, e.g. Neighbor-joining (NJ) method.

3 Experiments and Results

In this study, enzyme and reaction data are obtained from the database created by Ma
and Zeng [18]. The Ma and Zeng database consists of five tables: reaction, enzyme,
react, connect and organism, and contains 3663 enzymes and 107 organisms (8 Eu-
karyotes, 83 Bacteria and 16 Archaea) in total. We acquire enzyme frequency infor-
mation from enzyme, and construct the enzyme graphs for each organism from enzyme
and reaction.

Although the TopEVM approach is capable of dealing with large collections of or-
ganisms, for the sake of concision, in this explanation we select only eight organisms:
rno, mmu, afu, mja, nme, hin, lin and bsu.

Table 1 lists the details of these 8 organisms: their ID in KEGG database (KEGG ID),
their full name(Organism), the Kingdom they belong to (Kingdom)their ID in NCBI
Taxonomy [19] (NCBI Tax Id), and the number of enzymes they contain (Ng).

Table 1. The details of the 8 organisms

KEGG NCBI

D Organism Kingdom Tax ID Ng

no Rattus norvegicus Eukaryota 487 416
mmu Mus musculus Eukaryota 727 470
afu Archaeoglobus fulgidus Archaea 1423 277
mja Methanococcus jannaschii Archaea 1642 244
nme Neisseria meningitides ProteoBacteria 2190 369
hin Haemophilus influenzae ProteoBacteria 2234 386
lin Listeria innocua Bacteria Firmicute 10090 388

bsu Bacillus subtilis Bacteria Firmicute 10116 504
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3.1 Distribution of the Iof Weights

According to the definitions in Section 2.1, omitting the absent enzymes in all of the 8
organisms, we calculate the Jof weight vector of length 1063. The lof weights values
distribute over 8 points. Table 2 displays the value of Ny along the lof Weights. Nearly
30% enzymes have the highest lof weights. 2.1% enzymes will be neglected for their
lof importance are 0. Moreover, there are around 60% enzymes with the lof value over
1, and 40% between 0 and 1. Since the lof weighting scheme gives lower weights to the
enzymes occurring in a large number of organisms, it comes that the lower the lof value
is, the more organisms the enzyme spreads in. This observation also confirms the
conclusion of Liu et al [13]. That is, most of the enzymes occur in several organisms
they prefer, while only few enzymes occur in most of the studied organisms.

Table 2. The statistics of the number of enzymes along the lof weights

Iof Weight 2.08 1.39 0.98 0.69 0.47 0.29 0.13 0
Num Enzymes 318 310 102 118 71 85 36 23
Percentage(%) 30 29.1 9.6 11.1 6.7 8.0 3.4 2.1

3.2 Distribution of the TopW Weights

In order to calculate the TopW weights, we represent the enzyme networks upon the
following principles: vertices denote individual enzymes and arcs denote the rela-
tionships between them; if one enzyme’s product is the substrate of another enzyme,
then there’s an arc directed from the former enzyme to the latter. The bidirectional arc
is replaced by two individual arcs with opposite direction.

140
(EC32220)|  |(EC3.4.25.1)
120 SEC3GII7,1T5)
100
" (EC 3.2.2.20, 82) _(EC 3.6.1.29, 80.5)
< 60 - ? -

0 200 400 600 800 1000 1200
Enzyme (j)

Fig. 2. Distribution of the TopW weights. The x-coordinates denote the ordered enzymes. The
y-coordinates denote the corresponding TopW weight value of the enzyme. The coordinates of
the top 3 enzymes are marked on the figure. The continuous range between two vertical dash
lines denotes the range of enzymes whose TopW weight is 0.
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Table 3. The enzymes with the top 8 TopW value

Order 1 2 3 4 5 6 7 8
Enzyme 3.6.1.17 2.74.10 3.6.1.29 3.6.1.15 2746 3.6.13 3.63.1 4.6.1.1
TopW 115 82 80.5 65 64.25 63.5 63.5 62.3
1200 500
a) b
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Fig. 3. Distribution of the number of enzymes along the TopW weights It contains two diagrams.
Fig 3a) shows the distribution of enzymes all over the range of the TopW weights. Fig 3b) ex-
pands the TopW weight range of 0~20.

We construct the TopW weight vector for the ordered enzyme array on the basis of
the definitions in Section 2.2. Fig.2 shows the distribution of the TopW weight values.
Most of the TopW weights are small but several are very big. For example, dinucleoside
tetraphosphatase (EC 3.6.1.17)’s TopW weight is 115, AMP phosphotransferase (EC
2.7.4.10)’s is 82, and bis(5'-adenosyl)-triphosphatase (EC 3.6.1.29)’s is 80.5. This
observation indicates that as a topology pattern, the TopW weights of few enzymes are
high, while that of most enzymes are low. We also notice that from EC 3.2.2.20 to EC
3.4.25.1, there is a gap in which 110 enzymes have TopW values as 0. They are part of
glycosyl hydrolases (EC 3.2.-.-), and all of the hydrolases acting on ether bonds (EC
3.3.-.-) as well as peptide bonds (EC 3.4.-.-). It is mostly due to either the large absence
of the enzymes or their possible isolation.

Table 3 displays the enzymes with the top 8 TopW weights. It shows that the hy-
drolases acting on acid anhydrides (EC 3.6.-.-) have more connection, which means
hydrolases may be more topologically important than the enzymes with other function.

Fig 3 shows the distribution of the number of enzymes along the TopW range. It can
be seen in Fig 3a) that more than 90% of enzymes are found within the Top W range of
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0~20 (the first tallest bar). Fig 3b) expands the first bar of Fig 3a), and displays its
details of the distribution. As is shown in Fig 3b), there are 436 enzymes in the TopW
range of 0~2. The number is nearly 41% of the total number of the enzymes. It indicates
that most of nodes have very low connectivity but a handful of nodes (hubs) have much
higher connectivity in the constructed enzyme networks. This result is in accordance
with the scale free property of metabolic networks, and shows that enzymes become
topologically different during evolution [15].

a) — ma

L afu

lin

_E bsu

nme

_|: hin

— e

L mmu
b) rno c) rno
mmu mmu
bsu ——  bsu
hin hin
AI_E lin 4|_E lin
nme mja
|: afu afu
mja |: nme

Fig. 4. The comparison of a) the NCBI tree, b) the TopEVM tree, and c) the NCE tree

3.3 Construction and Evaluation of TopEVM Phylogenetic Tree

We calculate the distance for each organism pair by use of Soergel distance, and obtain
the distance matrix (Table 4) for constructing the phylogenetic tree. With the help of
the Phylip [20] package, we use NJ (Neighbor Joining) method to do the construction.
The resulting tree is rootless, which is displayed as Fig 5b) by use of TreeView [21].
We also obtain the phylogenetic tree from NCBI Taxonomy (Fig 5a) as the reference,
and construct trees using the NCE method (Fig 5c) for evaluation.

As is shown in the TopEVM tree, the two Archaea afu and mja are grouped together
undoubtedly, which is in line with the taxonomy from NCBI, and so do the two Eu-
karyotes rno and mmu. In the NCE tree, although rno and mmu are grouped together,
the 4 Bacteria and 2 Archaea are mixed up.

We use TOPD/FMTS [22] to evaluate the similarities of trees. This software is com-
plemented with a randomization analysis to test the null hypothesis that the similarity
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Table 4. The resulting distance matrix of the 8 organisms upon TopEVM

mmu o afu nme mja hin lin bsu
mmu 0.0000 0.1079 0.7201 0.7224 0.6754 0.6905 0.7468 0.6790
rno 0.1709 0.0000 0.7613 0.7793 0.7520 0.7613 0.8020 0.7073
afu 0.7201 0.7613 0.0000 0.2737 0.4409 0.4911 0.6667 0.5287
nme 0.7224 0.7793 0.2737 0.0000 0.4471 0.3951 0.6266 0.5617
mja 0.6754 0.7520 0.4409 0.4471 0.0000 0.2395 0.5382 0.3533
hin 0.6905 0.7613 0.4911 0.3951 0.2395 0.0000 0.4438 0.3129
lin 0.7468 0.8020 0.6667 0.6266 0.5382 0.4438 0.0000 0.2486
bsu 0.6790 0.7073 0.5287 0.5617 0.3533 0.3129 0.2486 0.0000

HIHHHHHTH R R topd NCBI - TopEVM #H#HHHHHHHHH T
* Percentage of taxa in common: 100.0%

* Nodal Distance (Pruned/Unpruned): 0.906327 / 0.906327

* Nodal Distance random (Pruned/Unpruned): ( 1.745 +/- 0.276) / ( 1.745 +/- 0.276 )

HIHHHHHHTH AR A topd NCBI - NCE #HtHHHHHHTHHHHHHHHHHHH
* Percentage of taxa in common: 100.0%

* Nodal Distance (Pruned/Unpruned): 1.636634 / 1.636634

* Nodal Distance random (Pruned/Unpruned): ( 1.741 +/- 0.258 ) / ( 1.741 +/- 0.258)

Fig. 5. The comparison result of the TopEVM tree and the NCE tree with the NCBI tree as ref-
erence

between two trees is not better than chance. With the NCBI tree as the reference, the
comparison result of the TopEVM tree and the NCE tree is showed in Fig 6, which shows
the TopEVM tree is closer to the NCBI tree with a less Nodal Distance [23] as 0.9.

4 Conclusion and Future Work

This paper proposes a new pattern recognition technique, TopEVM, which represents
the metabolic networks as weighted vectors. By calculating the distances among these
weighted vectors, evolutionary distance matrices are determined for the construction of
phylogenetic trees. Comparing to the previous set-theoretic methods, our TopEVM
method results a phylogenetic tree closer to the taxonomy tree of NCBI, which shows
TopEVM can be a very useful approach for the network-based phylogenetic analysis.

Nevertheless, our experiments so far have considered only the T7f-Idf weighting
scheme to integrate enzyme’s frequency content. It is hard to say that there is no other
weighting scheme which is more suitable. Besides, among the extensive topological
indices, we only considered the degree centrality; we would also like to consider more
topological information for improving our model further.
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Abstract. Reconstructing GRN from microarray dataset is a very challenging
problem as these datasets typically have large number of genes and less number
of samples. Moreover, the reconstruction task becomes further complicated as
there are no suitable synthetic datasets available for validation and evaluation of
GRN reconstruction techniques. Synthetic datasets allow validating new
techniques and approaches since the underlying mechanisms of the GRNSs,
generated from these datasets, are completely known. In this paper, we present
an approach for synthetically generating gene networks using causal
relationships. The synthetic networks can have varying topologies such as small
world, random, scale free, or hierarchical topologies based on the well-defined
GRN properties. These artificial but realistic GRN networks provide a
simulation environment similar to a real-life laboratory microarray experiment.
These networks also provide a mechanism for studying the robustness of
reconstruction methods to individual and combination of parametric changes
such as topology, noise (background and experimental noise) and time delays.
Studies involving complicated interactions such as feedback loops, oscillations,
bi-stability, dynamic behavior, vertex in-degree changes and number of samples
can also be carried out by the proposed synthetic GRN networks.

Keywords: Causal model, synthetic gene regulatory networks, microarrays.

1 Introduction

The reconstruction of gene regulatory networks (GRNs) using microarray datasets is
amongst the major challenges currently being investigated in the field of molecular
biology research. Reconstruction of GRN provides researchers an opportunity to form
new hypotheses related to the behavior of biological systems a-priori to the
experiments to be carried out, which in turn prevents performing expensive and
lengthy biological experiments thereby expediting the discovery process. In domains
other than bioinformatics, datasets studied typically have very few features and large
number of samples. However, in case of microarray dataset, they invariably have
large number of genes with very few samples. Consequently, traditional statistical
approaches for analyzing these microarrays become inadequate and the need for
applying other techniques becomes necessary. A plethora of modeling and inference
techniques, starting from standard multivariate statistics to machine-learning and
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heuristics [1-5], are available to reconstruct GRN from large-scale gene expression
data sets. While using these techniques, the validation and evaluation of methods
using real life datasets is limited since such datasets may not always be properly
documented. In other words, the validation is limited by the information that was
previously established independently by other approaches.

A synthetically reconstructed GRN, while preserving the characteristics of the
underlying data generation system, allows different experiments to be performed to
investigate the effect of parametric variations. A synthetic dataset permitting large
variety of parametric variations is a possible solution which will allow more rigorous
testing and evaluation of methods for reconstructing GRNs. Although limited, efforts
for generating synthetic data for GRN reconstruction are available. Mendez et al [6]
proposed a method based on differential equations for generating synthetic microarray
data. However, the methods allows variation of only noise and topology parameters
and does not include the flexibility of varying single or combination of parameters for
validating individual features of the GRN methods. Eisen et al [7] generated synthetic
dataset and applied for studying hierarchical clustering for gene expression data. As
the method suffered from the lack of knowledge about the GRN under study, any
conclusion vis-a-vis the underlying biology became uncertain. Further, because the
data sets were different in each of the studies carried out, it was not possible to make
any comparisons amongst studies that employed this approach. Friedman er al [1]
generated a Boolean synthetic data to validate the robustness of their Bayesian
methods. Although useful for generating synthetic datasets, none of these techniques
were suitable to examine model specific features such as time-delays, feedback loops,
dynamic behavior, etc. Furthermore, all these techniques were limited in their ability
to generate a variety of synthetic networks at different stages of refinement of GRN
reconstruction methods.

In this paper, we present a novel causal modeling method for synthetically
generating GRN which includes all GRN related features that are commonly modeled
in reconstruction algorithms. The variation of these features, in a controlled way,
determines the desired level of complexity of the synthetically generated gene
expression data. The proposed synthetic generation of networks is along the lines of
our ongoing work on causal modeling for reconstruction of real-life GRN [8-12]
wherein we have investigated the application of causal modeling technique to
Saccharomyces cerevisiae (yeast) [15] microarray dataset. The obtained results are in
close agreement with known biological findings thus validating the modeling process.
Briefly, the causal GRN reconstruction from microarray begins with the application
of a network structure construction algorithm resulting in a large number of possible
GRN structures. A continual evaluation and evolution of these structures results in a
structure that best fits the microarray data results and is considered as the desired
GRN model. The complexity of reconstruction is increased gradually at each stage of
refinement of the model. The rest of the paper is structured as follows: Section 2, a
brief overview of causal modeling is given. Section 3 elaborates on the system and
methods used to realistically generate the synthetic data. Section 4 provides
experiments and results. Finally, section 5 provides concluding remarks on the paper
and some future work.
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2 The Causal Modeling Approach

A causal GRN structure is represented by a directed graph whose nodes represent the
genes and directed edges between nodes indicate their causal relationship. Pioneering
work in causal modeling was reported by Pearl er al, and Sprites et al [13, 14] who
proposed algorithms to infer a causal structure from experimental data by using
partial correlations if the underlying causal structure was a directed, acyclic graph
(DAG). In our approach for causal GRN reconstruction, the central step of
determining the fitness of the data given the whole network is decomposed into
determining the set of scores of local models that includes fitness of structure,
direction of causality and sign (positive/ negative) of regulation. The task of network
reconstruction is cast into a search for candidate gene networks whose scores are
high. To implement a heuristic search method, we apply a genetic algorithm (GA),
whereby creating and evolving different networks to eventually obtain a network that
best fits the microarray data. Due to the stochastic nature of the GA, the GA is
repeated few times and the resulting network structures are combined in a predefined
manner to reconstruct the final gene network. While evaluating the fitness, the
putative network is actually decomposed into Markov Blankets (MB) and conditional
independence tests are applied in order to detect whether or not connections are direct
or indirect. The direction and sign of regulation are recovered by estimating the time
delay and correlation between expression profiles of pairs of genes.

3 Methodology for Generation of Synthetic Data

The proposed method for generation of synthetic networks allows for various
parametric variations, such as, network topology, varying levels of complexity of
interaction, time delays, number of samples and amount of noise in the data.

Figure 1 shows the flow chart of the mechanism of proposed system for synthetic
network generation. The synthetic network generator, written in MATLAB, offers an
option for choice of topologies that determines the structure of the network and
specifies interactions between the genes. With this option, we can generate any
number of networks having different topologies. In the next step, by choosing
interactions and setting equation parameters, the full dynamics of the gene network
(such as feedback loops, oscillations and so on) is described and can be implemented
in specified pre-defined ways to produce a required level of complexity of gene
interactions. Next, for generating discrete samples, the continuous responses of the
genes in the synthetic network are sampled at different time instants to produce a
noiseless time course data. Next, to make the sampled data realistic, time delays are
added to the samples in a specified manner. Following this, noise is added to the data
according to the Gaussian or gamma distributions. Finally, gene expression ratios are
calculated which realistically represent the real-life microarray data set.

In the following section, the entire process of generating the network topology and
corresponding gene interactions is described in detail.
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Synthetic GRN Generator
START

! Choice of Network Topology

Hand-Crafted topology Random topology Scale free topology

Hierarchical topology Small World topology

Parameters: n, e, d;, d,

Gene Interactions & Setting Transition Function Parameters
Addition of loops, oscillations, dynamics behavior, positive/negative signs, Parameter: ¢

1l

Simulation setting to Sample the data at various intervals

Parameters: N,_Conditions (N)

Network Transmission Delay
Parameters: dl, F

il

Biological and Experimental Noise
Parameters: B, E

[l

Calculating Synthetic GRN data

Fig. 1. Proposed methodology of synthetic gene expression data generation, The symbols used
are: n - number of genes, e — number of edges, di — incoming degree distribution, do — outgoing
degree distribution, ¢ — percentage of complex interactions, N — number of samples, Condition
(N) — specifies experimental conditions for each sample as in real each sample is an
experiment, dl — delay levels, F — probability distribution of delays, B — percentage of
biological noise in terms of hidden nodes, E — percentage of experimental noise.

3.1 Network Topology

As mentioned earlier, the first step of synthetic data generation is to define a network
topology. A topology is chosen by setting following three parameters:

i) Total number of genes in the network,

ii) Distribution of the incoming degree of connectivity (i.e. the distribution of the
number of parents per gene) and

iii) Distribution of the outgoing degree of connectivity (i.e. the distribution of the
number of children per gene).

Based on the incoming and outgoing degree distribution parameters mentioned
above, four different topologies are available for selection (with corresponding
distribution provided in parenthesis):
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e Random topology (Poisson distribution)

e Scale Free topology (power law distribution)

e Small World topology (power law distribution with small average
distance between genes)

e Hierarchical topology (power law distribution with inherent modular
structure)

In random topology (RND), the connectivity degree follows a Poisson distribution.
The nodes that deviate from the average are rare and decrease exponentially and the
clustering coefficient is independent of a node’s degree of connectivity [16]. In Scale
Free (SF) topology [17], the connectivity degree follows a power law distribution, i.e.
the behavior of a network system is controlled by few important nodes. Majority of
nodes have only a few connections, while some special nodes connect with many
other nodes forming a hub, i.e., most nodes are poorly connected, while a few are
highly connected (Hubs). In a Small World networks (SW) [18], the mean shortest
path is 1 ~ log(N) indicating that most nodes are connected by a short path. SW
networks are characterized by large Clustering Coefficient and small Average Path
Length. The Hierarchical network (HR) [19] integrates a scale-free topology with an
inherent modular structure by generating a network that has a power-law degree
distribution with degree exponent y = 1 + In4/In3 = 2.26.

In cases where the aforementioned topological types are not appropriate due to the
uncertainty of GRN topology, we propose another topology, which we will refer
henceforth as, ‘handcrafted topology’(HC). The choice of any of the network
topology is user-definable and can be used for checking robustness of algorithm
against topology. To generate a network topology close to real life GRN, network
structures previously described in biological literature such as E. coli [20] and S.
cerevisiae [21] were taken into account. These networks are partially random and
partially scale free i.e. the distribution of the incoming degree of connectivity follows
a Poisson distribution (random topology) while the distribution of the outgoing degree
of connectivity follows a power-law (scale free topology). A single topology or
combinations of two or more topologies to generate the gene network structure is user
definable.

At this stage, the network structure is without any complex interactions, such as
self loops, oscillations and dynamic behaviour. In the next section, we present the
inclusion of these features to the network topology.

3.2 Gene Interactions and Transition Function Parameters

After generating the topology, transition functions representing the regulatory
interactions between the genes are assigned to the edges in the network as follows:

i) Choosing the regulatory interactions
ii) Setting the transition function parameters

The entire synthetic modeling of gene networks essentially considers a causal
interaction of genetic regulation. It considers each gene to be directly affected by
number of other genes and represents the interaction as directed edges. A transition
function defines the relationship between gene and its parent genes. The genes are
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represented as continuous variables rather than discrete variables, i.e. synthetic gene
expression values are continuous rather than O or 1. First, while choosing the
regulatory interactions, the genes are represented as activators or repressors. Our
proposed method of network modeling allows for this positive or negative linear
causal relationship between the input (i.e. parent) genes and the gene under
consideration. Mathematically, these network models are based on set of linear causal
equations. Each equation corresponds to gene expression which is a function of a
positive (activation) and negative (repression) terms. When a given gene interacts
with more than one regulator, different regulators can either act independently or in a
more complex manner (such as complex combinational, short term co-activation, co-
repression or a combination) on the target genes resulting in different interactions
such as feedback loops, oscillations and dynamic behavior.

To incorporate such complexities, for each combination of a gene and its
regulators, appropriate equation is selected, depending on the number of activators
and repressors and on the user-defined settings that control the fraction of complex
interactions. For genes involved in cycles, it is possible that not all inputs of their
transition function are known during loop propagation. To model these loops, an
approximation compatible with the steady-state transition functions is chosen. This
approximation is represented by a parameter to represent complex interactions. It is an
extremely useful parameter because it allows initial performance evaluation of a
method to be done on relatively easy problems (e.g. small noiseless networks without
complex interactions between regulators). Increasingly difficult data sets can
subsequently be generated as the GRN inference method is improved or refined.
Again, setting transition function parameters involves choosing appropriate
correlation parameter settings of the transition function equations. The strength of
correlation is an important parameter and is chosen from a distribution that allows a
large variation of interaction that are likely to occur in true networks (including linear
activation functions, sigmoid functions, sinusoidal functions, etc.), while avoiding
very steep transition functions. To explain a simple chain interaction in the network
considers, for example, that x causes y and y causes z. Thatis,Xx -y — z

x(t) = Asin(Bt) ; y(t) = x(t) ; z(t) = y(t) (D)

The expression x(t) is a sinusoid with amplitude A, time period 2n/B where B is
angular frequency. In this case, the strength of correlation between x and y is 1, so the
signals are equal, but varied based on parametric specification.

3.3 Data Samples

Using the continuous gene expression output (resulting from the equations written for
each node of the synthetic network), data is sampled at either fixed or irregular time
spacing between gene expressions. The number of samples and the time step for
sampling can be chosen either randomly or it can also be user defined. The sampled
data represents the temporal state of synthetic network under different experimental
conditions. This is similar to real microarray experiments where each sample of the
dataset is an experiment that is repeated at fixed or irregular intervals of time. At this
stage, various settings needed for simulation of the network per each sample
(simulating a real experiment setup) for N sample is complete. However, note that the
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data representing real life conditions is not yet generated as time delay and noise
component are yet to be added.

3.4 Network Transmission Delays

A delay in transmission of signals emitted by genes, being an important characteristic
of all gene networks; it is important to realistically implement this feature in synthetic
datasets. In the proposed modeling approach, we implement the delay levels as a user
defined parameter which is nothing but the maximum number of samples on which
the delay can be experienced. Further, to make the modeling more realistic, we have
also made it possible to specify the fraction of interactions which have delays. Based
on the choice of this parameter, a delay distribution is obtained for the links between
the genes. Delays are implemented by simply reassigning a new simulation setting for
a particular sample explained in section 3.2 based on the delays assigned. This
simulates the delay in the real microarray dataset. The fraction of links involved in
time delay is determined using a known probability density in case it is not user
defined. Investigations involving time delay parameter variation can thus be carried
out on the datasets by incorporating/eliminating time delays.

3.5 Biological and Experimental Noise

A real life microarray data contains two types of noises, namely biological and
experimental. The biological noise corresponds to stochastic variations in gene
expression, and this noise is unrelated to the applied experimental procedures. It is
present due to, for example, environmental conditions such as temperature, pressure,
etc. While experimental noise is the noise due to the technique used to extract the
data. Both these noises also should be appropriately included in the simulated data.

Briefly, biological noise is added by the presence of hidden background nodes
which are either genes or conditions and experimental noise is added as Gaussian white
noise. First, the background hidden node (for incorporating biological noise), which is
a parameter to choose the amount of background noise, is user defined. The equations
of the background noise nodes are generally uncorrelated to the genes on which they
are acting. A limited number of input nodes are selected that mimic the external
conditions and consider the genes not linked to these input genes act as background
nodes. These are now part of the simulation set up while the data is not generated.

As the real microarray data also has experimental noise, three user defined choices
for addition of experimental noise are made available: i) Lognormal ii) Gaussian iii)
Gamma distributions. All these distributions take a percentage of the amount of noise
as input which is then applied to make the final output data noisy. However, this
experimental noise is added only after the simulated microarray data is generated.
This is explained in section 3.7.

3.6 Synthetic Network Generator Parameters

The entire flow chart for the generation of synthetic data is given in Fig. 1 which also
shows the system and the parameters controlling the synthetic data generation at
every step of the process. These parameters which are listed below can each be varied
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independently either before or during the simulation process for conducting simulated
experiments with synthetic data:

1. Choice of source network.

Size of the network in number of nodes.

Number of background nodes.

Number of available experiments and samples for each condition.
Level of stochastic and experimental noise.

Fraction of complex interactions.

Sk wn

3.7 Calculating Synthetic GRN Data

Using the synthetic network generator described earlier, simulations are next
performed to generate the synthetic microarray data. The genes without regulatory
inputs are assigned an arbitrary expression level which can be changed during an
experiment (sample). The expression levels of the genes in the network are calculated,
as specified by their transition functions, starting from the input genes. After these
noise-free expression values are computed, noise is then appropriately incorporated in
the data to reflect noise present in the real microarray data. These computed noisy
expression values can be used for analyzing the noise which a GRN reconstruction
method under investigation can handle. This feature of adding noise enables the
comparison of level of noise in dataset on the reconstruction algorithms. A gene
expression profile experiment for different time t corresponds to a vector [x;(t) ...
x,(t)]. For a set of N samples, a n x N matrix is constructed which is the final
synthetically generated microarray dataset. This dataset can be used for investigation
and evaluation of various GRN reconstruction algorithms.

4 Experiments and Results

In order to conduct tests using synthetic data set, several datasets are created by
varying network generator parameters (one or two at a time). The group of data sets
which have similar variations are categorized into one of the four groups A, B, C or D
(see Table 1). Although the experiments involved significantly large number of data
sets to test robustness of GRN methods, due to space restriction, only a limited
number of important models have been included in the paper and shown in Table 1.

The Group A consists of a set of synthetic network models which are used for
investigating methods for their robustness against network topology. With this group,
we carry out an initial level of testing since it contains no complex interactions and
also because the effect of the noise is kept low. Different sample sizes help determine
accuracy of reconstruction as generally most methods require higher sample size data
to make accurate estimations.

The Group B networks compare two different network topologies, namely SF and
RND. Compared to Group A, these are large sized networks of 500 genes and 500
interactions. Fig.2 (a) shows networks that follow a random topology (RND) while
the network shown Fig. 2 (b) is a scale-free (SF) network. From the figure, we can
observe the differences resulting due to two differing topologies. The random
topology has arbitrary arrangement of links throughout the network while the scale
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Table 1. The Synthetic data sets are organized in four groups A, B, C, D. Column 2 gives
different network topologies: Scale Free (SF), Small World (SW), Random (RND) and
Handcrafted (HC). For each group, column 3 shows the number of repeated models for a given
experiment. Column 4 and column 5 respectively give the number of genes and the edges in a
given model. Column 6 gives the % fraction of complex interactions. Column 7 gives the
network transmission delay. Column 8 gives the number of parents while column 9 gives the
%ge noise of each model. Column 10 gives number of samples for each condition.

1 2 3 4 5 6 7 8 9 10
Group Topology hljgaglfs Genes | Edges ComplZ;(ity Delay ply\;(r)ér?tfs foi]se Samples
SF 50 100 200 20 0 2 1 20, 50, 100
A SW 50 100 200 20 0 2 1 20, 50, 100
RND 50 100 200 20 0 2 1 20, 50, 100
HC 50 100 200 20 0 2 1 20, 50, 100
B SF 5 500 500 40 2 5 5 50
RND 5 500 500 40 2 5 5 50
SF 50 50 50 20 1 3 5 50
C SF 50 50 100 20 1 4 5 50
SF 50 50 200 20 1 7 5 50
D SF 10 100 200 40 1 1 5 20, 50
SF 10 100 200 30 2 2 1 20, 50
SF 10 100 200 50 -2 3 5 20, 50
SF 10 100 200 10 3 4 1 20, 50
SF 10 100 200 40 -3 4 5 20, 50
SF 10 100 200 30 4 5 1 20, 50
SF 10 100 200 50 3 10 20, 50
SF 10 100 200 10 2 1 20, 50

free network has hubs with large proportion of links in the top right corner of the
figure while lesser number of links in the rest of the figure. Note that the number of
genes and gene interactions is the same for the two cases under consideration. Since
scalability is an important feature of GRN algorithms, this group enables to justify if
the algorithm is robust in terms of size.

In Group C, the number of genes in the networks is kept fixed at 50 and the
topology chosen for study is Scale Free. The number of links is varied as 50, 100,
200. This group is useful for checking robustness of methods with respect to density
of connectivity (i.e. no. of parents per gene) along with accuracy with respect to
number of samples.

The Group D is designed to test the combinational effect of density of connectivity
and also to include varying delays and noise intensity parameters resulting in an
increasing average number of connections per gene. The D group tests are for
advanced level testing of GRN algorithms as the data generated is from a complex
complicated network of interactions. Because these gene networks are generated with
random connectivity for each of the rows in Table 1, we repeated the generation of
models for specified number of times (see column 3) and took the average results
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Fig. 2. Two illustrative network topologies of B Group: a- RND Network Topology (n=200,
e = 100, di = dp = Poisson pdf), b — Adjacency matrix (n x n) of the random topology, ¢ - Scale
Free Network Topology (n=200, di = dp = Power law pdf), d — Power Law function, f(x) on
y-axis.

from each row to get a synthetic dataset which is close to real dataset. The simulation
results from this synthetic dataset are shown in Figure 3.

For these simulations, an example network given in Table 1 is considered. . The
part of the network under consideration (also known as Markov Blanket of gene A is
shown in figure 3(a). For investigations involving noise, we consider four different
types of noise type’s namely a) Lognormal b) Gaussian c¢) Linear and d) Constant.
The variation of these noises as a function of gene expression is shown in Fig 3(b).
For purpose of experimentation, the amount of noise is added as a function of the
gene expression (i.e. mRNA accumulation). In Figure 3(c), the expression of synthetic
gene A is shown for both conditions: with and without noise. These plots show the
effect of noise on the synthetic gene expression. Again, Figure 3(d) shows the effect
of an input gene (such as gene B) and an output gene (such as gene D) on another
gene A in the presence of time delay and regulation (plus or minus). As can be seen
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Fig. 3. Simulation results: (a) A subset of genes of the example network (labeled A to G). This
sub-network has two input genes and contains repressor gene D. (b) The different noise
functions used in the simulation. (c) The expression gene A with and without addition of noise.
(d) Shows phase shift (time delay) and plus/ minus regulation between B—A—D.

from Figure 3(a), gene B has a strong effect on gene A, but a pronounced negative
effect on the expression level of gene D. This is because gene D has a repressor link
and is directly stimulated by gene A and also indirectly by input gene B.

5 Conclusion

The network generator system presented in this paper generates synthetic GRN
datasets based on causal modeling approach for GRN [8]. Illustrative investigations
using the network generator show the significance of the application of system for
synthetic data generation. The proposed system can generate four different network
topologies, namely scale free, small world, random and hierarchical. Further, the
generated synthetic network is made realistic by incorporating complex network
characteristics such as transmission delays, biological and experimental noise. These
datasets are generated for evaluation of methodologies based on these synthetic
datasets. The system will help other similar methods to computationally determine
the robustness and also establish comparisons between the methods. In comparison to
other existing methods, the proposed system is useful in carrying out rigorous studies
about the GRN methods by particularly varying single and combinational features of
the networks such as the topology, interaction types, noise levels, time delay of the
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interactions and so on. The complexity of the generated datasets can be easily varied
by parametric variation thereby generating a hierarchy of networks in terms of size,
scales, samples, etc. In real life GRNs, the products of some specific genes are
essential for transcription to take place (e.g. mRNA), and their absence cannot be
counteracted by increased expression of other activators (e.g. the transcription factor
TF). Although the synthetic gene network models and datasets generated here are
simplistic in comparison to what actually happens between genes in the real world
biology to produce the microarray dataset, they mimic the characteristics of
experimental data which makes it suitable to test the methods used on real datasets.
Furthermore, since the ground truth about real world GRN is still unknown to a
certain extent and hence to make any significant advances towards understanding
gene networks by using artificial synthetic networks and datasets will be highly
important and useful for future analysis of very complex GRN models.

Although only additive interactions for different hidden nodes have been included
in this paper, it is easily possible to enhance the system further by including non-
additive interactions between the activators and repressors. All these improvements in
generation of synthetic networks will make the network models more realistic. With
a clear understanding gene regulation problem, it would be possible to simulate the
process of complex gene regulatory networks. Future developments in this research
will include exploring large numbers of diverse synthetic gene networks to search for
particular properties similar to real gene networks, and expanding the system to
protein-protein interaction networks.
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Abstract. Gene selection aims at identifying a (small) subset of infor-
mative genes from the initial data in order to obtain high predictive
accuracy. This paper introduces a new wrapper approach to this difficult
task where a Genetic Algorithm (GA) is combined with Fisher’s Linear
Discriminant Analysis (LDA). This LDA-based GA algorithm has the
major characteristic that the GA uses not only a LDA classifier in its
fitness function, but also LDA’s discriminant coefficients in its dedicated
crossover and mutation operators. The proposed algorithm is assessed
on a set of seven well-known datasets from the literature and compared
with 16 state-of-art algorithms. The results show that our LDA-based
GA obtains globally high classification accuracies (81%-100%) with a
very small number of genes (2-19).

Keywords: Linear discriminant analysis, genetic algorithm, gene selec-
tion, classification, wrapper.

1 Introduction

The DNA Microarray technology permits to monitor and to measure gene ex-
pression levels for tens of thousands of genes simultaneously in a cell mixture.
Several studies have demonstrated that expression profiles provide valuable in-
formation for cancer diagnosis and prognosis [1U2I3[9]. The ability to distinguish
a cancer from morphologically similar tissues using their gene expression profiles
is important to propose appropriate therapies. Classification of different tumor
types is intertwined with the problem of gene selection, which aims to extract
from a great number of genes monitored by a Microarray chip, a small subset of
discriminant genes. Gene selection is thus of practical and fundamental interest.
The identification of relevant biomarkers is necessary for the elaboration of med-
ical diagnostic tests. Knowledge about discriminant gene subsets may confirm
the understanding of cancer mechanisms and suggest new ideas to explore.
Two main approaches have been proposed for gene selection. Filter methods
rely on a criterion that depends only on the data to assess the importance or
relevance of each gene for class discrimination. A relevance scoring provides a
ranking of the genes from which the top-ranking ones are generally selected as the
most relevant genes. Filter methods ignore the correlations among genes and the
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interaction of the selected genes with the classifier. Wrapper approaches embed
gene subset selection and evaluation with the same process and consequently
overcome the above mentioned inconvenient.

In this paper, we propose a new wrapper approach for gene subset selection
and classification of Microarray data. Our approach uses Fisher’s Linear Dis-
criminant Analysis (LDA) to provide useful information to a Genetic Algorithm
(GA) for an efficient exploration of gene subsets space. LDA is a well-known
method of dimension reduction and classification, where the data vectors are
transformed into a low-dimensional subspace such that the class centroids are
spread out as much as possible. It has been used for several classification prob-
lems and recently for Microarray data [SI2728].

Our approach first extracts a set of interesting genes (about 100 genes) by a
filter method in order to limit the search space. Then we use a dedicated GA
to determine a small subset of genes that allows a high classification accuracy.
Contrary to most previously GAs for gene selection that rely essentially on ran-
dom genetic operators, we devise a problem specific GA that takes into account
useful knowledge of the gene selection and classification problem. Our GA uses
a LDA classifier to assess the fitness of a given candidate gene subset and LDA’s
discriminant coefficients in its crossover and mutation operators.

To evaluate the usefulness of the proposed approach, we carry out extensive
experiments on seven public datasets and compare our results with 16 best
performing algorithms from the literature. We observe that our approach is able
to achieve a high prediction accuracy (from 81% to 100%) with a very small
number of informative genes (from 2 to 19). Moreover, our approach enables to
propose different subsets of discriminant genes, which may be of a great interest
for biological research.

The remainder of this paper is organized as follows. Section Plrecalls the main
characteristics of Fisher’s LDA and discusses the calculus that must be done in
the case of small sample size. Section [] presents our LDA-based GA for gene
selection. Section Ml shows the experimental results and comparisons. Finally
conclusions are presented in Section

2 LDA and Small Sample Size Problem

2.1 Linear Discriminant Analysis

LDA is a dimension reduction and classification method, where the data are
projected into a low dimension space such that the classes are well separated.
As we use this method for binary classification problems, we shall restrict the
explanations to this case. We consider a set of n samples belonging to two classes
C1 and C5, with n; samples in Cy and ny samples in Cy. Each sample is described
by ¢ variables. So the data form a matrix X = (z;),i =1,...,mj=1,...,¢.
We denote by uj the mean of class Cy and by p the mean of all the samples:

ukznlk Z xiandu:i;xi:i;nkuk

z;€CY
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The data are described by two matrices Sp and Sy, where Sp is the between-
class scatter matrix and Sy the within-class scatter matrix defined as follows:

Sp =Y k(= 1) (e — )’ (1)
k

Sw =y > (@i — ) (wi — )’ (2)

k xz;,€Cy

If we denote by Sy the covariance matrix for all the data, we have Sy, = Sp+Sw .

LDA seeks a linear combination of the initial variables on which the means
of the two classes are well separated, measured relatively to the sum of the
variances of the data assigned to each class. For this purpose, LDA determines a
vector w such that w!Spw is maximized while w! Sy w is minimized. This double
objective is realized by the vector w,y; that maximizes the criterion:

wtSpw

J(w) = (3)

wt Syrw

One can prove that the solution w,,; is the eigen vector associated to the sole
eigen value of S;VlS B, When S;Vl exists. Once this axis wop is determined, LDA
provides a classification procedure (classifier), but in our case we are particularly
interested in the discriminant coefficients of this vector: the absolute value of
these coefficients indicates the importance of the ¢ initial variables for the class
discrimination.

2.2 Generalized LDA for Small Sample Size Problems

When the sample size n is smaller than the dimensionality of samples ¢, Sw
is singular. In this case, it is not possible to compute S;VI. To overcome the
singularity problem, recent works have proposed different methods like the null
space method [28], orthogonal LDA [26], uncorrelated LDA [27I26] (see also [17]
for a comparison of these methods). The two last techniques use the pseudo
inverse method to solve the small sample size problem and this is the approach
we apply in this work. When S, is singular, the eigen problem is solved for S;}.S;,
where S is the pseudo inverse of S,,. The pseudo-inverse of a matrix can be
computed by Singular Value Decomposition. More specifically, for a matrix A of
size m X p such that rank(A) = r, if we denote by A = UXVT the singular value
decomposition of A, where U of size m x r and V of size r x p have orthonormal
columns, X' of size r x r, is diagonal with positive diagonal entries, then the
pseudo-inverse of A is defined as AT = VX~IUT.

2.3 Application to Gene Selection

Microarray data generally contain less than one hundred samples described by
at least several thousands of genes. We limit this high dimensionality by a first
pre-selection step, where a filter criterion (t-statistic) is applied to determine a
subset of relevant genes. In this work, we typically retain 100 genes from which
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an intensive exploration is performed using a genetic algorithm to select smaller
subsets. In this process, LDA is used as a classification method to evaluate the
classification accuracy that can be achieved on a selected gene subset. Moreover
the coefficients of the eigen vector calculated by LDA are used to evaluate the
importance of each gene for class discrimination.

For a selected gene subset of size p, if p < n we rely on the classical LDA
(Section Z7)) to obtain the projection vector wey:, otherwise we apply the gen-
eralized LDA (Section 222)) to obtain this vector. We explain in Section Bl how
the LDA-based GA reduces progressively the number of selected genes.

3 LDA-Based Genetic Algorithm

In this section we describe our LDA-based Genetic Algorithm (LDA-GA) for
gene subset selection. Notice that prior to the LDA-GA search, a filter (t-
statistic) is first applied to retain a group G, of p top ranking genes (typically
p > 100, in this work, p = 100). Then, the LDA-based GA is used to conduct
a combinatorial search within the space of size 2P. The purpose of this search
is to determine from this large search space small sized gene subsets allowing a
high predictive accuracy. In what follows, we present the general procedure and
then show the components of the LDA-based Genetic Algorithm. In particular,
we explain how LDA is combined with the Genetic Algorithm.

3.1 General GA Procedure

Our LDA-based Genetic Algorithm follows the conventional scheme of a gener-
ational GA and uses also an elitism strategy.

— Initial population: the initial population is generated randomly in such a way
that each chromosome contains a number of genes ranging from p x 60% to
p x 75%. The population size is fixed at 100 in this work.

— FEwvolution: the chromosomes of the current population P are sorted according
to the fitness function (see Section B3]). To generate the next population P’
|P| new chromosomes are first created using crossover and mutation (see
next point). These new chromosomes are then merged with the ”best” 10%
chromosomes of P to form P’ while deleting the worst chromosomes to keep
the population size constant.

— Crossover and mutation: mating chromosomes are determined from P by
considering each pair of adjacent chromosomes (the last one is mated with
the first one). By applying our specialized crossover operator (see Section
B4)), one child is created. This child then undergoes a mutation operation
(see Section BH]).

— Stop condition: the evolution process ends when a pre-defined number of
generations is reached or when one finds a chromosome in the population
having a very small gene subset (fixed at 2 genes in this work).
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3.2 Chromosome Encoding

Conventionally, a chromosome is used simply to represent a candidate gene sub-
set. Following the idea of [11], a chromosome in our GA encodes more information
and is defined by a couple:
I'=(7;9)

where 7 and ¢ have the following meaning. The first part (7) is a binary vec-
tor and effectively represents a candidate gene subset. Each allele 7; indicates
whether the corresponding gene g; is selected (7;=1) or not (7;=0). The second
part of the chromosome (¢) is a real-valued vector where each ¢; corresponds
to the discriminant coefficient of the eigen vector for gene g;. As explained in
Section 2] the discriminant coefficient defines the contribution of gene g; to the
projection axis wepe. A chromosome can thus be represented as follows:

1= (7—177-27"'7Tp;¢1a¢2a"'7¢P)

The length of 7 and ¢ is defined by p, the number of the pre-selected genes
with a filter (t-statistics) (see beginning of this Section).

Notice that this chromosome encoding is more general and richer than those
used in most genetic algorithms for feature selection in the sense that in addition
to the candidate gene subset, the chromosome includes other information (LDA
discriminant coefficients here) which are useful for designing powerful crossover
and mutation operators (see Section [34] and BH]).

3.3 Fitness Evaluation

The purpose of the genetic search in our LDA-GA approach is to seek ”good”
gene subsets having the minimal size and the highest prediction accuracy. To
achieve this double objective, we devise a fitness function taking into account
these (somewhat conflicting) criteria.

To evaluate a chromosome I=(7;¢), the fitness function considers the classifi-
cation accuracy of the chromosome (f1) and the number of selected genes in the
chromosome (f2). More precisely, f1 is obtained by evaluating the classification
accuracy of the gene subset 7 using the LDA classifier on the training dataset
and is formally defined as followdT:

R = s (4)
+TN+FP+ FN
where TP and TN represent respectively the true positive and true negative
samples, i.e. the correct classifications; FP (FN) is the number of false (true)
samples misclassified into the positive (negative) samples.

The second part of the fitness function fs is calculated by the formula:

R0 = (1-"7) 5)

! For the sake of simplicity, we use I (chromosome) instead of 7 (gene subset part of
I) in the fitness function even if it is the gene subset 7 that is effectively evaluated.
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where m, is the number of bits having the value 71”7 in the candidate gene

subset 7, i.e. the number of selected genes; p is the length of the chromosome

corresponding to the number of the pre-selected genes from the filter ranking.
Then the fitness function f is defined as the following weighted aggregation:

f)=afi(I)+ (1 —a)fa(I) subject to 0 < v < 1

where « is a weighted parameter that allows us to allocate a relative importance
factor to fi or fo. Assigning to « a value greater than 0.5 will push the genetic
search toward solutions of high classification accuracy (probably at the expense
of having more selected genes). Inversely, using small values of « helps the search
go toward small sized gene subsets. So variations of a will change the search
direction of the genetic algorithm.

3.4 LDA-Based Crossover

It is now widely acknowledged that, whenever it is possible, genetic operators
such as crossover and mutation should be tailored to the target problem. In other
words, in order for genetic operators to fully play their role, it is preferable to
integrate problem-specific knowledge into these operators. In our case, we use
the discriminant coefficients from the LDA classifier to design our crossover and
mutation operators. Here, we explain how our LDA-based crossover operates
(denoted by LDA-X hereafter).

LDA-X combines two parent chromosomes I' and I? to generate a new chro-
mosome I¢ in such a way that 1) top ranking genes in both parents are conserved
in the child and 2) the number of selected genes in the child I¢ is not greater
than the number of selected genes in the parents. The first point ensures that
7good” genes are transmitted from one generation to another while the second
property is coherent with the optimization objective of small-sized gene subsets.

More formally, let I'=(71;¢!') and I?=(72; ¢?) be two parent chromosomes,
I°=(7° ¢°) the child which will be generated by crossover, x € [0, 1) a parameter
indicating the percentage of genes that will not be transmitted from the parents
to the child. Then our LDA-X crossover performs the following steps to generate
1¢, the child chromosome.

1. According to x determine the number of genes of I' and I? (more precisely,
71 and 72) that will be discarded, denote them by n; and na;

2. Remove respectively from 7' and 72, the n; and no least ranking genes

according to the LDA discriminant coefficients;

Merge the modified 7! and 72 by the logic AND operator to generate 7¢;

4. Apply the LDA classifier to 7¢, fill ¢¢ by the resulting LDA discriminant
coefficients;

5. If needed, remove the least discriminative genes from 7¢ until 7¢ contains no
more genes than I* or I? does; update ¢¢ accordingly;

6. Create the child I°=(7¢; ¢°).

©w

Before inserting the child into the next population, /¢ undergoes a mutation
operation.
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3.5 LDA-Based Mutations

In a conventional GA, the purpose of mutation is to introduce new genetic
materials for diversifying the population by making local changes in a given
chromosome. For binary coded GAs, this is typically realized by flipping the
value of some bits (1 — 0 or 0 — 1). In our case, mutation is used for dimension
reduction; each application of mutation eliminates a single gene (1 — 0). To
determine which gene is discarded, two criteria are used, leading to two mutation
operators.

— Mutation using discriminant coefficient (M1): Given a chromosome I=(7; ¢),
we identify the smallest LDA discriminant coefficient in ¢ and remove the
corresponding gene (this is the least informative genes among the current
candidate gene subset 7).

— Mutation by discriminant coefficient and frequency (M2): This mutation op-
erator relies on a frequency information of each selected gene. More precisely,
a frequency counter is used to count the number of times a selected gene
is classified (according to the LDA classifier) as the least informative gene
within a gene subset. Based on this information, we remove the gene that has
the highest counter, in other words, the gene that is frequently considered
as a poor predictor by the classifier.

4 Datasets and Experimental Setup

4.1 Microarray Gene Expression Datasets

To assess the performance of our LDA-based genetic algorithm, we performed
our experiments on seven well-known public datasets, namely Leukemia, Colon
cancer, DLBCL, CNS embryonal tumor, Lung, Prostate and Ovarian cancer. A
summary of the datasets is provided in Table [Tl

4.2 Experimental Settings

For our experimentations, we used the following experimental settings. Each
initial dataset is split into a training set and a test set according to the literature.
LDA-GA is applied on the training set in order to select relevant gene subsets.

Table 1. Summary of datasets used for experimentation

Dataset Genes Samples References
Leukemia 7129 72 Golub et al [9]
Colon 2000 62 Alon et al 2]

Lung 12533 181  Gordon et al [I0]
Prostate 12600 109 Singh et al [21]

CNS 7129 60  Pomeroy et al [20]
Ovarian 15154 253  Petricoin et al [19]
DLBCL 4026 47 Alizadeh et al [I]
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Because our fitness function relies on two criteria (3.3)), we carry out two types
of experiments. In the first one, named Expl hereafter, we select the gene subset
according to the second criterion trying to minimize the number of selected
genes. In the second type of experiments, named Exp2, we focus on the accuracy
achieved by the different solutions obtained by LDA-GA and we retain the gene
subsets that provide the best accuracy. Because of the stochastic nature of our
LDA-GA algorithm, we run 10 executions of the GA and we retain the best
solution found during these 10 executions.

In both experiments, the final predictive accuracy of a selected gene subset is
estimated by the LDA-classifier built on the gene subset obtained by the training
step. As the data contain few samples, we use a 10-fold cross validation on the
whole dataset to obtain a reliable estimation of the classification accuracy.

We have explained in Section Bl that our LDA-GA can apply two kinds of
mutation (M1 and M2). That is why we report in the following subsection four
results for each dataset: GA-M1/Expl is our GA with M1 mutation and we select
the gene subset according to the conditions of Expl (focusing on the number of
genes); GA-M1/Exp2 is the GA with M1 mutation and we select the gene subset
according to the conditions of Exp2 (the best accuracy). Similarly, two results
are reported with M2 mutation (named GA-M2/Expl, GA-M2/Exp2).

4.3 Results and Comparisons

In this section, we propose a comparison of our LDA-GA with some state-of-the-
art methods for gene selection and classification. A reliable comparison between
two methods is only possible if they use the same experimental conditions. For
this reason, we select 16 recent methods (since 2004) that seem to fulfill this
condition.

We show in Table [2] the best results (in bold) obtained by these methods and
by our LDA-based GA approach on the seven datasets presented previously. An
entry with the symbol (-) in this table means that the paper does not treat the
corresponding dataset. All the methods reported in this table use a process of
cross validation, notice however that in some cases, the papers do not explain
precisely how the experimentation is conducted.

From the results of Table 2 one observes that the proposed approach (last
four lines) gives very competitive results compared with these reference methods.
Indeed, our LDA-based GA achieves globally very high predictive accuracy (from
81.6% to 100%) with a very small number of selected genes (from 2 to 19).

The most remarkable results for our approach concern the DLBCL dataset. We
obtain a perfect prediction with only 4 genes while the previously methods reach
a prediction rate no greater than 98% with at least 20 genes. For the Ovarian
cancer dataset, the LDA-GA gives a prediction accuracy of 98.4% with a subset
of only 4 genes. The reference algorithms have a slightly better classification rate,
but select much more genes (20, 26, 75). Notice that a perfect rate is reported in
[15] with 50 genes. However the dataset used in [I5] (30 cancerous and 24 normal
samples, 1536 genes) is different from the Ovarian cancer dataset described in
Table [l (91 normal and 162 cancerous samples, 15154 genes).
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Table 2. Results of our LDA-based GA (four last lines) compared to the most rele-
vant works on cancer classification. The figures give the classification accuracy and in
brackets, the number of genes when this is available.

Authors Leukemia Colon  Lung Prostate CNS Ovarian DLBCL
Ye et al [27] 97.5 85.0 - 92.5 - - -
Liuet al [[4]  100(30) 91.9(30) 100(30) 97.0(30)  —  99.2(75) 98(30)
Tan & Gilbert [22] 91.1 95.1 93.2 73.5 88.3 - -
Ding & Peng [7] 100 93.5 97.2 - - - -
Cho & Won [6]  95.9 (25) 87.7(25)  — - - ~ 93.0(25)
Yang et al [25] 73.2 84.8 - 86.88 - - -

Peng et al [I8] 98.6 (5) 87.0(4) 100(3) - - - -

Wang et al [24]  95.8 (20) 100(20) - - - ~ 95.6(20)

Huerta et al [4] 100 91.4
Pang et al [I6]  94.1(35) 83.8(23)
Lietal 2]  97.1(20) 83.5(20)
Zhang et al [29]  100(30) 90.3(30) 1
Yue et al 28] 83.8(100) 85.4(100)
Hernandez et al [II] 91.5(3) 84.6(7) - - - - -
Li et al [I3] 100(4) 93.6(15) - - - - -
Wang et al [23] 100(375) 93.5(35) - -

91.2(34) -  65.0(46) 98.8

GA-M1/Expl  97.2(2) 90.3(2) 97.7(2) 94. 1(2) 78. 3(4) 96. 0(2) 91.4(2)
GA-M2/Expl  97.2(2) 91.9(3) 98.3(2) 94.1(2) 85.0(4) 96.4(2) 93.6(2)
GA-M1/Exp2  98.6(5) 91.9(3) 97.7(2) 94.8(6) 81.6(8) 98.4(4) 100(8)
GA-M2/Exp2  100(5) 93.5(9) 98.3(2) 95.5(18) 86.6(7) 98.8(19) 100(4)

Finally, notice that the LDA classifier used in this paper is not the most
powerful classifier. Effectively, in another experimentation, we also used a linear
SVM classifier to estimate the predictive accuracy of the gene subsets selected
by the LDA-GA, leading to slightly better results.

4.4 Discussion

We now discuss about two important issues of the LDA-GA approach: possible
influences of the pre-selection on the prediction accuracy and the capacity of the
approach to explore large sets of genes.

The search space of our LDA-GA is delimited by a first step which pre-selects
a limited number (100 in this paper) of genes with the t-statistic filter criterion.
One may wonder whether changing the filtering criterion and the number of
selected genes affects the performance of the approach. In [5], an exhaustive
study is presented concerning the influence of data pre-processing and filtering
criteria on the classification performance. Three filtering criteria, BSS/WSS, t-
statistic and Wilcoxon test were compared, and the results did not show any
clear dominance of one criterion with respect to the others. However, the fuzzy
pre-processing for date normalization and redundancy reduction presented in [5]
does show a positive influence on the classification performance whatever the
filtering criterion that is applied after.
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The main interest of this genetic approach for gene selection is its ability to
propose a combinatorial exploration of gene subsets. Clearly, this is not the case
in classical approaches like backward selection. In recursive feature elimination
for example, once a gene is discarded by the selection process, it is definitively
ignored in the further steps even if its association to other genes can improve
the classification result. Consider the Leukemia dataset, a perfect performance of
100% is reached with 5 genes (Table 2. LDA-GA also finds other gene subsets
(with 5 to 10 genes) achieving a perfect cross-validation classification. More
precisely, one of these subsets contains the genes placed in positions 3, 12, 63,
72, and 81 by the filter ranking criterion. Another gene subset that achieves
a perfect classification contains the genes ranked in positions: 1, 2, 19, 72 and
81. Generally filter methods retain a small number of genes for classification
(typically 30). Our observation shows that it is interesting and useful to explore
a large set of genes because relevant subsets can contain genes that are not in
the 30 top-ranking ones. Moreover, the possibility to examine diverse solutions
constitutes a valuable feature for further biological investigations.

5 Conclusions

In this paper, we have introduced a new wrapper approach for selecting small
gene subsets able to lead to high prediction accuracy. Our approach begins with a
t-statistic filter that pre-selects a first set of genes (100 in this paper). To further
reduce the gene dimension, we use a hybrid Genetic Algorithm to explore the
gene subset space. The hybrid GA includes some original features that make
it highly effective for identifying small sized and informative gene subsets. In
particular, it uses Fisher’s Linear Discriminant Analysis as its fitness function
to assess the quality of each candidate gene subset. Moreover, useful discriminant
information provided by the LDA classifier is directly integrated into its crossover
and mutation operators. Indeed, the discriminant coefficients of LDA’s eigen
vector constitute a valuable indicator for recombining gene subsets (crossover)
and for gene dimension reduction (mutation). The bi-criteria fitness function
provides a very flexible way for the LDA-GA to explore the gene subset space
either for the minimization of the selected genes or for the maximization of the
prediction accuracy.

We have evaluated extensively our LDA-based GA approach on seven public
datasets (Leukemia, Colon, DLBCL, Lung, Prostate, CNS and Ovarian) using
a 10-fold cross validation process. A large comparison was carried out with 16
state-of-art algorithms that are based on a variety of methods. The results show
clearly the interest of the LDA-GA approach for finding small sized informative
gene subsets leading to high prediction accuracy. For all the datasets, our ap-
proach is able to select gene subsets of the smallest size while ensuring the best
or the second best classification rate. For one dataset (DLBCL), we obtain the
best result ever found with a perfect prediction with only 4 informative genes.

Finally, the proposed approach has another practically useful feature for bi-
ological analysis. In fact, instead of producing a single solution (gene subset),
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our approach can easily and naturally provide multiple non-dominated solutions
that constitute valuable candidates for further biological investigations.
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Abstract. In order to accurately measure the gene expression levels in
microarray experiments, it is crucial to design unique, highly specific and
highly sensitive oligonucleotide probes for the identification of biological
agents such as genes in a sample. Unique probes are difficult to obtain
for closely related genes such as the known strains of HIV genes. The
non-unique probe selection problem is to find one of the smallest probe
set that is able to uniquely identify targets in a biological sample. This
is an NP-hard problem. We present heuristic for finding near-minimal
non-unique probe sets. Our method is a variant of the sequential forward
selection algorithm, which used for feature subset selection in pattern
recognition systems. The heuristic is guided by a probe set selection cri-
terion which evaluates the efficiency and the effectiveness of a probe set
in classifying targets genes as present or absent in a biological sample.
Our methods outperformed all currently published greedy algorithms for
this problem.

Keywords: Probe Selection, Gene Expression.

1 Introduction

Oligonucleotide microarrays are widely used tools, in molecular biology, provid-
ing a fast and cost-effective method for monitoring the expression of thousands
of genes simultaneously [7]. In order to measure the expression level of a spe-
cific gene in a sample, one must design a microarray containing short strands
of known DNA sequences of 8 to 30 bp, called oligonucleotide probes, which are
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complementary to the gene’s segments, called targets. These targets, if present in
the sample, should bind to their complementary probes by means of hybridiza-
tion. The success of a microarray experiment depends on how well each probe
hybridizes to its target under specified experimental conditions such as temper-
ature and salt concentration. However, choosing good probes is a difficult task
since different sequences have different hybridization characteristics.

A probe is unique, if it is designed to hybridize to a single target. However, due
to hybridization errors, there is no guarantee that unique probes will hybridize
to their intended targets only. Many parameters such as secondary structure,
salt concentration, GC content, free energy and melting temperature also affect
the hybridization quality of probes [7], and their values must be carefully deter-
mined to design high quality probes. It is particularly difficult to design unique
probes for closely related genes, given the probe length and melting temperature
constraints. An alternative approach is to devise a method that can make use
of non-unique probes, i.e. probes that are designed to hybridize to at least one
target [7]. Also, a smaller probe set can be used with non-unique probes than
can be with unique probes. Minimizing the number of probes in a microarray ex-
periment is also a reasonable objective, since it is proportional to the cost of the
experiment. The non-unique probe selection problem is to determine a smallest
set of probes able to identify all targets present in a biological sample. This is an
NP-hard problem [I], for which several approaches have been proposed recently
2116 7 18] [

Schliep et al. [7] first introduced the non-unique probe selection problem and
described a simple but fast greedy heuristic, which computes an approximate
solution that guarantees spyin-separation for pairs of small target groups. Klau
et al. [1] proposed two ILP formulations for this problem, respectively for single
targets and for target groups, then solved it using the ILP solver CPLEX on
pre-reduced problem instances. They also proved that the non-unique probe
selection problem is NP-hard. Meneses et al. [2] proposed a deterministic greedy
heuristic, for single targets only, which first constructs an initial feasible solution
through local search, and then applies a reduction method to further reduce
this solution. Ragle et al. [6] developed an optimal cutting-plane TILP heuristic,
for single targets only, to find optimal solutions within practical computational
limits. Wang et al. [8] proposed deterministic greedy heuristics that select probes
based on their ability to help satisfy the constraints. Recently, Wang et al. [9]
combined the probe selection functions with evolutionary methods and produced
results that are at least comparable to those obtained by the method of [6], which
is the best published approach for this problem.

2 Non-unique Probe Selection Problem

Given a target set, T = {t1,...,t}, and probe set, P = {p1,...,pn}, an m x
n target-probe incidence matric H = [h;j] is such that h;; = 1, if probe p;
hybridizes to target ¢;, and h;; = 0 otherwise. Table [[] shows an example of a
matrix with m = 4 targets and n = 6 probes. A probe p; separates two targets,
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Table 1. A 4 x 6 target-probe incidence matrix

P1 P2 P3 P4 P5 Pe
t7 11 01
ta 1 010
t3 0 1 1 1
ts4 0 0 1 1

= = O O
S = =

t; and t, if it is a substring of either ¢; or ty, that is, if |h;; — hsj| = 1. For
example, if t; = AGGCAATT and t;;, = CCATATTGG, then probe p; = GCAA
separates t; and tj, since it is a substring of ¢; only, whereas probe p; = ATT
does not separate t; and ¢, since it is a substring of both targets [2]. Two targets,
t; and tg, are s-separated, s > 1, if there exist at least s probes such that each
separates t; and tx; in other words, the Hamming distance between rows ¢ and
k in H is at least s. For example, in Table [Il targets to and t4 are 4-separated.
A target t is c-covered, ¢ > 1, if there exist at least ¢ probes such that each
hybridizes to t. In Table [ target ¢o is 3-covered. Due to hybridization errors
in microarray experiments, it is required that any two targets be spnin-separated
and any target be cpin-covered; usually, we have spin > 2 and ¢pin > 2. These
two requirements are called separation constraints and coverage constraints.

Given a matrix H, the aim of the non-unique probe selection problem is to find
a minimal probe set that determines the presence or absence of specified targets,
and such that all constraints are satisfied. In Table 1, if s,in = cmin = 1 and
assuming that exactly one of ¢1,...,%4 is in the sample, then the goal is to select
a minimal set of probes that allows us to infer the presence or absence of a single
target. In this case, a minimal solution is {p1, p2, ps} since for target t1, probes
p1 and po hybridize while ps does not; for target t2, probes p; and p3 hybridize
while po does not; for target t3, probes po and p3 hybridize while p; does not;
and finally for target t4, only probe p3 hybridize. Thus, each single target will
be identified by the set {p1,p2, p3}, if it is the only target present in the sample;
moreover, all constraints are satisfied. For spyin = ¢min = 2, a minimal solution
that satisfies all constraints is {pa, p3, ps, pe}. Of course, {p1, ..., ps} is a solution
but it is not minimal, and hence is not cost-effective.

Stated formally, given an m x n matrix H with a target set T = {t1,...,tm}
and a probe set P = {p1,...,pn}, and a minimum coverage parameter cCp;n,
a minimum separation parameter sy, and a parameter dpma.x > 1, the aim
of the non-unique probe selection problem is to determine a subset P, =
{1,492, ,qs} C P such that:

1. 8 = |Ppin| < n is minimal.

2. Each target t; € T is cmin-covered by some probes in Ppyiy,.

3. Each target-pair (t;,tx) € T X T is Smin-separated by some probes in Pyiy.

4. Each pair of small groups of targets is spyin-separated by some probes in
Pmin~
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This problem was proved to be NP-hard, in [I], by performing a reduction
from the set covering problem. It is NP-hard even for ¢y = 1 or spin = 1.
The work of [I] formulated the non-unique probe selection problem as an integer
linear programming (ILP) problem. Let C = {(i, k) | 1 <i < k < m} be the set
of all combinations of target indices. Assign x; = 1 if probe p; is chosen and 0
otherwise. We have:

Minimize: ij . (1)
j=1
Subject to:
z; € {0,1} 1<j<n, (2)
Z hijxj > Cmin 1<i<m, (3)
j=1
Z|hij_hk]’|$j25min 1§z<k§m (4)
j=1

Function () minimizes the number of probes. The probe selection variables
are binary-valued in Restriction (2). Constraints (@) and (@) are the coverage
and separation constraints, respectively. Note that Constraints [d]) are for single
targets only. As opposed to this, in [I], another ILP formulation was proposed,
which includes the separation constraints for small groups of targets. In this
paper, we solve the ILP formulation, above, using a deterministic greedy heuristic
based on a feature subset selection method used in pattern recognition. Note that
one can easily check if the probes in the original set of candidate satisfy all the
constraints. If not, then there are no feasible solutions. In this case, we can insert
unique virtual probes in the original probe set only for those targets or target-
pairs that are not c¢pin-covered or spyin-separated. This will ensure the existence
of feasible solutions.

3 Probe Selection Functions

We want to select a minimum number of probes such that each target is cmin-
covered and each target-pair is spyi,-separated. Consider a target-probe incidence
matrix, H, the parameters cpi, and syiy, the initial feasible candidate set of
probes, P = {p1,...,pn}, and the set of targets T' = {t1,...,¢m }. Let P, be the
set of probes hybridizing to target ¢;, and F;,, be the set of probes separating
the target-pair ¢;. A probe p € P, is an essential covering probe if and only
if |P;;| = ¢min. In Table [l for instance, the probes in P, = {pi,ps,ps} are
essential covering probes if ¢y, = 3. Essential separating probes are defined
similarly. Essential probes must be contained in any minimal solution; that is,
removing any such probe will make the solution unfeasible. A redundant probe is
the one for which a feasible solution remains feasible when the probe is removed.
Note that a probe may be redundant for some candidate solutions but non-
redundant for others. There is a degree of redundancy between probes such
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that highly redundant probes are in very few or no minimal solutions. Our
approach associates with each probe and each probe set a degree of contribution
to minimal solutions (or, degree of non-redundancy)[8]. This degree corresponds
to the ability of a probe, or a probe set, to help satisfy all the constraint.

3.1 Coverage Function

We want to choose the minimum number of probes such that each target is cyin-
covered. Given H, the parameter cpin, the probe set P = {p1,...,p,} and the
target set T = {t1,...,tm}, we defined the function covgye : P X T +— [0,1] in
[8] as follows:

h Cmin

in|Pti|’ ijPtiV tieT, (5)

COVdrC(pja ti) =
where, P, is the set of probes hybridizing to target t;; covarc(pj, ;) is the amount
that p; contributes to satisfy the coverage constraint for target ¢;. For target ¢;, p;
is likely to be redundant for a larger value of | P;, | and likely to be non-redundant
for a smaller value of |P;,|. We defined the coverage function Cgy : P +— [0,1]
in [§] as follows:

CdrC(pj) = t%%x {COVdrC(pjvti) | 1<5< n} ) (6)

v=TPj

where T, is the set of targets covered by p;. Carc(p;) is the maximum amount
that p; can contribute to satisfy the minimum coverage constraints. Table
shows the coverage function table produced from Table [1l

Function Cg,. favors the selection of probes that cyin-cover targets t¢; that
have the smallest subsets P, ; these are the essential or near-essential covering
probes. In Table ] for example, target to has the minimal value |P,| = 3,
and hence any probe that covers it can be selected first. In particular, function
Care guarantees the selection of near-essential covering probes that cyi-cover
dominated targets; t; dominates ty if P, C Pi,. In Table @ for example, t3
dominates t4 since Py, = {p3,p4, 05} C {p2,D3,D04,05,P6} = Pry. ANy cin-cover
of the dominated target t; will also cpin-cover all its dominant targets, and

Table 2. Coverage function table obtained from Table [l

pP1 P2 Pp3 P4 P55  Pe6

tl €min  Cmin 0 Cmin 0 €min
4

t2 cnéin 0 Cnéin O O cnéin

t3 0 €min Cmin C©min Cmin C“min

Cmin ©min €min
t« 0 0 Cmin Cmin Cmin

C Cmin Cmin Cmin Cmin Cmin Cmin
drc

3 4 3 3 3 3

C Cmin ©min ©min Cmin Cmin Cmin
dps

6 8 4 4 6 4
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therefore, more targets are cpin-covered. Probes covering the dominated target
ti have larger covgy. values than probes covering its dominant targets ¢;, since
|P;,.| < |P:,|, and hence they will be selected first.

We would also like to favor the selection of dominant probes; p; dominates
p if Ty, C Tp,. In Table ] for instance, ps dominates p; since Tp, = {t1,t2} C
{t1,ta,t3} = T)p,. Selecting dominant probes instead of dominated probes covers
more targets. In the example, however, we have Cgyc(p1) = Care(ps), and hence
p1 could be selected for target coverage rather than pg, depending on a particular
order of the probes. On the other hand, pg dominates ps and Caye(ps) > Care(p2),
and hence pg will be selected first. To favor the selection of a dominant probe
among dominated probes equal in value Cy,., we penalize each probe p by an
amount proportional to |T}|, as follows:

1

Caps(Pj) = Care(ps) x T, 41

(7)

and probes that cover fewer targets are penalized more than probes that cover
more targets. Table [2 shows the values of Cyps for each probe.

3.2 Separation Function

We want to choose the minimum number of probes such that each target-pair is

Smin-separated. We defined the function sepg,, : P x T? — [0, 1] in [§] as follows:

S
bepclrc(p]a Zk) ‘h’U h’k]| X |;11n , DPj € Ptik? tik € T2 5 (8)
tik

where, P, is the set of probes separating target-pair t;; sepg..(pj, tik) is what
p; can contribute to satisfy the separation constraint for target-pair ¢;;. We
defined the separation function Sayc : P+ [0,1] in [] as follows:

Sane(py) = s, {separe(pistie) | 15 <} (9)
where T, ij is the set of target-pairs separated by p;. Sarc(p;) is the maximum
amount that p; can contribute to satisfy the minimum separation constraints.
The full separation function table can be found in [9].

Function Sg,. also favors the selection of probes that spi,-separate target-
pairs t;; which have the smallest subsets P;,, and further favors the selection of
near-essential separating probes that spyin-separate dominated target pairs. To
favor the selection of a dominant probe that has the same value, Sg,c, as some
of its dominated probes, we penalize each probe p by an amount proportional
to |T7], as follows:

1
Saps(Pj) = Sarc(Pj) X (1) i1 (10)

and probes that separate fewer target-pairs are penalized more than probes that
separate more target-pairs.
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3.3 Selection Function

We want to select the minimum number of probes such that all coverage and
separation constraints are satisfied; that is, we must select a probe according
to its ability to help satisfy both coverage and separation constraints. In [§],
we combined functions Cg,. and Sgp. into a single probe selection function,
Dgyc : P+ [0,1] as follows:

Dare(pj) = max{(Carc(pj), Sare(p;)) | 1 < j <} . (11)

Dayc(p;) is the degree of contribution of pj, that is, the maximum amount re-
quired for p; to satisfy all constraints. Dqg,. ensures that all essential probes
p; will be selected for inclusion in the subsequent candidate solution, since
Carc(pj) = 1 or Sarc(pj) = 1. With our definition of Dq,., probes p that cover
dominated targets or separate dominated target-pairs have the highest Dg,c(p)
values. By selecting a probe p to cover a dominated target ¢; or to separate a
dominated target-pair t;;, we are also selecting p to cover as many targets as
possible (all targets that dominate ¢;) or to separate as many target-pairs as
possible (all target-pairs that dominate ¢;;). This is the main greedy probe se-
lection strategy in our heuristics in Section Bl In this paper, we use the following
probe selection function, Daps : P — [0, 1]:

Daps(pj) = max{(Caps(p;), Saps(p;)) | 1 <j <n} , (12)

to favor the dominant probes among all probes that have equal values in Dgy;
this is the secondary greedy selection principle. These two greedy principles
together allow larger coverage and separation when using Dgps than Dy, in a
greedy search method.

4 Subset Selection Criteria

Given the initial probe set, P = {p1,...,pn}, the sequential search algorithm,
discussed in Section Bl greedily selects the best subset of probes among a col-
lection, P C 2F, of subsets; 2 is the power set of P. In this section, we
define the criteria required to decide which is the best subset to select. Let
Pl ={q,...,q.} C P beaprobeset to be evaluated, where ¢; € P,1 < j <u
and 1 < u < n,and PO =(. Pl% ¢ i -covers a target t; if at least cyin probes
in P cover t;. P'"* spin-separates a target-pair t;, if at least sy, probes
in PM" separate t;,. Our aim is to select the subset P'* which cpin-covers as
many target as possible and syiy-separates as many target-pairs as possible, or,
which satisfies all the constraints with the least cardinality u.

4.1 Coverage Criterion

Given a collection P C 2P, we want to choose the subset Pl* C P such that
each target is cmin-covered by P!%. Given the matrix H, the parameter cyin,
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Table 3. Example of subset coverage obtained from Table [I]

{ps} U {p1} = P P2 P P35 Pss

tl 0 + aniin i — Cnslin Cnéin 3clnéin 0 3clnéin
in 3 Cmin 2 5Cmin  Cmi Cmi Cmi Cmi

t2 Cmin + Cmin — min Cmin min min min
3 4 3 4 12 4 4 4 2

. Cmin 3 __ 3¢min Cmin 3Cmin Cmin 3Cmin
L3 stat 00 =0 T T 10 10

Cmin 3 — 3Cmin Cmin  Cmin  5Cmin  Cmin
ta sty 0 =75 4 2 12 4

Cmin 3 Cmin 2 _ 5Cmin Cmin Cmin YCmin Cmin
Caps ™3™+ ™71 ="75 4 2 12 2

the candidate probe set P = {p1,...,p,} and the target set T' = {t1,...,tn}; to
evaluate the ability of subset P!"% to cpin-cover T, we generalize the coverage
function as follows:

ji=u
1
Caps(PY%) =  max covare(qj, ti) X e ptu , (13
dp ( ) teTon {Jz; d (qJ ) m— |qu| +1 | qj ( )

where Tp1..... = T, U...UT,, is the set of targets covered by P!, Cyps(P'+") :
2P Rt is the maximum amount that P'~* can contribute to satisfy the
minimum coverage constraints. Table [3] shows an example of a subset coverage
table obtained from Table[I] given five subsets. In the example, P,;, means the
subset {qa, g }- We also show, for P31, the computation of Equation (I3)).
Clearly, Caps(P*) is maximal if Cyps(g;) is maximal for each ¢; € P!
Thus, for subsets of probes, function Cqps favors the selection of those subsets
that contain probes having the highest coverage values. For example in Table[2],
probes ps, ps and pg have the highest coverage values, and hence, subsets such
as P34 and Psg have the best values. Cyps indicates only how much a subset con-
tributes in satisfying the coverage constraints, not how well the subset satisfies
the coverage constraints. For instance, in the table, subsets P3; and P35 produce
a tie, but P3; should be preferred since it covers more targets. Also, between
the two subsets, which attain the same value of Cgps, the one that satisfies all
coverage constraints (or, closer to satisfying all coverage constraints) should be
preferred. We define the coverage criterion, Fe,,, : 2P — Rt as follows:

1...
Tl = [Upru| | Dtiersvp ., 2 (P, ")

. (14
m — |Up1...u| (m - |Up1...u|) * Cmin ( )

FOdpS (Plu) _ Cdps(leu)

where, Up1.... is the set of targets already cpin-covered by Pl+% (probes need
not be selected to cover such targets); Pé"'“ is the set of probes in P* that

cover t;, and fea : 20 — R defined as

1..u 3 1..u .
fea (Ptllu) = { |Pt1 | ’ if |Pt1 | < Cmin ’ (15)

Cmin , Otherwise

specifies how much the coverage constraint is satisfied on t¢;; the sum equals
(m — |Up...u|) cmin when all coverage constraints are satisfied. Hence, the second
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term penalizes subsets that cover fewer targets and the third term penalizes
subsets that satisfy fewer coverage constraints. F, . is maximal when all three
terms are maximal.

4.2 Separation Criterion

The derivation of the separation criterion is similar to that of coverage, except
that we use terms and variables related to separation; such as, target-pair, Smin,
and so on, in the equations below. Given a collection P C 2F, we want to
choose the subset P'* C P such that each target-pair is sy -separated by
Pl Consider the matrix H, the parameter spi,, the candidate probe set P =
{p1,...,pn} and the target set T = {t1,...,t, }. Following the same reasoning
as in Section {1l we obtain the following equations for separation:

u 1 "
Sdps(le ) = m%x Zsepdrc(qj»tik) X (m—1) | q; € Pl s
tin€TZ1 — m 77; . ’TqQ] ’ 1

(16)

where T1231___“ = Tqu U...u Tun is the set of target-pairs separated by P,
Saps(Pr%) : 2P+ R+ is the maximum amount that P“ can contribute to

satisfy the minimum separation constraints. The separation criterion is given
by:

ZtrkGT?\Ui’ ) fea‘ (Ptlzku)

(" <103 ) s
(17)

[ Thru] = Ui
m(m 1) |U2

Foyp (P1) = Saps(P1") x

)

Lu

where, U12:1 .. is the set of target-pairs already smin-separated by P'+% (probes
need not be selected to separate such target-pairs); P1 ¥ is the set of probes in
Pl that separate t;, and fea : 28 — Rt defined as

fea (Ptli.k“u) - { | t;’inin ) ot}!e;;cise[ s (18)

specifies how much the separation constraint is satisfied on t;; the sum equals
(m(m D —|UZ.... |) Smin When all separation constraints are satisfied. Thus,
the second term penalizes subsets that separate fewer target-pairs and the third

term penalizes subsets that satisfy fewer separation constraints. F, _ is maximal
when all three terms are maximal.

4.3 Selection Criterion

As in the selection function of Section[3:3] we combine both the coverage criterion
and the separation criterion into a single subset selection criterion

FdeS(Pl'”u) — max{ FCdPS(Pl...u) , FSdPS(Pl...u) } ; (19)

which specifies the degree to which a subset of probes satisfies all constraints.
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5 Sequential Forward Probe Selection Algorithm

In this section, a sub-optimal technique from pattern recognition is applied for
the first time, to the best of our knowledge, to the non-unique probe selection
problem. In particular, the well-known sequential forward selection (SFS) algo-
rithm [B5], for feature subset selection, is adapted to find near-minimal feasible
probe sets. Feature selection (FS) constitutes one of the two principal phases of
pattern recognition system design, the other being the design of pattern clas-
sification stage which employs the selected features. The main goal of FS is to
select a subset of d features from the given set of D measurements, d < D,
without significantly degrading or with possibly improving the performance of
the recognition system. Given a suitable criterion function for assessing the ef-
fectiveness of feature subsets to classify data, FS is reduced to a combinatorial
search problem that finds an optimal subset based on the selected measure. The
SFS is among the methods|3][4][5] proposed by researchers to avoid searching
the feature space exhaustively.

A microarray design experiment is a pattern recognition system where the
measurements are provided by a biological sample and a target set (augmented
with the set of all target-pairs, if non-unique probes are used), and where the
classifier system is a probe set that classifies each target, or target-pair, as present
or absent in the sample. However, with microarrays, the problem is to reduce
the complexity of the classifier system (i.e., the size of the probe set) while still
able to correctly classify each target and target-pair as present or absent in
the biological sample. Here, the feature space representing the sample, which
includes the targets and the target-pairs, is not subject to optimization.

We adapt the SF'S to find a near minimal probe set as follows: the best probe
set is constructed by adding, to the current non-feasible probe set, one probe
at a time until we obtain a feasible probe set with the hope it has the least
cardinality u. More specifically, to form the best feasible subset of probes, the
starting point of the search is the empty set, P19, which is then successively
built up. This is known as the bottom up approach. This method is generally
sub-optimal since the best probe is always added to a working subset of probes,
Pl...u.

The sequential forward probe selection (SFPS) method (Algorithm[I]) is based
on the SFS algorithm. SFPS uses the Fp, . function as the criterion for selecting
the best subset among a collection of probe sets. The best probe, ¢, to insert in
a working subset, P1*, is the one that maximizes the criterion, Fp,,., when it
is included. SFPS terminates when P is feasible; which is then reduced to a
near-minimal solution, Py, in Algorithm 2l by removing the redundant probes.

SFPS locally searches the power set, 2, of the probe set P. That is, at each
subset selection step, the neighborhood of the working subset P'* € 2 is the
collection P+l = {plewy{g}, P U{g},..., Pl U{g.—u}} C 27,
qj € P~ P for 1 < j <n —u. The subset to select is the one in P!+ (u+1)
that maximizes the criterion Fp, .
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Algorithm 1. Sequential Forward Probe Selection
Input: 7' = {t1,...,tm}, P ={p1,...,pn}, and H = [hyj]
Output: Near-minimal solution Ppin
Compute Dgps(p) for all p € P;
u < number of essential probes;
P  set of essential probes;
repeat
q" —argmax,cp_pi..u Fp,,, (P U{q});
plo-(utl) _ plouy {q+};
u—u+1;
until Pt is feasible;
Return Puin < Reduction(P!*, P, T, H).

Algorithm 2. Reduction

Input: P** P, T, H
Output: Reduced solution Pireq
Pred P -Plu7
H — H|p,,, /* restrict to Piea */;
Compute Dgps(q) for all ¢ € Preq;
Sort Pget < {q € Preda | Daps(q) < 1} in increasing Daps(q);
if Piea \ {p} is feasible for each g € P4c then
Pred — Pred N {q},
end if
Return Pieq.

6 Computational Experiments

We performed experiments to show the minimization ability of SFPS and that it
outperform all the greedy methods currently published in literature for the non-
unique probe selection problem. The programs were written in C and all tests ran
on two Intel Xeon '™ CPUs 3.60GHz with 3GB of RAM under Ubuntu 6.06 i386.

We conducted experiments on ten artificial data sets and three real data sets,
that were kindly provided by Dr. Ragle and Dr. Pardalos [6]. These data sets
were used in all previous studies mentioned in Section [II, except for HIV-1 and
HIV-2 sets which were used only in [2][6] [8][9]. Table @l shows, in the second and
third columns, the dimension |T'| x |P| (number of targets x number of probes)
of the incidence matrix for each set (M for Meiobenthos is the largest set).
Column A is the number of required virtual probes inserted into P to maintain
the feasibility of the initial probe sets P. Due to space constraints, we refer the
readers to [I][2][7] for the full details on the construction of these data sets. All
experiments were performed with parameters ¢y, = 10 and sy, = 5, as in all
previous studies.

Table @ shows, for all data sets, the minimum sizes |Pnyin| attained by the
greedy methods, GrdS of [7], GrdM of [2], DRC and DPS of [§], our SFPS
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Table 4. Size of Py, for each heuristic

Set |T| |P| A GrdS GrdM DRC DPS SFPS ILP
al 256 2786 6 1163 568 549 547 530 503
a2 256 2821 2 1137 560 552 537 516 519
a3 256 2871 16 1175 613 590 577 557 516

a4 256 2954 2 1169 597 579 578 557 540
ab 256 2968 4 1175 605 583 571 558 504
bl 400 6292 0 1908 961 974 921 883 879
b2 400 6283 1 1885 976 1013 942 890 938
b3 400 6311 5 1895 951 953 915 896 891
b4 400 6223 0 1888 1001 1019 956 920 915
b5 400 6285 3 1876 1022 1019 969 933 946
M 679 15139 75 3851 2336 2084 2068 2036 3158
HIV-1200 4806 20 - 531 487 472 468 @ -
HIV-2 200 4686 35 - 578 506 501 492 -

method, and the integer linear programming technique, ILP of [I]. In the table,
the final Py;,’s include the virtual probes inserted into P.

Table [ reports the improvements, Imp, of SFPS over GrdS, GrdM, DRC,
DPS and ILP, computed as in Equation 20 below.

PSFPS o PHeu
Imp = ™0 100 (20)
‘Pmigu
where Heu is either GrdS, GrdM, DRC, DPS or ILP. A negative (positive) value

of Imp means that a SFPS result is Imp% better (worse) than Heu result. Con-
Heu
P,

min

sequently, Imp is negative when SFPS returns a probe set smaller than
Therefore, the smaller the value of Imp, the better is SFPS.

SEFPS substantially outperformed all the other greedy methods in all instances.
GrdS and GrdM use different local search methods to find probes that satisfy the
constraint on each target and target-pair. They use no probe selection function
and thus, they do not know which probes are good or bad to select. DRC and
DPS use a local search method similar to that in GrdM, but are guided by probe
selection functions to decide which probes are best to select or not. SFPS uses
the probe selection function, Dgqps, of DPS but only to evaluate the effectiveness
of each individual probe in a probe set. SFPF does not select the best probes,
as in DPS, to construct a near minimal probe set; it uses the criterion Fp,
to select the best subset from a collection of probe sets, as explained in Section
DPS locally searches the probe set P, where the neighborhood of a probe
q € P is the set of probes that cover the same targets and separate the same
target-pairs as q. SFPS locally searches the power set 2°: which is more global
than DPS search strategy. Therefore, as expected, SFPS performs better than
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Table 5. Improvements of SFPS over GrdS, GrdM, DRC, DPS and ILP

Set GrdS GrdM DRC DPS ILP
al —54.43 —6.69 —-3.46 —3.11 +5.37
a2 —54.62 —7.86 —6.52 —3.91 —0.58
a3 —52.60 —9.14 —5.59 —3.47 +7.95
a4 —52.35 —6.70 —3.80 —3.63 +3.15
ab —52.51 —7.77 —4.29 —2.28 +10.71
bl —53.72 =812 —9.34 —4.13 40.46
b2 —52.79 —8.81 —12.14 —5.52 —5.12
b3 —52.72 —5.78 —5.98 —2.08 +0.56
b4 —51.27 —8.09 —9.72 —3.77 40.55
b5 —50.27 —8.71 —8.44 —-3.72 —1.37
M —47.13 —-12.84 —-2.30 —1.55 —35.53
HIV-1 - —-11.86 —3.90 —0.85 -
HIV-2 - —-1488 —2.77 —-1.80 -

DPS, DRC, GrdM and GrdS, due to its ability to assess the effectiveness of a
probe set and its ability to search 2°.

Also, SFPS achieved a greater reduction on the M set than all the others
methods, including ILP. The authors of [1], first applied GrdS to reduce the ini-
tial probe sets (and to reduce the ILP running time), and then further optimized
the reduced probe sets with ILP solver CPLEX (CPLEX is one of the leading
mathematical programming software packages available and few heuristics, if
any, are able to compete with its results). CPLEX was restricted to search only
a small portion of the solution space, hence ILP was not aware of the full initial
probe sets. SFPS had no such restriction. The improvements of SFPS over ILP
are still quite small, but it implies that one could obtain better results than ILP,
with better functions, than our Dqps or Fp, ., or with a better search method,
than our SFPS method.

7 Conclusions and Future Research

In this paper, the sequential forward search algorithm is applied for the first
time to solve the non-unique probe selection problem. SFPS outperformed all
the currently published greedy algorithms for non-unique probes and gave results
close to the optimal search method of ILP. SFPS also suffers from the nesting
effect of SFS; that is, a probe that was selected cannot be discarded later to
correct a wrong decision, and hence, the solution tends to be sub-optimal. The
main cause of the nesting effect is the use of a non-monotonic criterion such
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as our Fp,  criterion. We are investigating sequential methods, such as the
floating search methods of [5], which reduces the nesting effect and cope with
non-monotonic criterion functions.
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On Finding and Interpreting Patterns in Gene
Expression Data from Time Course Experiments
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Abstract. Microarrays are being widely used for studying gene activity
throughout a cell cycle. A common aim is to find those genes that are
expressed during specific phases in the cycle. The challenges lie in the
extremely large number of genes being measured simultaneously, the rel-
atively short length of the time course studied and the high level of noise
in the data. Using a well-known yeast cell cycle data set, we compare
a method being used for finding genes following a periodic time series
pattern with a method for finding genes having a different phase pattern
during the cell cycle. Application of two visualisation tools gives insight
into the interpretation of the patterns for the genes selected by the two
approaches. It is recommended that (i) more than a single approach be
used for finding patterns in gene expression data from time course exper-
iments, and (ii) visualisation be used simultaneously with computational
and statistical methods to interpret as well as display these patterns.

1 Introduction

DNA microarrays have enabled the simultaneous monitoring of the expression
patterns of thousands of genes during cellular differentiation and response. A
major challenge has been to find and interpret patterns in these massive data
sets. Cluster analysis is one of the main methodologies used to study such data
and find patterns. It is well known that there is no straightforward, rigorous way
to quickly extract clusters from complex, high-dimensional data and hundreds
of algorithms have been proposed [I]. As noted in [2] ‘All the [cluster analysis]
methods have their limitations and weak points. That is why it is so important
to look at the clustering problem from multiple perspectives’.

One widely used application of DNA microarrays is for the study of the cell
cycle transcriptome. For some time it has been clear that certain genes are
expressed at specific stages of the cell cycle [3]. So these genes show a periodic
pattern of expression when monitored during consecutive cell cycles. Clustering
methods have been proposed for finding patterns in these time course data;
including self-organizing maps [], principal component analysis [0], amongst
other methods (see [0]). Alternative approaches specifically for finding relevant,
periodic patterns in time course data have been proposed; see, for example, [3],
7, 8, [9]. Generally, the foremost aim for these latter methods is to find cell
cycle regulated genes.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 276 2008.
© Springer-Verlag Berlin Heidelberg 2008
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When searching for, and evaluating, patterns of gene expression, a statis-
tical modelling approach has the following, major advantage compared with
non-statistically based, computational modelling approaches that underpin most
clustering methods. Namely, the type of patterns being found can be compared
in a rigorous manner [I0]. For time course data, recently we proposed a novel
statistical model for selection of genes with different phases and/or amplitudes
[9 and compared the results of applying this approach to the Cho et al data
with the results previously published ([I1], [3]).

As noted above, there are limitations for all approaches, and it is important
to use and compare different perspectives. So we focus here on two approaches
for finding relevant patterns in gene expression time course data, namely (i)
Fisher’s exact test for hidden periodicities of unspecified frequency [12], [7],
and (ii) the absolute sine model [9]. A valuable step when analysing genome-
wide expression is to visualise the results from the analysis in such a way as
to facilitate interpretation of the data, including the patterns found, as well as
those not found [6]. Here two useful visualisation tools for interpreting patterns
simultanously in a large number of expression measures are used, the h-profile
plot [9] and the GE-biplot [14].

The next section summarises the two approaches for finding patterns in time
course data and the visualisation tools, and the Cho et al [I1] data are described
in section 3. The statistical approaches and visualisation tools are applied to
these data in section 4, and the results presented there illustrate the usefulness
of the two statistical approaches for finding different types of patterns in the time
course data, and of the visualisation methods for interpreting these patterns.

2 Methods Summary

2.1 Fisher’s Exact Test for Hidden Periodicities (FET)

Consider an observed time series z1, ..., 2y of gene expression values (possibly
transformed). Fisher devised an exact procedure based on the periodogram to
test the null hypothesis of Gaussian white noise against the alternative of an
added deterministic periodic component of unspecified frequency. Basically, the
null hypothesis will be rejected if the periodogram contains a value significantly
greater than the average value; see 10.2 in [12]. Writing [r] for the integer part
of [r], the statistic is given by

& = {maxy e L(wi) S T(wr)}

where 4
I(wy) = N7HEXL zie” "% 2, wy, = 27k /N.

In [7], [N/2] is used for [r], but [(N —1)/2] is the correct form; see [12], [I3]. The
significance level for the corresponding test is given by

Pl 2 a) = 1- 31 () a - gl

where y1 = max(y,0).
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This procedure has been applied to multiple time series data derived from
microarray experiments ([7], [I5], [§]). For this application, it is referred to as
the ‘(g)-statistic’ and ‘g test’. The challenge of multiple testing is addressed
using the False Discovery Rate (FDR) that controls the expected proportion of
false positives. If G genes are considered, first the corresponding p-values are
ordered, p(1y, .-, (@) With corresponding genes g(1), ..., g(q), then jg, the largest
j such that p;) < (j/G)g, is determined. The null hypothesis is rejected for
genes g(1y, .- g(j,)- Lhis controls the FDR at level g. The GeneCycle package in
R [16] implements the approach outlined in [7] that we refer to as FET-gs. Note
that during revision of the paper, GeneCycle was updated to use the correct
form of [r].

2.2 Absolute Sine Model (ASM)

Many genes, rather than having periodic behaviour instead may be following a
different pattern in each cycle. Based on many of the profile plots that appeared
to depict this behavior, we proposed the following model [9] for gene expression
data

Zy = |Asin(2n Kt + L)|,

where A is the amplitude, K the period and L the part of the cycle at time
zero, i.e. related to phase. This model allows the selection of genes with different
phases and/or amplitudes.

If K =1 and time ¢ is scaled to run from 0 to 1, there are exactly two cycles
so that genes whose profiles complete two cycles and have approximately equal
amplitude in both cycles will be selected. A scale free estimate of residual error
RSS = 3", (2 — %)/ A)? is obtained, where 2;* = | Asin(2nt + L)|. To assess fit
based on RS'S, simulation was used to determine the quantiles of the distribution
of RSS, denoted by ¢. Estimates of RSS, for all genes, g, were calculated and
compared to ¢. All genes, where RSS g < ¢ were selected as being compatible
with the two cycle model, where different values of ¢ select genes with more or
less compatability with the model.

Values of A provide information on the extent of gene expression change
(amplitude), and the corresponding value of ¢ is an estimate of the time of
maximal expression. The value of the intercept parameter L gives an estimate
of the expression at the beginning of the cycle.

2.3 Visualisation Tools

It is advised that ‘an essential first step [ | when considering any time series is
simply to plot the observation against time’ [I7]. This is straightforward if one is
considering a handful of time series data, but when there are hundreds, or even
thousands, of series it is more problematic. Two visualisation tools, the h-profile
plot and the covariance-biplot (and a variant called the GE-biplot) are useful in
this setting, and are now described.

Let Z be the matrix of expression values, or functions of gene expression
values, with G ‘genes’ in the columns and N microarrays (one for each time point



On Finding and Interpreting Patterns in Gene Expression Data 279

in this application) in the rows, such that the column (gene) means are zero.
To illustrate ideas, we describe the methods as if Z contained gene expression
values and refer to the columns as ‘genes’, although this is not strictly correct.

Let the SVD of Z be Z = UAVT, where U, size N by N, and V7, size G by
G, are orthogonal matrices such that UTU =T and VI'V = I (where I is used
to denote a conformable identity matrix).

In both plots, the coordinates for all genes, in d dimensions, are defined as

~ 1
Gl = JN - 1AdVdT,
where U, and V; are matrices comprising the first d columns of U and V
respectively and Ay is a sub matrix of A formed from the first d columns and
rows of A. For two dimensional representation d = 2 and then ég consists of
pairs of co-ordinates, one for each gene, defining the location of gene points on
the horizontal and vertical axes.

Genes, represented by gene points, have expression values which increase in
variance as distance from the origin increases. The angular separations between
the gene points are approximations to cosines of correlation between the gene
expression profiles. So genes that are highly correlated will lie approximately on
a line passing through the origin, with those that are positively correlated on
the same side of the origin, while those that are negatively correlated lie on the
opposite side.

In the h-profile plot reduced versions of a plot (thumbnail) for each gene is
placed at the gene points. When the reduced plot is a time series graph, and
Z contains the gene expression values, profiles of similar ‘shape’ are located
together, while those of ‘reversed’ shape lie on the opposite side of the origin.

For the covariance-biplot, where microarrays and the genes are simultaneously
displayed, the gene coordinates are as in the h-profile plot and the microarray
coordinates are given by

Cq= VN - 1U,.
When Z consists of gene expression values that have been logged, standardized
over each microarray, and finally column mean corrected, the covariance-biplot
is called the GE-biplot [14].

In these biplots, the scalar product between the row point (microarray
point) and ¢g* column point (gene point) with respect to the origin is approx-
imately equal to the (¢, )" element, 2; 4, of Z. The juxtapositions of the gene
points to the microarray points provides an approximation to the value of the
(transformed) gene expression values on the microarrays. The inner product can
be viewed geometrically as the product of the signed length of one of the vec-
tors and the length of the projection of the other vector onto it. Thus if a gene
point is close to a microarray point then the gene will be relatively up regulated
in that microarray and if the gene point is on the opposite side of the plot to
the microarray point then the gene will be relatively down regulated on that
microarray. The accuracy of these predictions depends on how good the approx-
imation is in the lower ranked space; two measures of fit, I; and I», ranging from
0 to 1, can be determined [14], [9]. R source code is available at [1§].

tth
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For time course data, one would expect those microarrays falling in the same
cell phase to be relatively close to one another, and the greater the separation
between the different cell phases, the greater the distance between the corre-
sponding microarrays.

A novel application of these plots for time series data demonstrated in this
paper, replaces the gene expression values in the columns of Z by the residuals
arising after first fitting ‘some model or other’ to the series. Such (initial) model
fitting is often necessary in time series analyses [17].

3 Mitotic Cell Cycle Data

The aim of the time-course experiment described in Cho et al [II] was to char-
acterize mRNA transcript levels during the cell cycle of the budding yeast S.
cerevisiae. Synchronous yeast cultures were arrested in late G1 and the cell cy-
cle re-initiated with cells collected at 10 minute intervals, covering two full cell
cycles. The time course was divided into early G1, late G1, S, G2 and M phases
based on the size of the buds, the cellular position of the nucleus, and standard-
ization to known transcripts.

For our analyses of these data, the negative values were truncated to .01, the
data logged using base 2 (as is commonly done, see for example [7]), and finally
standardized so that, for each microarray, the mean over all values is zero and
the corresponding variance is one. This latter transformation effectively ‘normal-
izes’ the distributions so that the first two moments of the distributions on each
microarray agree. Control genes were removed leaving a total of 6565 genes. Al-
though not technically correct the transformed gene expression is often referred
to as simply ‘gene expression’ to avoid cumbersome phrases. Preprocessing can
have a large impact on analyses, but such considerations are beyond the scope
of this paper. The sample at time zero, that is immediately after arrest, was
eliminated from the following analyses, leaving 16 microarrays, one at each 10
minute interval, from time 10 to 160 minutes.

4 Results

Using FET-gs in the GeneCycle package [16] with an FDR, of 0.05, 532 genes
were selected. On the left of Fig.1 is the GE-biplot where the genes are shown
as symbols, marking their positions relative to the microarray points which are
shown as numerals indicating the time in minutes. The microarrays are coloured
according to their cell phase determined by Cho et al, and the same colouring
is applied to the genes according to the phase in which the time of maximum
(TOM) occurred. TOM was determined by averaging the four values in each
phase and then finding the maximum. On the right of Fig.1 is the h-profile plot
using a periodogram as the thumbnail [16], with different colours differentiating
the estimates of k. The measures of fit are I; = 0.65 and I, = 0.88.

Previously, in the GE-biplot for these data using genes selected by ASM [9],
microarrays allocated to the different coloured phases appeared in the same
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Fig. 1. On the left is a GE-biplot using the 532 genes selected by FET-gs (FDR=0.05).
The microarray points are shown as coloured numerals (time in minutes) indicating the
phase determined by Cho et al (see legend). The genes are shown as coloured symbols,
marking their positions relative to the microarray points, where the colour (and symbol)
analogously are according to the phase in which time of maximum occurred. On the
right is a corresponding h-profile plot (outliers removed) showing the periodograms
for 531 of these genes (after removing the outlier). The periodograms are coloured to
differentiate the k values (see legend, and the equations in Section 2.1).
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Fig. 2. On the left is the GE-biplot using the 221 genes determined by ASM (¢ = 0.6)
and on the right the GE-biplot using the 254 genes determined by FET-gs (FDR=0.05)
restricted to k = 2. The colours, numbers and symbols are as described for the GE-
biplot in the caption for Fig.1.
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region and showed a strict ordering of the microarrays in time around the origin
indicating strong cyclic behaviour in time. The plot on the left of Fig.2, that uses
the 221 genes selected by ASM (with ¢ = 0.6), exemplifies this form of cyclic
behaviour. Such clear, cyclic, behaviour is not apparent in Fig.1. For example,
microarrays in the first G2 cell phase (50, 60 minutes) are quite separated from
those in the second G2 phase (130, 140 minutes). In the plot on the left of Fig. 2,
these microarrays are relatively close to each other.

In the h-profile plot in Fig.1, it is clear that only about half (254) of the 532
genes correspond to k = 2, the value one would expect for data collected for
two cell cycles. The GE-biplot for these (254) genes (when k = 2) is shown on
the right in Fig.2. Now it can be seen that the microarrays are positioned in
such a way as to reflect the cell phases that are known for these yeast data. The
two plots in Fig.2 are quite similar to each other, with clear separation of the
microarrays and (most of) the genes into the four distinct phases. The measures
of fit are essentially identical, and much better than those for Fig.1, namely
I; = 0.82 and I = 0.99. The corresponding h-profile plots are given in Fig.3.

From the FET-gs results, 7 genes had estimated k values greater than 2 (2
with a value of 3, 1 a value of 4, and 4 with value 8). The remaining 271 genes
had an estimated k value of 1, and Fig.4 gives a GE-biplot and an h-profile plot
for these genes. The measures of fit are essentially identical to those for Fig.2
The three groups of genes seen in the biplot of Fig.4 correspond to the first 6
time points (10 to 60 minutes), the next 5 (70 to 110 minutes) and the final
5 (120 to 160 minutes). From the h-profile plot in Fig.4, it appears that gene
profiles towards the upper right corner might have an upward slope, while those
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Fig. 3. On the left is the h-profile plot for the 221 genes determined by ASM (é =
0.6), and on the right the corresponding plot for the 254 genes determined by FET-
gs (FDR=0.05) restricted to k& = 2. The h-profile plot uses the standard time series
plots of the (transformed) gene expression values plotted over the 16 time points. The
colours are described for the GE-biplot in the caption for Fig.1.
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Fig.4. On the left is the GE-biplot using the 271 genes determined by FET-gs
(FDR=0.05) restricted to k = 1, and on the right is the corresponding h-profile plot
with outlying genes removed. The colours, numbers and symbols are as described for
the GE-biplot in the caption for Fig.1, with the profiles as described for Fig. 3.

towards the lower left might slope downward. These slopes are not so obvious in
the h-profile plot on the right of Fig.3 for the 2-cycle genes found by FET-gs.

Now FET is a test for periodicity with the null hypothesis of randomness. Such
a test is likely to be affected by other deviations from randomness such as a trend.
So we detrended the (transformed) gene expression data, by applying ordinary
least squares (linear) regression, and used the residuals in FET-gs (FDR=0.05).
The outcome was quite stunning. The number of genes selected fell dramatically,
from 532 to just 82. The I; and I measures of fit improved slightly (now 0.74
and 0.9 respectively, compared with 0.65 and 0.88 previously). The covariance-
biplot is given on the left in Fig.5. Amongst the 82 genes, 59 (72%) had a k-value
of 2, 22 a value of 1 and one a value of 4. Amongst the 59 two-cycle genes, 21
were in the top 59 genes found using ASM. On the right of Fig.5, we give an
h-profile plot showing these 21 genes as well as the 38 that were uniquely found
for the detrended data using FET-gs, FDR=0.05, k=2, and the 38 that were
unique to the top 59 found from fitting ASM.

We selected 8 genes for closer comparisons, namely 4 of the genes unique to
FET-gs lying on the left hand side of the h-profile plot in Fig.5, and 4 that
were unique to ASM and well separated from the first 4 genes. The genes are
identified on the h-profile plot. In Fig.6 we give time series profiles for these
8 genes, distinguishing the 4 unique to FET-gs on the left plot, from the 4
unique to ASM on the right. Note the different shapes of the profiles for the
genes selected by FET-gs, after accommodating the (slight) phase shift compared
with the profiles for the genes selected by ASM. This demonstrates that different
approaches are selecting genes with profiles that have distinct patterns.
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Fig. 5. On the left is the covariance-biplot using the 82 genes determined by FET-
gs (FDR=0.05) after detrending (fitting a linear model to) the (transformed) gene
expression values. The coordinates use the residuals from the linear model. On the
right is an h-profile plot using the genes selected by different approaches; see legend.
Eight of the genes selected for Fig.6 are identified.
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Fig. 6. Detailed time series profiles for 4 of the genes uniquely selected by FET-gs
(using residuals, FDR=0.05) on the left, and 4 genes selected uniquely by ASM (¢ =
0.6) on the right. The colours correspond to those used on the right in Fig.5.

Two of Cho et al's [II] landmark genes are in our selection. One of these
is CLN1 (found by ASM, and depicted in the plot in the right in Fig.6), and
the other is CDCA47 (found by FET-gs, and depicted in the plot on the left in
Fig.6). Cho et al identified CLN1 as being characterized by the specific cell cycle
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phase (late) G1. Previously we used CLN1 to show how one can determine those
genes that are highly correlated with a (landmark) gene of interest [9], and found
there, as here, that it peaks in the G1 phase. CLN1 was one of the two genes
that Cho et al found to have the largest change of 25-fold. So it is interesting
that this gene was not found using FET-gs (with the detrended data). In Fig.6,
CDCA47 has a profile that peaks in the M phase of the cell cycle. Cho et al
used CDCA47 as an early G1 phase landmark, although from their (FigdC) plot
it would appear to peak during phase M. In the space available, these results
briefly illustrate that the ability to visualise the profiles allows the researcher
to examine the approaches being used for finding genes and gives added insight
into the findings from the analyses.

5 Discussion

There are no true gold standards for finding expressed genes that vary system-
atically during the cell cycle, and so absolute assessment of different methods is
not possible. Until now, many approaches have been restricted to finding period-
ically expressed genes using time series methods. We advocate that alternative
models should also be applied.

We note that complete evaluation also requires the integration of results from
the genes found and the visual interpretation along with biological background.
For example, it has been argued (e.g. [7], [3]) that due to the synchronisation
technique used, the cells may be perturbed so some of the observed periodic
genes are due to stress response rather than cell cycle activity. In other words
some genes selected may be artifacts due to the treatment of the cells that would
not occur in freely growing cells. Certainly this could explain the genes selected
for k =1.

On first consideration, one might think that the two approaches, ASM and
FET, should be directly comparable. In general, they are not. ASM was devel-
oped to model the pattern of gene expression in a cycle in a specified manner (see
section 2.2) while, on the other hand, FET is a test for periodicity with the null
hypothesis of randomness and the (implicit) underlying model is quite different
[12]. Further, the ASM could be generalised to allow a differently shaped function
with a more pronounced peak where the gene is “switched on” compared with
the expression value in the other phases, where say the gene is “switched off”.

For FET, residuals from other detrending or modelling approaches, such as
from fitting a quadratic function, could result in different genes being selected.
We also note the possibility of different results from using FET-gs from [I6],
rather than FET in [I2]. Further, the FDR assumes independence of the genes
that obviously does not hold, as many genes are expected to be highly correlated
with one another. Evaluation of this assumption is beyond the scope of the paper.

Preprocessing and transformation of the data has an effect whose size has
not been consistently evaluated. Currently, there are no agreed guidelines, and
consideration of the sensitivity of the results to this decision is beyond the scope
of this paper. Further, we note that the common practice of ‘norming’ the gene
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expression values for each gene will distort the plots as then the gene points will
tend to lie on the circumference of a circle, as the variance has been set to 1 for
all genes.

FET as proposed in [7] has been used for unevenly spaced time points [8],
and detrending does not seem to have been considered. The ASM can be used
whether the time points are evenly or unevenly spaced. A robust alternative to
FET has been proposed [I3] and this could be usefully evaluated, as could the
application of methods for testing for fixed periodicities, as outlined in [12], when
one was only interested in, say, finding all genes completing two cycles during
the experiment.

In [7], averaging was recommended. We note that if there are approximately
an equal number of genes in different phases then averaging over all the genes
would result in no periodicity being able to be detected. Averaging would only
determine periodically expressed genes if the number exhibiting the identical
periodic behaviour were significantly greater than the remainder.

6 Conclusions

Fisher’s exact test (FET) is being widely used for finding periodic patterns for
gene expression data from time course experiments. The Absolute Sine Model
(ASM) is an alternative approach to finding patterns during a cell cycle. Using
a well-known yeast data set, we applied these two approaches, as well as two
visualisation methods that enable (i) genes and arrays to be displayed simul-
taneously (the GE-biplot) and (ii) profiles for a large number of genes to be
displayed (the h-profile plot). These visualisation tools enabled many insights to
be obtained, including the differentiation of the genes into groups according to
their periodicity, and the need to detrend the gene expression values first before
applying FET.

This paper highlights the advantages of (i) using visualisation methods simul-
taneously with computational and statistical approaches, and (ii) using more
than a single approach for finding patterns in gene expression data from time
course experiments, as different approaches can highlight uniquely different as-
pects of the gene expression patterns.
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Abstract. This paper explores the design problem of selecting a small
subset of clones from a large pool for creation of a microarray plate.
A new kernel based unsupervised feature selection method using the
Hilbert—Schmidt independence criterion (HSIC) is presented and evalu-
ated on three microarray datasets: the Alon colon cancer dataset, the
van 't Veer breast cancer dataset, and a multiclass cancer of unknown
primary dataset. The experiments show that subsets selected by the HSIC
resulted in equivalent or better performance than supervised feature se-
lection, with the added benefit that the subsets are not target specific.

1 Introduction

Feature selection is an important procedure in data mining. The elimination of
features leads to smaller and more interpretable models and can improve gen-
eralisation performance. Supervised methods produce feature subsets tailored
towards the prediction target and are applicable when labels are available. In
contrast, unsupervised methods select features that capture some of the infor-
mation contained within the whole dataset without requiring labels; as no labels
are used the feature selections are not target specific.

The problem of designing a sugarcane microarray plate by choosing a subset
of approximately 7000 clones from an initial pool of 50,000 clones is studied
herein. As the initial pool of clones contains some highly correlated pairs, there
is a preference towards decorrelation. Furthermore, the array must remain as
general as possible and not be tailored towards any specific phenotypes. As
such, this is an unsupervised selection problem.

The Hilbert-Schmidt independence criterion [I] (HSIC) HSIC is a dependence
measure between two random variables which is closely related to kernel target
alignment [2] and mazimum mean discrepancy [3] (MMD). Previous papers [4/5]
used the HSIC for supervised feature selection and demonstrated that the method
had good performance and flexibility on several genomics datasets. This paper
presents an unsupervised variant named wunsupervised feature selection by the
HSIC (UBHSIC, pronounced [u be sik]).

UBHSIC was evaluated in several experiments comparing the selection using
various kernels to supervised feature selection. As labels are not available on the
sugarcane dataset, UBHSIC was evaluated on three cancer genomics datasets: the
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Alon colon cancer dataset [GI7U8/9], the van 't Veer breast cancer dataset [10],
and a multiclass cancer of unknown primary (cup) dataset [I1]. The cup dataset
closely resembles the sugarcane problem as it was intended for the development
of a clinical test on a lower resolution platform.

2 Hsic and UBHSIC

The HSIC is a quantity that measures the mutual dependence between two vari-
ables. For the task of unsupervised feature selection, the dependence between
subsets of features and the full set of features is measured by the HSIC; a subset
with mazimum dependence on the full dataset is desired. This section gives an
overview of the HSIC and specifies the unsupervised feature selection problem as
a constrained optimisation problem.
Let
T11 - Tim
X =

Tnl - Tnm
be a finite dataset in matrix form with x;; € R, where n is the number of samples
and m is the number of features. Each row x;. corresponds to a sample, and each
column x.; corresponds to a feature.

Let & € 2™ be a subset of features, where 2™ denotes the power set of
{1,...,m}, and define Xy as the dataset restricted to only the features in 6,
i.e., the features with indices not in # are discarded. By this definition, Xy is a
matrix with dimension n X |0|, where |- | denotes set cardinality. The dependence
between the reduced dataset Xy and the full dataset X is the quantity we wish to
maximise. The HSIC measures this dependence through kernel functions [T2113].

A kernel function defines the inner product between two points of a Hilbert
space, and can be considered intuitively as a measure of similarity. Indeed, the

’
. . X, X .
correlation function cor(x, x’) := |I><cIIIIX’|I’ where (-, -) denotes the inner product
and ||x|| = \/(x,x), is a kernel function used in the experiments section. Given

a kernel function k, the kernel matriz is defined [Kij]1<i,j<n = k(x;.,%;.). The
kernel matrix of the full dataset X is referred to as K, and the kernel matrix of
the reduced dataset Xy as Kpy.

An estimator for the HSIC using these two kernel matrices [I] is

tr(KpHK H), (1)

where tr is the matriz trace (the sum over the elements of the main diagonal),
H = Id - 711, Id is the identity matrix, and the subtraction is element wise.
Using this dependence measure, the unsupervised selection task can simply be
stated as

m;lxtr(KgHKH) (2)

such that

6] = m’
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for some 1 < m’ < m. Solving this optimisation equation for a set 6 gives the
UBHSIC solution.

The solution to the optimisation equation is explicit in the linear kernel case
where K := XX7T. Let M := HK H. The HSIC estimator is then

tr(K M) = tr(X X7 M)
= tr(XTMX)

_ T .
= E x,jMx.j.
J

Thus, in the case of a linear kernel the features are independent and can be
ranked by XE Mx.; and greedily selected.

For other kernels, an analytical solution does not exist and a good subset
must be found through searching. The forward selection and recursive elimina-
tion greedy nested subset strategies [14] can be used to find a good solution if the
number of features is not large. This approach was used for the supervised vari-
ant presented by Song et al. [45]. Alternatively, a good solution can be found
using combinatorial optimisation algorithms such as simulated annealing. For
the sugarcane dataset, a good solution to ([2)) is found using an annealing algo-
rithm as nested subset selection is unattractive due to the large pool of initial
features. Efficient solving the optimisation problem is an open problem.

3 Results and Discussion

The proposed method was analysed on several cancer genomics datasets using
different kernels. These kernels are defined as follows:

Radial basis function (RBF): k(x,x’) := exp(—o||x — x'||3) with o set as the
inverse median of the squared distances ||x — x’||3 between points in the
dataset

Linear: k(x,x’):= (x,x')

Polynomial: k(x,x) := ((x,x) + 1)* for d € {2,3}

{xx')?

Variance: k(x,x') = /7

The variance kernel was chosen to produce highly decorrelated selections. The
preference towards decorrelation is indirectly encoded as (x,x’) /1/(x, x) (x/,x’)
is the cosine of the angle between the two vectors x and x’. Thus, as adding
a feature highly correlated with another already selected feature will not affect
the angle between the vectors as much as a feature orthogonal to all selected
features, one may postulate that the kernel used with UBHSIC will produce highly
decorrelated selections.

Three cancer genomics datasets were analysed, the van 't Veer breast cancer
dataset [I0] and a colon cancer dataset [GI7I89]. The van 't Veer dataset consists
of 98 samples, 46 with a distant metastasis and 52 with no metastasis. Each
sample has 5952 dimensions. The colon cancer dataset has 62 samples, 22 normal
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and 40 cancerous, and 2000 dimensions per sample. Both datasets are 2-class
classification problems.

The final cancer genomics dataset is a cancer of unknown primary (CUP)
dataset [T1]. This is a multiclass classification dataset where the aim is to develop
a predictor for the site of origin of a tumour from a microarray of a sample. The
dataset consists of 14 classes, 220 samples, and 9630 features. Not each class is
represented equally, with the smallest class containing only 3 samples and the
largest containing 34.

To gauge the utility of feature subsets selected by UBHSIC for prediction, the
reduced datasets were evaluated using supervised classification and generalisa-
tion estimation. The performance achievable from the reduced datasets were also
compared to a fully supervised selection approach.

The classification and supervised feature selection algorithm used was a cen-
troid based classifier and supervised feature selector [15]. This method was cho-
sen as it is simple, fast, and has performed well on these particular datasets [I5].
For the multiclass cUP dataset, a one-vs-all architecture [I6] was used in con-
junction with the centroid classifier to produce a multiclass classifier. For gen-
eralisation performance estimation, the e-0 bootstrap estimator [I7] was used
with 200 repetitions. The area under the ROC curve (AROC) [I8] was used as
a performance metric for the two-class datasets. A multiclass extension to the
AROC was used [19] for the cuP dataset.

Each dataset was analysed by applying UBHSIC with the various kernels to
reduce the full dataset. The centroid classifier and supervised feature selector
was then applied to the UBHSIC reduced datasets to evaluate the performance.
The same centroid classifier and supervised feature selector was applied to the
full dataset to obtain the performance achievable using supervised selection only
without any UBHSIC pre-filtering.

[Figure T|shows the results of pre-filtering using UBHSIC down to 50
and 500 features on the van 't Veer dataset. With the reduction
to 500 features, the linear, RBF and variance kernels do very well; they achieve a
level of performance equivalent to the full dataset at higher numbers of features
and exceed the performance at lower numbers of features. The two polynomial
kernels initially perform poorly, but after mild supervised feature selection the
performance equals that of the other kernels and the full dataset. Under aggres-
sive reduction down to 50 features, somewhat surprising results are obtained; the
maximum performance achieved was substantially better than the full dataset us-
ing a polynomial kernel of degree 2 despite the operating with only 32 features.
Furthermore, the variance kernel achieves very high performance at the eight
features operating point. Both are significantly fewer than the original 70 genes
proposed for classification by the original paper [10].

Performing the same experiments on the colon cancer dataset yielded the
results in Again, strong performance when using the variance and
RBF kernels is observable in RBF produced very good results after
further supervised filtering down to a few features (4) while the variance kernel
produced very similar results to the full dataset. The linear and polynomial
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Fig.1. van 't Veer dataset with centroid classifier and feature selector. Results are
using the e-0 bootstrap with 200 repetitions. Error bars show 95% confidence interval.
Subfigure (a) shows the performance of the dataset reduced to 50 features using the
UBHSIC procedure and various kernels. Each plot corresponds to a different kernel,
with the purple plot corresponding to the cFs-centroid method on the entire dataset
(i.e., without prefiltering using UBHSIC). The 5 plots where prefiltering using UBHSIC
was used do not extend above 50 features, and further supervised filtering using the
CFS was applied to determine the maximum performance achievable from the reduced
datasets. Subfigure (b) is similar to subfigure a, except with less aggressive UBHSIC
reduction (reduced to 500 features instead of 50).
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Fig. 2. Colon cancer dataset with centroid classifier and feature selector. e-0 boot-
strap with 200 repetitions. Error bars show 95% confidence interval. The experiment
is identical to except with a different dataset.
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Fig. 3. cup cancer dataset with centroid classifier and feature selector. e-0 bootstrap
with 200 repetitions. Error bars show 95% confidence interval. Number of features
shown is per class not overall. Experiment details are as in

kernels do not perform well on this dataset; this is supported by the results
shown in where the linear and polynomial kernels again perform
poorly, but the RBF and variance kernels perform well.

Finally, the results of applying the unsupervised feature selection to the cup
dataset is shown in As this dataset is a larger dataset (220 samples)
than both the colon and van 't Veer datasets, a less aggressive filtering was ap-
plied. shows the performance curves obtained after filtering to 500
features. At 500 features, the variance kernel produces a subset with equivalent
performance to the full dataset. At the aggressive reduction to 100 features, the
performance does not suffer greatly for the variance kernel. The other kernels do
not perform well on this dataset.

Furthermore, the 500 feature subset selected by the variance kernel outper-
formed the full dataset at low numbers of features. The performance achieved
below 32 features is greater than the performance at the same operating point
obtained with the full dataset. Given this performance, a satisfactory operating
point at 16 features or even 8 features per class may be chosen, resulting in a
very sparse predictor.

In summary, these results show that unsupervised pre-filtering does not de-
grade the classification performance and can actually improve the performance
at few features. The RBF and variance kernels perform very well across both
two-class datasets, with the other kernels not performing as consistently. On the
multiclass dataset, the variance kernel is the only kernel that performed well.
The aggressive feature reduction down to 50 features for the two-class datasets
and 100 features for the cup dataset showed surprisingly good performance, sug-
gesting that the full datasets contains significant redundancy and can be highly
compressed without significant loss of performance.
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3.1 van ’t Veer in Detalil

To gain a better understanding of the relation between features selected by
UBHSIC, the feature subsets obtained on the van 't Veer data were visualised.
shows the full unfiltered dataset projected down onto the first two
principal components with each sample represented by a number. It is clear
from the projection that sample 10 is an outlier, sitting far away from the other
samples. Excluding this sample and reprojecting the data obtains the embedding

shown in [Subfigure 4D] Here one can observe that the samples roughly form two
groups separated mostly by the first principal component (z-axis).

[Subfigure 5a] displays a biplot [20] of the dataset filtered down to 100 features
using the linear kernel and UBHSIC. In the figure, samples are shown as black
points and features as red vectors. If two feature vectors have a small angle then
they are highly correlated. From the figure the two-group structure observable on
the original projection is maintained. Furthermore, the selected
features are strongly positioned along the first principal component. This is not
unexpected as a linear kernel is expected to favour the first principal component,
and as features are selected independently it is also expected to select highly
correlated feature sets. Indeed, a selection of 100 features most correlated with
the first principal component yields a subset of features with 77 features in
common with the subset selected by the linear kernel and UBHSIC.

The biplot produced using the RBF kernel resembles the linear
kernel results in that the two-group structure is preserved with many features
selected along the first principal component. However, in comparison the features
are more spread out in two fan-like structures, each spanning one of the groups
well, whereas the “fans” formed by the linear kernel are not as spread out and
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Fig. 4. Biplot of samples and features projected onto first two principal components
using the full van ’t Veer dataset. The x-axis is the first principal component, and
the y-axis is the second. The sample marked as 10 in subfigure a is clearly an outlier;
removing the outlier and reprojecting the samples produces the embedding shown in
subfigure b.
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Fig. 5. Biplot after filtering the van 't Veer dataset down to 100 features using the linear
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Fig. 6. Biplot after filtering the van 't Veer dataset down to 100 features using a
polynomial kernel of degree 2. Unlike the linear and RBF kernels, the pattern is more
radial, suggesting the selection has less coregulation. With this selection, an outlier is
apparent in subfigure (a). Subfigure (b) shows the biplot with the outlier removed.

well aligned with the groups. The RBF kernel is selecting sets with high cross-
correlation; this is evident from the number of feature vectors with small interior
angles.

Running the same analysis using the polynomial filter of degree 2 yields the re-
sults shown in[Figure 0 Interestingly, the selected feature subset appears to have
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Fig. 7. Biplot after filtering the van 't Veer dataset down to 100 features using the
variance kernel. A highly radial pattern is visible, more-so than the polynomial kernel,
with no clear outliers.

generated an outlier that is clearly visible in removing this outlier
produces a vastly different projection as shown in In this figure
the feature vectors can be observed to have a “radial” pattern, indicating the
selected features do not have high cross-correlation. Similar results are obtained
with the polynomial kernel of degree 3 (not shown). The indication here is that
polynomial kernels tend to favour feature subsets with lower cross-correlation
than the RBF and liner kernels.

Finally, the variance kernel is shown in[Figure 7] Unlike the polynomial kernel,
the variance kernel did not produce any new outliers and resulted in a more “ra-
dial” pattern than the polynomial filter. This indicates that the selected features
are highly decorrelated as postulated previously.

These results indicate the linear and RBF kernels produce subsets with high
cross-correlations; the linear kernel is especially highly cross-correlated and
aligned with the first principal component while the RBF kernel spans the sam-
ples well and is less cross-correlated. The polynomial kernel and variance kernels
result in much more decorrelated results, with the variance kernel producing
highly decorrelated selections. Given the classification performance observed on
the van 't Veer datasets, the RBF and variance kernels are both good choices and
can be selected depending if one wishes to obtain whitened data or not.
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4 Conclusions

A method for unsupervised feature selection, UBHSIC, was presented and evalu-
ated on several bioinformatics datasets. The results were very promising: on the
cancer genomics datasets the classification performance after pre-filtering using
UBHSIC was equivalent or better than the performance obtained using the full
dataset. The RBF and variance kernels show good performance on all two-class
datasets, and the variance kernel showed good performance on the multiclass
dataset. Furthermore, the variance kernel producing highly decorrelated selec-
tions as postulated.

The high level of classification performance observed after filtering strongly
suggests shifting to a lower resolution platform by selecting a subset of clones
using the presented method is a viable option. In particular, UBHSIC may be
a reasonable solution to the inspiring sugarcane microarray plate design prob-
lem. Furthermore, the feature subsets obtained using UBHSIC procedure are not
tailored for a specific target and thus may be used to predict many different
phenotypes, though further supervised feature selection may be needed to reach
the maximum performance.
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Abstract. There has been considerable interest in identifying biologically
relevant genes from temporal microarray gene expression profiles using linear
and nonlinear measures. The present study uses two distinct approaches
namely: classical order zero-crossing count (ZCC) and Lempel-Ziv (LZ)
complexity in identifying non-random patterns from temporal gene expression
profiles. While the former captures the linear statistical properties of the time
series such a power-spectrum, the latter has been used to capture nonlinear
dynamical properties of gene expression profiles. The results presented
elucidate that ZCC can perform better than LZ in identifying biologically
relevant genes. The robustness of the findings are established on the given gene
expression profiles as well as their noisy versions. The performance of these
two techniques is demonstrated on publicly available yeast cell-cycle gene
expression data. A possible explanation for the better performance of the ZCC
over LZ complexity may be attributed to inherent cyclic patterns characteristic
of the yeast cell-cycle experiment. Finally we discuss the biological relevance
of new genes identified using ZCC not previously reported.

Keywords: Gene expression, Time series, Zero-crossing count, Lempel-Ziv
complexity.

1 Introduction

Microarrays have proven to be useful tools in capturing simultaneous expression of a
large number of genes in a given paradigm. These high-throughput assays provide
system-level understanding of the given paradigm. Recently, microarrays have been
used to generate temporal expression profiles. Such profiles capture the
transcriptional activity of genes as a function of time, hence their dynamics. There has
been considerable interest in developing appropriate techniques to understand
functional relationships and network structures from temporal gene expression
profiles (see [1] and references therein). These include global analysis techniques
such as PCA, hierarchical clustering and self-organizing maps (see [2] and references
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therein). As pointed out by [3], such techniques treat the expression across the time
points as independent entities, hence immune to the temporal structure/dynamics.
Such global analyses may also be susceptible to inherent transcriptional delays.
Therefore, it might be necessary to explore alternate techniques that are sensitive to
the temporal structure of the data. Temporal expression profiles of biologically
relevant genes orchestrating a specific paradigm follow characteristic and reproduci-
ble patterns. This in turn supports their inherent non-random nature. While genetic
networks are undoubtedly nonlinear dynamical systems, these dynamical nonlineari-
ties need not necessarily manifest in the external recording such as microarray
expression profiles. This can be attributed to noisiness and nonlinearities at the
measurement and dynamical levels [4]. On a related note, nonlinear dynamical
systems can also give rise to simple cyclic/periodic behavior (limit cycle) for certain
choice of the system parameters which can be modeled as linear stochastic processes.
Therefore, measures sensitive to linear as well as nonlinear statistical properties have
been used to investigate patterns in gene expression profiles. In the present study, we
compare the performance of two measures in identifying biologically relevant genes,
namely. (a) zero-crossing count (ZCC), [5] which is related to the linear statistical
properties of temporal data such as power-spectrum and (b) Lempel-Ziv (LZ)
complexity measure, [6,7] which is sensitive to linear as well as nonlinear dynamical
properties in the given data. We show that ZCC can prove to be a better choice than
LZ complexity in identifying biologically significant genes. The better performance
of ZCC may be due to inherent cyclic patterns in the yeast cell-cycle data. Such
patterns can be modeled as linear stochastic processes with Gaussian innovations.
Therefore, measures sensitive to the linear correlation structure may be sufficient to
describe them.

Techniques such as power-spectral analysis which capture the linear statistical
properties of the stationary time series are a natural choice for investigating experimental
time series [8]. Power-spectrum is related to the auto-correlation function (Wiener-
Khinchin theorem) which in turn is used to estimate the optimal process parameters of
linear stochastic processes (Yule-Walker equations) [9, 10]. Alternatively, auto-
correlation function is sufficient statistics for describing normally distributed linear
stochastic processes. Uncorrelated noise is characterized by a flat power-spectrum
representing equal power across all frequencies. A significant skew in the power-
spectrum towards lower-frequencies is indicative of correlation or non-random signatures
in the given time series. These in turn may be indicative of biologically relevant genes.
Classical spectral estimation may not be possible due to the small length of the temporal
gene expression profiles. However, the spectral properties of a given time series can also
be captured by zero-crossing count [5]. The latter overcomes some of the caveats
encountered in classical spectral estimation and its interpretation is fairly straight
forward. In the present study, biologically relevant genes will be identified from ZCC. In
order to establish statistical significance, ZCC estimates on the given data are compared
to those obtained on random shuffled surrogates. The random shuffled surrogates
represent uncorrelated counterpart of the given data.

Information theoretic approaches have also been popular in capturing patterns in
gene expression profiles. These include entropy-based approaches [11]. However,
entropy estimates are governed solely by the probability distribution of the expression
values, hence immune to the temporal expression profile. For instance a gene
exhibiting a periodic pattern across 9 time points (001001001) has the same Shannon
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entropy as gene exhibiting seemingly random pattern (101000100). The latter is
obtained by randomly shuffling the former. Complexity measures which overcome
some of the caveats of entropy have recently been proposed to investigate gene
expression profiles [12, 15, 16]. Traditionally, uncorrelated noise is considered to be
maximally complex or random. Any deviation from randomness ensures correlation
and accompanied by a decrease in complexity. From the perspective of gene
expression analysis, genes with low complexity are hypothesized to be biologically
relevant. A recent study, proposed several measures of complexity for the analysis of
temporal gene expression profiles in yeast cell-cycle experiment [12]. Such an
analysis was carried out in an unbiased manner in the absence of any prior knowledge
about the given data. The authors successfully identified biologically relevant genes
in addition to those that exhibited characteristic cyclic behavior [13, 14]. Complexity
measures have also been successfully used to gain insight into the dynamical aspects
of genetic networks from the temporal expression profiles [15, 16]. In [15], the
distribution of the Lempel-Ziv complexity from experimental gene expression profiles
was compared to those generated from synthetic random Boolean networks (RBN)
using Kullback-Leibler divergence and Euclidean distance. Subsequently, the
dynamics of the genetic network governing the paradigm was found to lie in the
ordered regime or between order and chaos. More recently, a variant of the
Kolmogorov-complexity (i.e. normalized compression distance) was used to argue in
favor of criticality in macrophage dynamics. In the present study, Lempel-Ziv (LZ)
complexity is used identify biologically relevant genes. Unlike ZCC, LZ is sensitive
to linear as well as nonlinear correlations in the given data. For instance, qualitative
behavior of LZ complexity has been found to mirror invariants such Lyapunov
exponents in nonlinear dynamical systems [7, 17]. Periodic time series such as sine-
waves are highly compressible and result in low values of LZ complexity. Ideally,
uncorrelated noise cannot be compressed hence accompanied by large values of LZ
complexity. As in the case of ZCC, LZ values obtained on the given data are
compared to those obtained on random shuffled surrogates in order to establish
statistical significance. There is no direct relation between LZ complexity and ZCC.
However, it should be noted that ZCC as well LZ is likely to increase monotonically
with increasing noise in the given data. Noise being reflected by high-frequency
components in the power-spectrum.

2 Methods

2.1 Spectral Analysis by Zero-Crossing

Consider a zero-mean normally distributed stationary processy ,r=1..N. The

corresponding binary sequence of the differenced series 7 = x — x,_ is generated as

y=11if z. >0
t - t . (1)
=0 otherwise
Expression (1) essentially quantizes the given input signal ; onto a coarse-grained

binary sequence. The sequence y, is subsequently differenced and passed through a
memoryless nonlinear transform as

Vz :(yr_yz—l)z (2)
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A zero-crossing is said to occur if v, =1. Subsequently, the zero-crossing count is

given by

D, =

N-1
1
1=

: v, 3)

The zero-crossing count is related to the linear correlation, hence the power-
spectrum [see 5 and references therein]. For certain class of colored Gaussian noise,
zero-crossing analysis may be sufficient to describe the process dynamics [5].
Examples include cyclic patterns such as those encountered in the Spellman alpha-
factor synchronization yeast cell-cycle experiment. At this point, it might be necessary
to point out certain resemblance between the zero-crossing analysis and the complexity
maps proposed in [12]. The first-order crossing g, = y, — y, | shares resemblances to the

map 7, proposed recently in [12]. On a similar note the mapsy,, and?,,in [12] share
resemblance to the expressions O (i.e8(8)=0, -0, and 8 (i.e.0(57)) for higher

order crossings obtained repeated application of the difference operator (high-pass
filter) [5]. On closer observation, we note subtle differences in their definitions. The
complexity maps [12] use (i) ranks of the values as opposed to the sign of the mean-
subtracted values (1). (ii) Discontinuous memoryless function as opposed to
continuous memoryless function (2). While the maps in [12] capture the complexity of
the given process, ZCC captures the spectral characteristics of the process.

2.2 Lempel-Ziv Complexity

Lempel-Ziv complexity (LZ) [6] and its extensions [7] have been used widely to
understand the dynamics in biomedical [18, 19] and genomic signals [15]. An elegant
implementation of the LZ algorithm for binary sequences was proposed in [7]. In the
present study, binary sequence of the expression profiles was generated by
thresholding about the mean. The objective of the LZ algorithm is to reconstruct the
given sequence s of length n, using two fundamental operations, namely: copy and
insert by parsing it from left to right. This information in turn is used for estimating
the algorithmic complexity of that. The working principle of the LZ algorithm is
shown below for completeness. Prior to the discussion of the example we introduce
the notation v(s) in the following example corresponds to the vocabulary set [6].
Consider s = 00, then v(s) represents all possible words that can be reconstructed from
s when scanning from left to right, i.e. v(s) = {0, 00}. It is important to note that while
0 can be generated from v(s), 1 cannot be generated from v(s).

Consider a period 3 sequence sy = 001001001....... as before

(a) The first digit 0 is unknown hence have to be inserted, resulting in c(n)
=lands =0.

(b) Consider the second digit 0. Now s = 0, ¢ = 0; s¢ = 00; sqn = 0;
g€ v(sqm); therefore copying is sufficient resulting in no change in the
complexity i.e. ¢c(n) =1 and s~ = 0.0
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(c) Consider the third digit 1. Now s = 0, ¢ = 01; sg = 001; sgm = 00;
g€ v(sqm); therefore insertion is required, resulting in ¢(n) =2 and s” = 0.01.
(d) Consider the fourth digit 0: s = 001; ¢ = 0; sg = 0010; sqm = 001;
g€ v(sqm); therefore copying is sufficient, resulting in c(n) =2 and s” = 0.01.0
(e) Consider the fifth digit 0: s = 001; ¢ = 00; sg = 00100; sqr = 0010;
g€ v(sqm); therefore copying is sufficient, resulting in c(n) = 2 and s~ =
0.01.00

(f) Consider the sixth digit 1: s = 001; g = 001; sg = 001001; sgmt = 00100;
g€ v(sqm); therefore copying, is sufficient resulting in c(n) = 2 and s~ =
0.01.001

It is important to note that subsequent addition of symbols from s does not change
c(n). This can be attributed to the inherent periodicity of the sequence s. Since s~ does
not end in a dot (.) we add one to the complexity, resulting in c¢(n) = 3. In the present
study, we consider the normalized complexity measure () given by the expression

c(n) n

= > where b(n) =
4 b(n) ) log, n

“)

The normalized complexity (y) tends to unity in the asymptotic limit for sequences
whose Shannon entropy is unity [6, 7].

2.3 Random Shuffled Surrogates

Resampling techniques are encouraged in literature for establishing statistical
significance where the null distribution is unknown. Resampling without replacement
is used widely within the context of correlated data analysis [20, 21]. Such an
approach retains certain statistical properties of the given empirical sample in the
surrogates. For the same reason these surrogates are termed as constrained
realizations [21]. In the present context, the objective is to argue in favor of
correlation in the given gene expression profile, i.e. the statistics considered namely:
D; (3) and vy (4) are sensitive to correlation in the given data. Therefore, the objective
is the reject the null that the given data is uncorrelated noise. The surrogates under the
above null are generated by randomly shuffling (RS) the temporal expression profile
of that gene. The constraint here is on retaining the distribution of the gene expression
profile in the surrogates. Alternatively, the distribution of the gene expression profile
is treated as a nuisance variable [21]. The discriminant statistics (3) and (4) are
sensitive to the temporal structure, hence are expected to exhibit a significant
discrepancy between the empirical sample and the surrogate counterpart in the case of
correlated expression profiles. More importantly, estimates of (3) and (4) on the
surrogate realizations will be higher than those estimated on the empirical sample for
correlated gene expression profiles. Therefore, a one-sided test is sufficient to
establish statistical significance. In the present study, the number of surrogates were
chosen as (n, = 99) corresponding to a significance level oo = 1/(99+1) = 0.01 [21]. It
is important reiterate that the null is rejected only when the estimate of (3) and (4) is
lesser than each of the 99 surrogate realizations.
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3 Data

In order to establish reproducibility and direct comparison, we have used the same
data sets as those investigated recently by [12] using a battery of complexity
measures. The final list of genes was obtained from the Ahnert et al., (personal
communication). The authors in [12] identified 150 genes as top-ranked by one of
their proposed complexity measuresk(f/y,,)- 52 of these 150 genes were listed as

biologically relevant either by Spellman (104 genes, http://genome-www.stanford.edu
/cellcycle/data/rawdata/-Knowngenes.doc) or Simon (140 genes, http://web.wi.mit.
edu/young/cellccycle/-Table of Regulated genes). Their set of 150 genes also included
genes not listed in either Spellman (104) or Simon (140).

LIST OF 133 GENES: Since identifying the missing data is not one of the objectives
of the proposed study, we first eliminate all genes whose values are missing even at a
single time point in the Spellman alpha-factor synchronization yeast cell-cycle
experiment (6178 genes across 18 time points) [14]. The reduced set consisted of
4491 genes. Therefore, all subsequent discussions will be restricted to this set of 4491
genes. Spellman et al., 1998 [14] identified 104 genes as well-documented through
extensive literature survey. Out of these 104 genes, 72 genes had values across all 18
time points (i.e. overlapped with the list of 4491 genes). The ORFs of these 72 genes
were subsequently identified. In a related study, Simon et al., 2001 [13] identified 140
genes as being relevant to yeast cell-cycle. The gene IDs of these 140 genes were
retrieved by comparing their ORFs to those spotted on the array. Only 125 of the 140
identified had gene IDs. Out of these 125 genes, 93 genes had values across all 18
time points (i.e. overlapped with the set of 4491 genes). Thus in essence we have 72
out of the 104 genes from study [14] and 93 out of the 140 genes from study [13]. The
union of the above sets resulted in 133 genes relevant to yeast cell-cycle.

LIST OF 40 GENES: The performance of the measures (3) and (4) are also
determined using the set of 40 genes as ground truth from Ahnert et al., (personal
communication). Of the 52 genes identified by Ahnert et al., 2006 40 had values
across all 18 time points (i.e. overlapped with the 4491 genes).

The objective of the present study is to determine the effectiveness of the measures
(3) and (4) on retrieving biologically relevant genes from the set of 4491 genes. Of
interest is to investigate the false-positive and false-negative rates using the 133 genes
and 40 genes as ground truths. The effect of noise on the performance of the two
measures (3), (4) is also investigated. Finally the usefulness of the ZCC (3) in
identifying new genes not previously reported in either Simon [13] or Spellman [14]
is discussed. The temporal expression profiles of the 4491 genes were mean-
subtracted prior to the analysis. The present study also assumes the gene expression
profiles to be generated from stationary stochastic processes.

4 Results

Prior to investigating the gene expression profiles we demonstrate the effectiveness of
the proposed measures in quantifying regularity in patterns across synthetic linear and
nonlinear dynamical processes.
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4.1 Synthetic Data

Periodic sine-wave

Consider a periodic sine-wave given by s(r) = sin(27f, @) with (f; = 2, N = 200), Fig la.
The sampling frequency (F; = 15) was chosen so as to satisfy the Nyquist criterion,
i.e. Fy > 2f). Periodic signatures can be modeled as linear stochastic processes such as
auto-regressive moving average processes (ARMA), hence linear statistical properties
are sufficient to describe them. However, periodic signatures can also be generated by
nonlinear dynamical systems (limit cycles). The power-spectrum of the periodic sine-
wave exhibits a dominant frequency, Fig. 1b. The results of the zero-crossing analysis
(3) and the normalized complexity (4) are shown in Fig. 1c and 1d respectively. The
statistical measures (3) and (4) of the periodic sine-wave is clearly lesser than those
obtained on the random shuffled surrogates (n; = 99, oo = 0.01) rejecting the null as
expected, Figs. 1c and 1d.

Chaotic logistic map

Consider a chaotic logistic map given by x,,; = 3.8.x,.(1-x,), Fig le. Unlike periodic
sine-wave, chaotic logistic map is nonlinearly correlated and is accompanied by a
broad-band power-spectrum characteristic of random noise, Fig. 1f. The results of
zero-crossing analysis (3) and the normalized complexity (4) are shown in Fig. 1g and
1h respectively. The time series was mapped onto a binary sequence by thresholding
about the superstable fixed point (0.5). This particular choice has been shown to
capture the dynamics faithfully [17]. Zero-crossing estimate (3) on the chaotic process
was considerably higher than those on the random shuffled surrogates failing to reject
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Fig. 1. Time series generated from periodic sine-wave (left) and chaotic logistic map (right) are
shown in (a) and (e) respectively. The corresponding power-spectra are shown in (b) and (f)
respectively. Zero-crossing crossing analysis (¢ and g) and normalized complexity (d and h)
estimates of the empirical samples are shown by hollow circles. The histogram of their
estimates on (n; = 99) random shuffled surrogates are also shown in the corresponding subplots
(black bars).
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the null (n, = 99, oo = 0.01), Fig. 1g that the given process is uncorrelated noise. The
one-step auto-correlation estimated using (7) and directly from the data was negative
failing to provide any meaningful insight into the dynamics. However, analysis using
the normalized complexity clearly rejected the null, Fig. 1h. Thus the zero-crossing
analysis may have clear limitations when analyzing from nonlinear processes.

4.2 Yeast Cell-Cycle Experiment

Zero-crossing analysis (3) of the 4491 genes (Sec. 3) identified 101 genes as being
significant (o0 = 0.01). A similar analysis using normalized complexity (4) identified
133 genes as being significant (o. = 0.01). Prior to a detailed analysis we investigated
two genes namely: YBRO10W (Fig. 2a) and YPR150W (Fig.2b) using D; and 7. The
choice of these two genes can be attributed to a recent study which investigated their
biological relevance using a battery of complexity measures [12]. Visual inspection of
the temporal expression profiles of YBRO10W (Fig. 2a) revealed characteristic low-
frequency non-random signatures unlike YPR150W (Figs. 2b). Zero-crossing (D,),
Fig. 2c, as well as normalized complexity (y), Fig. 2e, estimates on YBRO10W were
considerably less than those obtained on the surrogate realizations rejecting the null
that YBRO10OW is uncorrelated noise. The results of a similar analysis of YPR150W
using (D) and (y) are shown in Figs. 2d and 2f respectively. Both the measures failed
to reject the null in the case of YPR150W. Earlier studies have reported YBRO10W
(or HHT1) to be actively involved in cell-cycle [13]. In contrast, YPRI50W is an
open-reading frame (ORF) with no documented evidence of its role in yeast cell-
cycle. The performance of the two measures (D, y) were subsequently investigated
by introducing noise in the zero-mean temporal expression profile for a gene x as
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Fig. 2. Temporal expression profiles of two genes YBRO10W and YPR150W are shown in (a)
and (b) respectively. The corresponding zero-crossing (D;) estimates (circle) along with the
distribution of the estimates on the 99 random shuffled surrogates (black bars) for each of the
three genes are shown right below them in (c) and (d) respectively. The results of a similar
analysis using normalized complexity (y) for the genes are shown right below them in (e) and
(f) respectively.
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Using the 133 genes from Speliman and Simon studies as the ground truth
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Fig. 3. False-negative rate and false positive rate obtained assuming the 133 genes [13,14] as
ground truth using zero-crossing (D, solid lines) and the normalized complexity (y, dotted
lines) for noise factors (f = 0, 0.10, and 0.20) is shown in (a) and (b) respectively. False-
negative rate and false-positive rate obtained by a similar analysis assuming the 40 genes [12]
as ground truth is shown in (c) and (d) respectively.

(O = x, + f.e), where e, is i.i.d Gaussian noise. Introducing noise to the observed
expression falls under measurement noise ubiquitous in microarray studies.

Assuming the 133 genes identified by the union of 140 genes and 104 genes [13, 14]
whose values are known across all time points as the ground truth.

Zero-crossing analysis (D;) identified 37 of the 133 biologically relevant genes (i.e.
31/133 ~ 23%). The normalized complexity (y) identified only 7 out of the 133 genes
(i.e. 7/133 ~ 5%). These have to be compared to those of [12], who identified 52
genes from an union set of 195 genes (52/195 ~ 26.7%) using complexity measure
k(fld3). The discrepancy in the number of genes between [12] and the present study
(133) can be attributed to the fact that we considered only genes whose expression
values are known across all time points. The false-positive rate (FPR) and false-
negative rate (FNR) for the normalized complexity (y) and zero-crossing analysis (D)
across noise factors (f = 0, 0.10, 0.20) is shown in Figs. 3a and 3b respectively. From
Fig. 3a it is evident that the FPR and FNR of the normalized complexity are
considerably higher than that of the zero-crossing analysis.

Assuming the 40 genes from (52) [12] whose values are known across al the time
points as the ground truth.

It should be noted that these 40 genes are present in the union set of 133 genes
discussed above. While zero-crossing analysis (D;) identified (24/40) genes, the
normalized complexity (7y) identified only (4/40) genes from [12]. The FPR and FNR
for the two measures assuming these 40 genes as the ground truth across noise factors
(=10, 0.10, 0.20) is shown in Figs. 3¢ and 3d respectively. The results are similar to
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Fig. 4. Six genes YDLO18C, YHLO50C, YHROO5C, YIL129C, YLR455W and YMRO029C
identified by D; and not present in the list of 133 genes. The estimate of D; on the gene
expression profile (circle) and their (n; = 99) random shuffled surrogates (black bars) are shown
in each of the subplots.

those obtained for the 133 genes with considerably higher FNR and FPR for (D)
compared to .

New genes discovered by the zero-crossing analysis

As noted earlier, out of the 101 genes detected as being statistically significant by
zero-crossing analysis, 37 exhibited overlap with the documented 133 genes. The
remaining 64 genes consisted of YDLO18C (ERP3) [22], YHLO50C, YHROO05C
(GPA1) [23], YIL129C (TAO3) [24, 25], YLR455W (Uncharacterized ORF) [26],
YMRO029C (FARS) [27], see Fig. 4. YDLO18C or ERP3 had been shown to be
involved in the G1/S phase of the cell cycle [22]. YHLOS0C is an uncharacterized
open-reading frame but we believe its non-random nearly periodic pattern is
compelling for us to hypothesize it as a likely candidate in yeast cell cycle regulation.
There has been evidence [23] on the role of YHRO05C (GPA1, G-protein alpha
subunit 1) on the mating-factor mediated cell cycle arrest. YIL129C (TAO3) is a
member of the RAM (Regulation of Ace2p activity and cellular Morphogenesis) [24]
signaling network which governs cell separation, integrity and progression [25].
There has been evidence of YLR455W being involved in S-phase of the cell-cycle
[26]. YMRO029C (FARS) has been documented to be involved in G1 cell cycle arrest
in response to pheromone [27].

5 Discussion

There has been considerable interest in understanding temporal gene expression
profiles using suitable techniques. Biologically relevant genes are hypothesized to
exhibit non-random and reproducible temporal expre