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Preface

In the post-genomic era, a holistic understanding of biological systems and pro-
cesses, in all their complexity, is critical in comprehending nature’s choreography
of life. As a result, bioinformatics involving its two main disciplines, namely, the
life sciences and the computational sciences, is fast becoming a very promising
multidisciplinary research field. With the ever-increasing application of large-
scale high-throughput technologies, such as gene or protein microarrays and mass
spectrometry methods, the enormous body of information is growing rapidly.
Bioinformaticians are posed with a large number of difficult problems to solve,
arising not only due to the complexities in acquiring the molecular informa-
tion but also due to the size and nature of the generated data sets and/or the
limitations of the algorithms required for analyzing these data. Although the
field of bioinformatics is still in its embryonic stage, the recent advancements
in computational and information-theoretic techniques are enabling us to con-
duct various in silico testing and screening of many lab-based experiments before
these are actually performed in vitro or in vivo. These in silico investigations are
providing new insights for interpretation and establishing a new direction for
a deeper understanding. Among the various advanced computational methods
currently being applied to such studies, the pattern recognition techniques are
mostly found to be at the core of the whole discovery process for apprehending
the underlying biological knowledge. Thus, we can safely surmise that the on-
going bioinformatics revolution may, in future, inevitably play a major role in
many aspects of medical practice and/or the discipline of life sciences.

The aim of the Pattern Recognition in Bioinformatics (PRIB) conference
is to provide an opportunity for academia, researchers, scientists and industry
professionals to present their latest research in pattern recognition and compu-
tational intelligence-based techniques applied to problems in bioinformatics and
computational biology. It also provides them with an excellent forum to inter-
act with each other and share experiences. The conference is organized jointly
by Monash University, Australia, and the IAPR (International Association for
Pattern Recognition) Bioinformatics Technical Committee (TC-20).

This volume presents the proceedings of the Third IAPR International Con-
ference on Pattern Recognition in Bioinformatics (PRIB 2008), held in Mel-
bourne, October 15–17, 2008. It includes 39 technical contributions that were
selected by the International Program Committee from 121 submissions. Each
of these rigorously reviewed papers was presented orally at PRIB 2008. The
proceedings consists of six parts:

Part 1 Protein: Structure, Function, and Interaction
Part 2 Learning, Classification, and Clustering
Part 3 Bio-Molecular Networks and Pathways Analysis
Part 4 Microarray and Gene Expression Analysis
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Part 5 Data Mining and Knowledge Discovery
Part 6 Applications of High-Performance Computing

Part 1 of the proceedings contains eight chapters on Protein: Structure, Func-
tion, and Interaction. Gromiha et al. propose a method based on a decision tree
for discriminating the stabilizing and destabilizing mutants and predicting pro-
tein stability changes upon single-point mutations. The chapter also includes
methods developed for discriminating thermophilic proteins from mesophilic
ones. In the next chapter by Kumar et al., a new approach to locating the
occurrences of user-defined motifs in a specified order in large proteins and
in nucleotide sequence databases is proposed. Bauer et al. explore the nature
of post-translation modifications (SUMOylation) using non-local sequence and
structural properties, including secondary structure, solvent accessibility and
evolutionary profiles. Hoque et al. combine a genetic algorithm with depth-first
search for the solution of the protein structure prediction problem. Lonquety et
al. present a stability-based analysis of the protein-folding nucleus to increase
the recall and precision of two well-known protein mutant stability prediction
methods. Kato et al. report a dynamic programming algorithm for an up-down
class of antiparallel protein β-sheet, which can also be extended for more general
classes of β-sheets. In Li et al., the concept of multi-scale glide zoom window
feature extraction is used for predicting protein homo-oligomers. Koizumi et al.
propose a method of searching for and comparing concave structures in protein-
binding sites.

Part 2 of the proceedings contains seven chapters on Learning, Classifi-
cation, and Clustering. Yang et al. propose an hybrid system for analyzing
high-dimensional mass spectrometry data. Medvés et al. propose a modified
Markov clustering algorithm for an efficient clustering of large protein sequence
databases, based on a previously evaluated sequence similarity criteria. Stiglic
et al. present a classification ensemble of decision trees called Rotation For-
est and evaluate its classification performance on small subsets of ranked genes
for 14 genomic and proteomic classification problems. Al Seesi et al. describe a
new inference algorithm, based on tree adjoining grammars, for RNA pseudo-
knot structure identification. Mundra et al. propose to use support vector points
for computation of t-scores for gene ranking. Anand et al. consider two sets of
features based on DNA sequences and their physicochemical properties and ap-
plied a one-versus-all support vector machine with class-wise optimized features
to identify transcription factor family-specific features in DNA sequences. Ji et
al. present a novel protein classifier, the gapped Markov Chain with Support
Vector Machine, that models the structure of a protein sequence by measuring
the transition probabilities between pairs of amino acids.

Part 3 of the proceedings contains six chapters on Bio-Molecular Networks
and Pathways Analysis. Zhao et al. propose a novel discriminative method for
predicting domain–domain interactions in protein pairs by making use of inter-
acting and non-interacting protein pairs, which improves the prediction reliabil-
ity. Jancura et al. develop an algorithm for dividing protein–protein interaction
networks that combines the graph theoretical property of articulation with a
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biological property of orthology. Ram et al. demonstrate the application of
a Markov blanket learning algorithm to gene regulatory networks, enhanced
further by application of a proposed constraint logic minimization technique.
Chaturvedi et al. model time delayed interactions in gene regulatory networks
using a skip-chain model which finds missing edges between non-consecutive
time points based on protein-protein interaction networks. Zhou et al. propose
a new pattern recognition technique to help represent metabolic networks as
weighted vectors. Ram et al. present an approach for synthetically generating
gene regulatory networks using causal relationships.

Part 4 of the proceedings contains seven chapters on Microarray and Gene
Expression Analysis. Huerta et al. introduce a new wrapper approach to the
difficult task of microarray data gene selection, where a genetic algorithm is
combined with Fisher’s linear discriminant analysis. Wang et al. present a new
heuristic approach for finding near-minimal non-unique probe sets for oligonu-
cleotide microarray experiments. Using a well-known yeast cell cycle data set,
Pittelkow et al. compare a method being used for finding genes following a pe-
riodic time series pattern with a method for finding genes having a different
phase pattern during the cell cycle. Bedo explores the design problem of se-
lecting a small subset of clones from a large pool for creation of a microarray
plate. Nagarajan et al. use two distinct approaches, namely, the classical order
zero-crossing count and the Lempel-Ziv complexity, in identifying non-random
patterns from temporal gene expression profiles. Ooi et al. propose to determine
the theoretical basis for the concept of differential prioritization through math-
ematical analyses of the characteristics of predictor sets found using different
values of the degree of differential prioritization from realistic but toy datasets.
Luo et al. propose a weighted top scoring pair method for gene selection and
classification.

Part 5 of the proceedings contains seven chapters on Data Mining and Knowl-
edge Discovery. Kasturi et al. present an algorithm to identify statistically
significant and conserved discriminative motifs that distinguish between gene ex-
pression clusters. McGarry et al. describe methods to develop a reliable,
automated method of detecting abnormal metabolite profiles from urinary or-
ganic acids, which can be used as GC-MS biomarkers. Girão et al. have ap-
plied multi-relational data mining methods with hidden Markov models and a
Viterbi algorithm to mine tetratricopeptide repeat, pentatricopeptide and half-a-
tetratricopeptide repeat in genomes of pathogenic protozoa Leishmania. Sehgal
et al. present an enhanced heuristic non-parametric collateral missing value im-
putation algorithm which uses collateral missing value estimation as its core es-
timator and a heuristic non-parametric strategy to compute the optimal number
of estimator genes to exploit optimally both local and global correlations. Han
et al. develop a non-negative principal component analysis algorithm and pro-
pose a non-negative principal component analysis-based support vector machine
algorithm with sparse coding in the cancer molecular pattern analysis of pro-
teomics data. Macintyre et al. have developed a novel clustering algorithm which
incorporates functional gene information from gene ontology into the clustering
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process, resulting in more biologically meaningfull clusters. Meydan et al. try
evolutionary classification methods for selecting the important classifier genes in
hexachlorobenzene toxicity using microarray data.

Part 6 of the proceedings contains four chapters on Applications of High-
Performance Computing. Stamatakis et al. address parallelism issues via a thor-
ough performance study by example of a widely used bioinformatics application
for large-scale phylogenetic inference under the maximum likelihood criterion.
Schröder et al. present an enhanced version of an existing DNA motif search
algorithm tailored to fit on a massively parallel machine. Chen et al. present
a novel approach to accelerate motif discovery based on commodity graphics
hardware. Zhang et al. demonstrate how the PlayStation 3, powered by the
Cell Broadband Engine, can be used as an efficient computational platform to
accelerate the popular BLASTP algorithm.

Many have contributed directly or indirectly toward the organization and
success of PRIB 2008 conference. We would like to thank all individuals and in-
stitutions, especially the authors for submitting the papers and the sponsors for
generously providing financial support for the conference. We are very grateful to
IAPR for the sponsorship and the IAPR Technical Committee (TC-20) on Pat-
tern Recognition for Bioinformatics for their support and advice. Our gratitude
goes to the Faculty of Information Technology, Monash University, Australia,
and also to the Gippsland campus, Monash University, Australia, for supporting
the conference in many ways.

We would like to express our gratitude to all PRIB 2008 International Pro-
gram Committee members for their objective and thorough reviews of the sub-
mitted papers. We fully appreciate the PRIB 2008 Organizing Committee for
their time, efforts, and excellent work. We would also like to thank Jagath
Rajapakse, Program Co-chair, and Raj Acharya, General Co-chair, for their
continuous support and guidance. We sincerely thank Shyh Wei Teng, Local Or-
ganization Chair, for his relentless work in managing various operational issues
and finance matters related to the conference organization. We thank Dieter Bu-
lach for organizing the conference sponsorship and the Publication Co-chair, Sy
Loi Ho, for his hard work in getting the proceedings ready on time. We are also
grateful to Tina Bradshaw, PRIB 2008 secretary, for coordinating all the logis-
tics of the workshop and to Margot Schuhmacher for meticulously maintaining
the PRIB 2008 conference website.

Last but not least, we wish to convey our sincere thanks to Springer for
providing excellent professional support in preparing this volume.

October 2008 Madhu Chetty
Alioune Ngom

Shandar Ahmad
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Abstract. Prediction of protein stability upon amino acid substitution and 
discrimination of thermophilic proteins from mesophilic ones are important 
problems in designing stable proteins. We have developed a classification rule 
generator using the information about wild-type, mutant, three neighboring 
residues and experimentally observed stability data. Utilizing the rules, we have 
developed a method based on decision tree for discriminating the stabilizing 
and destabilizing mutants and predicting protein stability changes upon single 
point mutations, which showed an accuracy of 82% and a correlation of 0.70, 
respectively. In addition, we have systematically analyzed the characteristic 
features of amino acid residues in 3075 mesophilic and 1609 thermophilic 
proteins belonging to 9 and 15 families, respectively, and developed methods 
for discriminating them. The method based on neural network could discrimi-
nate them at the 5-fold cross-validation accuracy of 89% in a dataset of 4684 
proteins and 91% in a test set of 707 proteins.  

Keywords: Protein stability, rule generator, discrimination, prediction, thermo-
philic proteins, neural network, machine learning techniques. 

1   Introduction 

One of the most important tasks in protein engineering is to understand the mecha-
nisms responsible for protein stability changes affected by single point mutations, 
which can be employed for constructing temperature sensitive mutants and used to 
identify a wide spectrum of drug resistance conferring mutations. Another related task 
is to understand the important factors for the extreme stability of thermophilic 
proteins and discriminating them from mesophilic ones.  
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Several methods have been proposed for predicting the stability of proteins upon 
amino acid substitutions. These methods are mainly based on distance and torsion 
potentials [1,2], multiple regression techniques [3], energy functions [4], contact 
potentials [5], neural networks [6], support vector machines, SVMs [7,8], average 
assignment [9], classification and regression tool [10], backbone flexibility [11] etc. 
Further, it has been reported that the discrimination of stabilizing and destabilizing 
mutants is more important than its magnitude in many cases [6]. Most of these 
methods used the information from the three-dimensional structures of proteins for 
discrimination/prediction. On the other hand, prediction accuracy using amino acid 
sequence is significantly lower than that with structural data [12]. 

Several attempts have been made to understand the factors influencing the stability 
of thermophilic proteins using three-dimensional structural information as well as 
from amino acid sequence. It has been reported that increase in number of salt bridges 
and side chain-side chain interactions [13], counterbalance between packing and 
solubility [14], aromatic clusters [15], contacts between the residues of hydrogen 
bond forming capability [16,17], ion pairs [18], cation-π interactions [19,20], non-
canonical interactions [21], electrostatic interactions of charged residues and the 
dielectric response [22,23], amino acid coupling patterns [24], main-chain 
hydrophobic free energy [25] and hydrophobic residues [26] in thermophilic proteins 
enhanced the stability. In addition, the amino acid sequences of genomes have been 
used for understanding the stability of thermophilic proteins. Das and Gerstein [27] 
reported that intra-helical salt bridges are prevalent in thermophiles. Fukuchi and 
Nishikawa [28] showed that the amino acid composition on protein surface may be an 
important factor for understanding the stability. Ding et al. [29] revealed the 
preferences of dipeptides in thermophilic proteins for extreme stability. Berezovsky  
et al. [30] found that the proteomes of thermophilic proteins are enriched in 
hydrophobic and charged amino acids at the expense of polar ones.  

In spite of these studies, it is necessary to build a system, which derives stability 
rules for any input data and convert them into prediction. In this work, we have 
developed a classification rule generator to provide an online service for relating 
protein stability changes from the information about the mutated residue, three 
neighboring residues and the mutant residue. The rules can be interpreted to 
understand and predict protein stability changes upon point mutations. We have 
developed a method based on decision tree for discriminating /predicting protein 
mutant stability just from amino acid sequence. Using the information of a short 
window of seven residues (three residues on both directions of the mutant site) our 
method discriminated the stabilizing and destabilizing mutants with an accuracy of 
82% and predicted the stability changes with a correlation of 0.70. Further, we have 
analyzed the performance of different algorithms, such as Bayes rules, neural 
network, SVM, decision trees etc for discriminating mesophilic and thermophilic 
proteins. We found that the 5-fold cross-validation accuracy is almost similar in most 
of the machine learning algorithms and the accuracy of discriminating mesophilic and 
thermophilic proteins using neural networks is marginally better than other methods. 
It could discriminate them at an accuracy of 93% and 89%, respectively, for self-
consistency and 5-fold cross-validation tests in a dataset of 4684 proteins.  
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2   Materials and Methods 

We have used different sets of data for predicting protein stability upon point 
mutations, and discriminating mesophilic and thermophilic proteins. Likewise, 
different methods have been used for these two studies. 

2.1   Datasets  

For the study on protein mutant stability, we have constructed a dataset of 1859 non-
redundant single mutants from 64 proteins using ProTherm, the thermodynamic 
database for proteins and mutants available on the web [31,32]. We have removed the 
duplicate mutants that have same mutated and mutant residues, residue number, 
experimental conditions (pH and temperature, T) and  ∆∆G values. Further, we 
retained only one data (the average value) for the mutants in which ∆∆G are reported 
with same T and pH, and different conditions (buffers/ions). We have used five 
variables for implementing the discrimination/prediction algorithm: (i) Md, mutated 
(deleted) residue, (ii) Mi, mutant (introduced) residue, (iii) pH, (iv) T (°C) at which 
the stability of the mutated protein was measured explicitly and (v) three neighboring 
residues of the central residue. These attributes have been selected with the balance 
between experimental conditions and sequence information. 

Zhang and Fang [33] used 4895 mesophilic and 3522 thermophilic proteins for 
discriminating them using dipeptide composition. The proteins in each set contain 
many redundant sequences and we removed the redundancy using CD-HIT algorithm, 
[34] as implemented by Holm and Sander [35]. The final dataset contains 3075 
mesophilic proteins and 1609 thermophilic proteins. Further, we have used a test set 
of 325 mesophilic and 382 thermophilic proteins belonging to Xylella fastidosa and 
Aquifex aeolicus families, respectively. These datasets have the proteins with less 
than 40% sequence identity. 

2.2   Computation of Amino Acid Composition 

The amino acid composition for each protein has been computed using the number of 
amino acids of each type and the total number of residues:  

Comp(i) = Σ ni/N,            (1) 

where i stands for the 20 amino acid residues; ni is the number of residues of each 
type and N is the total number of residues. The summation is through all the residues 
in the particular protein. 

2.3   Methods for Discrimination and Prediction 

We have used decision tree [36] along with adaptive boosting algorithm [37] for 
discriminating the stability of protein mutants, and classification and regression tree 
(CART) [38] for predicting the stability changes of proteins upon mutations. The 
decision tree algorithms can efficiently construct interpretable prediction models by 
measuring input variables directly from training data, which is suitable for large 
datasets and unknown data distribution. The decision tree has been selected with two 
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steps: in the first step, a recursive split procedure builds a tree, named maximum tree, 
which closely describes the training dataset and in the second step, the maximum tree 
is cut off for finding optimal sub tree. The adaptive boosting algorithm generates a set 
of classifiers from the data, each optimized to classify the correct ones that were 
misclassified in previous pass. Considering the exploitation of sets of hypotheses with 
independent errors it can improve the classification accuracy and reduce the variance 
as well as the bias.  

We have analyzed several machine learning techniques implemented in WEKA 
program [39] for discriminating mesophilic and thermophilic proteins. This program 
includes several methods based on Bayes functions, neural networks, logistic 
functions, support vector machines, regression analysis, nearest neighbor methods, 
meta learning, decision trees and rules. The details of these methods have been 
explained in our earlier article [40]. We have analyzed different classifiers and 
datasets to discriminate mesophilic and thermophilic proteins. 

2.4   Assessment of Predictive Ability 

We have used different measures to assess the accuracy of discriminating mesophilic 
and thermophilic proteins, and stabilizing and destabilizing mutants. The term, 
sensitivity shows the correct prediction of thermophiles (stabilizing mutants), specificity 
about the mesophilies (destabilizing mutants) and accuracy indicates the overall 
assessment. The agreement between experimental and predicted stability changes has 
been assessed with correlation coefficient. These terms are defined as follows: 

 Sensitivity = TP/(TP+FN)       (2) 

 Specificity = TN/(TN+FP)       (3) 

 Accuracy = (TP+TN)/(TP+TN+FP+FN)                    (4) 

r = [N ΣXY – (ΣX ΣY)]/{[N ΣX2 – (ΣX)2] [N ΣY2 – (ΣY)2]}1/2  (5) 

where, TP, FP, TN and FN refer to the number of true positives, false positives, true 
negatives, and false negatives respectively; r is the correlation coefficient, N, X, and 
Y are the number of data, experimental and predicted stability, respectively.  

We have performed n-fold cross-validation test for assessing the validity of the 
present work. In this method, the data set is divided into n groups, n-1 of them are used 
for training and the rest is used for testing the method. The same procedure is repeated 
for n times and the average is computed for obtaining the accuracy of the method. We 
have carried out 2-fold, 3-fold, 4-fold, 5-fold and 10-fold cross validation tests. 

3   Results and Discussion 

3.1   Development of Classification Rules 

We have developed a system composed of three components, which can sequentially 
develop protein sequence information to classification rules along with related 
analysis (Figure 1). 
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Fig. 1. Flowsheet of the learning process for depicting the relationship between components 
and data 

The first component constructs a decision tree from the information about the 
mutated residue with three neighboring residues and the mutant residue. The mutation 
and neighboring residues information have been obtained from ProTherm database 
[31,32] and Protein Data Bank [41], respectively. Then the second one converts the 
learned tree into an equivalent set of rules, which may discriminate the stabilizing and 
destabilizing mutants as well as to explore the underlying concept of experimental 
data. The third provides further analyses from different viewpoints to clarify the 
characteristics of generated rules.  

From the dataset of 1859 mutants, a total of 104 rules were generated. The rule size 
of the rule set being about 2 indicates the antecedent of these rules consist of about 
two statements on average. Generally, a shorter rule may make the rule easier to 
understand and to be examined. We further observed that 1535 samples of the dataset 
can match the antecedent of these rules with 175 errors, which showed the accuracy 
of 88.6%. It reveals that most samples in the dataset can be correctly inferred by using 
the rule set. In Table 1, we have given few examples of rules and their details: (i) if 
the mutated residue is Asp, its third neighbor at N-terminal is Glu, and its second 
neighbor at C-terminal is Leu, then the predicted stability change will be positive 
(stabilizing); we obtained an accuracy 96% in a set of 25 data; (ii) if the deleted 
residue is Ser and its first neighbor at N-terminal is Pro, then the predicted stability 
change will be negative (destabilizing), which correctly predicted all the 29 data with 
an accuracy of 100%; (iii) if the deleted residue is Leu, then the protein will be 
destabilizing; this rule is applied to 122 mutants and 115 are predicted correctly 
(accuracy 94%).  
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Table 1. Confidence measure for 5 rules with high accuracy and sufficient number of data from 
a dataset of 1859 non-redundant single mutants 

Rule Rule
size

Number
of 

data 

Percentage
of 

data (%) 

Correctly 
predicted

Accuracy 
(%) 

Predicted 
class 

Mutated residue=D, N3=E, C2=L 3 25 1.34 24 96 Stabilizing 

Mutated residue=T, C1=V 2 29 1.56 24 83 Stabilizing 

Mutated residue=S, N1=P 2 29 1.56 29 100 Destabilizing 

Mutated residue=L 1 122 6.56 115 94 Destabilizing 

Mutant residue=G 1 66 3.55 62 94 Destabilizing 

 
We have developed a web interface for generating rules for any set of stability data 

using wild type, mutant and three neighboring residue information. We have also 
provided the related dataset for different tests along with the generated rules on the 
web server. 

3.2   Prediction of Protein Stability  

We have utilized the rules for discriminating the stabilizing and destabilizing mutants 
and predicting the stability change upon mutation along with the information about 
pH and T. The validity of our approach has been assessed with 4-fold, 10-fold and 20-
fold cross-validation procedures. The 4-fold and 20-fold cross-validation tests yielded 
the accuracy of 81.4% and 82.1% for discriminating the stability of protein mutants. 
The sensitivity and specificity are 75.3% and 84.5%, respectively [42]. Further, our 
method could predict the stability of protein mutants with the correlation coefficient 
of 0.70.  

The main features of the present method are: (i) it is based on the neighboring 
residues of short window length, (ii) it can predict the stability from amino acid 
sequence alone, (iii) developed different servers for discrimination and prediction, and 
integrated them together, (iv) utilized the information about experimental conditions, 
pH and T, and (v) implemented several rules for discrimination and prediction from the 
knowledge of experimental stability and input conditions: (i) if the deleted residue is 
Ala and the neighboring residues contain Gln, then the predicted stability change will 
be negative (accuracy = 97.1%), (ii) if the deleted residue is Glu and its second 
neighbor at N-terminal is Met, the mutation stabilizes the protein (accuracy = 100%) 
and (iii) if the deleted-residue belongs to Y, W, V, R, P, M, L, I, G, F or C, and the 
introduced-residue belongs to T, S, P, K, H, G or A, then the predicted stability change 
will be -2.05 kcal/mol (mean absolute error = 1.57 kcal/mol).  

We have developed a web server for discriminating the stabilizing and destabilizing 
mutants and predicting the stability of proteins upon mutations. The program takes the 
information about the mutant and mutated residues, three neighboring residues on both 
sides of the mutant residue along with pH and T. In the output, we display the predicted 
protein stability change upon mutation along with input conditions (Figure 2). In the case  
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Fig. 2. The results obtained for predicting the stability change along with the related informa-
tion of neighboring residues 

of discrimination, we show the effect of the mutation to protein stability, whether 
stabilizing or destabilizing. Both discrimination and prediction services offer an option for 
additional sequence composition information of neighboring residues (Figure 2). The bar 
chart shows the number of amino acids of each type. The two pie charts below represent 
the percentage of residues according to polarity and the metabolic role of amino acids. The 
prediction/discrimination results are available at http://bioinformatics.myweb.hinet.net/ 
iptree.htm. 

In our method, we have used the balance between experimental conditions and 
sequence information as features for prediction. These features are different from 
other methods, which mainly used contact potentials, 40 different combinations of 
mutations, solvent accessibility, secondary structure, average stability value for each 
mutation, experimental conditions etc. for predicting the stability. In addition, we 
have used different features including the variation of window length along the 
sequence and we observed the best performance with the information about mutant 
and mutated residues as well as three neighboring residues along the sequence. 

We have compared the performance of CART with neural networks (NN) and 
support vector machines (SVM) using same features. The ROC curve obtained for the 
three methods with 20-fold cross-validation test is shown in Figure 3. We observed  
 

 

Fig. 3. ROC curves for CART (thick line), SVM (thin line) and NN (broken line) 
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that the performance of CART is the best among all the three methods. The areas under 
the curve (AUC) for CART, SVM and NN are 0.83, 0.75 and 0.66, respectively. 

3.3   Discrimination of Mesophilic and Thermophilic Proteins 

We have computed the amino acid composition of mesophilic and thermophilic 
proteins and the results are shown in Figure 4. From this figure, we observed that the 
composition of Ala, Leu, Gln and Thr are higher in mesophiles than thermophiles an 
opposite trend is observed for Glu, Lys, Arg and Val [43]. These preferences and the 
higher occurrence of other amino acids in thermophilic proteins reveal the implica-
tions for protein stability.  

0

2
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6

8

10

12

 Ala  Asp Cys  Glu Phe  Gly  His  Ile  Lys  Leu Met  Asn  Pro  Gln  Arg  Ser  Thr  Val  Trp  Tyr

Residue  

Fig. 4. Amino acid composition in mesophilic (■) and thermophilic (□) proteins 

The comparative analysis on the occurrence of Cys, Ile and Val in the structural 
homologues of 23 mesophilic and thermophilic proteins [25] showed that the 
occurrence of Cys is less in thermophiles than mesophiles. On the other hand, the 
occurrence of Val/Ile is higher in thermophiles than mesophiles. In addition, it has 
been reported that Cys can be replaced by Val/Ile to enhance the stability [14]. 
Interestingly, these trends were reflected in the analysis of amino acid composition. 
Further, the charged residues, Lys, Arg and Glu have significantly higher occurrence in 
thermophilic proteins than mesophilic ones and the composition of Asp showed a 
moderate difference (Figure 4). We have analyzed the composition of charged residues 
in the structural homologues of thermophilic and mesophilic proteins and observed that 
the thermophiles have more number of charged residues than mesophiles. This result 
supports our observation obtained with amino acid sequence analysis.  

We have analyzed the performance of different machine learning techniques for 
discriminating mesophilic and thermophilic proteins. In this discrimination, we have 
used the amino acid composition as the main attributes. We observed that most of the 
machine learning methods discriminated the mesophilic and thermophilic proteins 
with the accuracy in the range of 84-89% in a set of 4684 proteins. This analysis 
showed that there is no significant difference in performance between different  
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Fig. 5. Discrimination accuracy in different mesophilic and thermophilic organisms 

machine learning methods. Interestingly, the methods neural networks, support vector 
machines and logistic functions discriminated mesophilic and thermophilic proteins at 
similar accuracy of 89%. The accuracy of identifying thermophilic proteins is 87% 
where as that of excluding mesophilic proteins is 96%. The overall accuracy is 89.4% 
for distinguishing mesophilic and thermophilic proteins. 

The accuracy of discriminating mesophilic and thermophilic proteins in different 
families has been analyzed and the results are depicted in Figure 5.  

We observed that the proteins in most of the mesophilic families are discriminated 
with the accuracy of more than 90%. On the other hand, the accuracy of 
discriminating thermophilic proteins showed a vide variation of 65 to 96%. Further 
analysis on this family of proteins revealed that the number of proteins in this family 
is significantly less (20 proteins) and most of the proteins are showing high sequence 
identity with mesophilic proteins.  In addition, we have analyzed the discrimination 
accuracy of thermophilic (moderate) and hyper (extreme) thermophilic proteins from 
mesophilic proteins. Interestingly, we observed that hyper-thermophilic proteins are 
discriminated with higher accuracy than moderate thermophilic proteins. The 
accuracies of discriminating hyper-thermophilic and thermophilic proteins from 
mesophilic ones are, 90% and 73%, respectively. 

We have assessed the reliability of the present method by discriminating 
mesophilic and thermophilic proteins from different families that are not considered 
in the work for training/ testing. We have collected the data of 325 mesophilic and 
382 thermophilic proteins from Xylella fastidosa and Aquifex aeolicus families, 
respectively. We observed that the present method based on neural networks correctly 
identified the thermophilic proteins with the sensitivity of 87.6%. Further, the 
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mesophilic proteins are excluded with the specificity of 95.7% and the overall 
accuracy is 91.3%. These results demonstrated that our method is performing 
extremely well in distinguishing mesophilic and thermophilic proteins. 

4   Conclusions 

We have developed a rule generator for classifying the stabilizing and destabilizing 
protein mutants based on wild type, mutant and three neighboring residue 
information. These rules have been effectively used to discriminate the stabilizing and 
destabilizing mutants, and predicting the stability of a protein upon point mutation. 
Our method could achieve the accuracy of 82% and a correlation of 0.70 for 
discrimination and prediction, respectively, just from amino acid sequence. Further, 
different machine learning techniques have been analyzed for discriminating the 
mesophilic and thermophilic proteins and showed that these proteins are 
discriminated with the accuracy of 89%. Our method used simple features and 
achieved high accuracy and hence it is suitable for prediction. We suggest that our 
method could be effectively used in protein design. 
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Abstract. Sequence motifs occurring in a particular order in proteins
or DNA have been proved to be of biological interest. In this paper, a
new method to locate the occurrences of up to five user-defined motifs in
a specified order in large proteins and in nucleotide sequence databases
is proposed. It has been designed using the concept of quantifiers in reg-
ular expressions and linked lists for data storage. The application of this
method includes the extraction of relevant consensus regions from bio-
logical sequences. This might be useful in clustering of protein families
as well as to study the correlation between positions of motifs and their
functional sites in DNA sequences.
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1 Introduction

Research on proteins and DNA has revealed that specific motifs in biological se-
quences exhibit important characteristics [1]. This has spurred the development
of computational methods to search for sequence motifs of biological significance.
Further, the exponential rise in the volume of protein and nucleotide sequences
has necessitated the development of algorithms that are both time and space
efficient to make optimum use of available computational resources. Here, an
efficient method is proposed that locates all occurrences of motifs of biological
interest in a specific order using the concept of quantifiers in regular expressions.
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We refer to motifs that occur in a particular order as ”sequentially separated
motifs”, since they could be separated by intermediate amino acid residues or
nucleotides.

Recent studies have considered sequentially separated motifs as a method
for classifying DNA sequences based on the presence and relative positions
of a few transcription factor (TF) binding sites. These binding sites are of
such importance that several algorithms and online tools are available for their
detection[2],[3],[4],[5] . Binding sites are relatively short stretches of DNA, nor-
mally 5 to 35 nucleotides long and occur as consensus regions or well conserved
regions called motifs. It has been established in literature that binding sites are
often found in a well-ordered and regularly spaced manner [6],[7],[8] . In prokary-
otic organisms, the binding sites are located predominantly in the region that
extends about 300 to 600 nucleotides upstream of the transcription start site, in
the promoter regions. However, in eukaryotic organisms, the binding sites, called
cis-regulatory modules (CRMs), usually occur in a fixed arrangement and are
distributed over very large distances. A detailed explanation of eukaryotic pro-
moters can be found in literature [9],[6]. A eukaryotic promoter is considered to
comprise of three CRMs, each having one or more TF binding sites. Since each
CRM has a different function, it will be helpful to have a method that can lo-
cate the distribution of the occurrences of the three CRMs in the order in which
they exist in the sequence. Further, repeated occurrences of CRMs in the DNA
sequence might lead to alternate modes of binding by the same protein, thereby
regulating transcriptional activity. In addition, it may lead distinct proteins to
recognize the identical CRMs occurring at different positions in the sequence.
Also, if the signature motifs for trans-regulatory modules are known, they too
can be detected to achieve a more complete understanding of the the structure
of the gene and its regulation.

Furthermore, sequentially separated conserved motifs have been used to cat-
egorize new and unknown protein structures. For instance, the classification of
T6PP as a member of the haloacid dehalogenase (HAD) superfamily is based
on the presence of three highly conserved motifs that are found in all enzymes
belonging to the HAD family. The three motifs are DXXX(V/T), followed by
(S/T)GX, and finally K(X)(16−30)(G/S)(D/S)XXX(D/N), where X denotes a
wild card symbol that can be substituted by any of the 20 amino acids and G/S
signifies the presence of G or S at the particular position in the motif [10],[11].
The HAD superfamily is further subdivided into three structural groups based
on the length of the sequence between the motifs [12]. Thus, it can be concluded
that in proteins, the intermediate sequences that separate the sequential motifs
are also biologically significant. The concept of sequentially separated motifs
finds an important application in remote homology detection of proteins. Ho-
mology is generally established by sequence similarity. In the past two decades,
many methods for measuring sequence similarity have been developed. The two
most popular methods are the Smith-Waterman algorithm [11] and its faster
counterpart, BLAST[13]. Protein sequence motifs can offer an alternative way
of detecting sequence similarity. By closely studying highly conserved sequence
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motifs, important clues to a protein function might be revealed even if it is not
globally similar to any known protein [14]. In addition, the sequentially sepa-
rated motifs for most catalytic sites and binding sites are conserved over much
wider taxonomic distances and evolutionary time than the protein sequences
themselves [15]. Thus, it can be deduced that motifs that are found to occur in a
particular order could represent functionally important regions such as catalytic
sites, binding sites, protein-protein interaction sites and structural motifs.

In view of the biological relevance of sequentially separated motifs, a need is
felt to develop a method that can detect the occurrences of the motifs in large
sequence databases efficiently. The performance of such a method designed to
solve this problem should be judged according to the following criteria:

1. Efficiency: To analyze large nucleotide and proteins sequences (e.g. the hu-
man chromosome 1 contains 240 million nucleotide bases and the proteome
of A. thaliana more than 7,000 protein sequences), the space and time com-
plexity of the method must scale linearly with the sequence length and the
number of sequences. Further, the method should also minimize the num-
ber of iterations and comparisons required to report all occurrences of the
motifs.

2. Flexibility: The motifs should be specified using regular expressions.
3. Accuracy: To identify all locations, including degenerate occurrences and

overlapping occurrences.
4. User-Friendliness: It should be simple to use, platform independent and dis-

play results in an elegant and easily comprehensible manner.

1.1 Existing Algorithms

Two types of pattern matching algorithms are commonly used in biology:

scan for matches. [16] brought on a series of other software and algorithms,
including PatScan [17] which searches a dataset for matches against a query
pattern. PatSearch [18] has added features such as the assessment of the
statistical significance of pattern hits using a Markov chain simulation. The
results of these programs display the entire substring that contains the motif
provided by the user but do not explicitly indicate the individual occurrences
of the motifs. Due to this, the user needs to manually delineate the interme-
diate residues that separate the motifs.

grep-based programs. An example of which is eMOTIF-SCAN, a program
which uses the agrep tool that supports matching and regular expression.
However, it searches only against the eMOTIF database of protein sequence
motifs [19].

The program, Scansite 2.0 [20] searches for up to two motifs and looks for the
occurrences of these motifs in no particular order of arrangement. Motif Scan
[21] searches for motifs against protein profile databases including Prosite [1] and
Pfam [22], and, thus does not provide the users with the option to enter their
own motifs. Though most of the above mentioned programs work efficiently with
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protein sequences, they do not perform well with large sequences. In most cases,
the programs do not execute to completion for very large nucleotide sequences
(150 million bp).

Furthermore, the pattern search present in the PIR database is also extremely
efficient for a single motif (or when a number of motifs can be combined to a
single motif). However, when the specific number of residues between two or
more motifs cannot be identified, two separate PIR pattern searches must be
run and the results compared either manually or through a program written
specifically to obtain the required sequences from the output of the two searches.
This process becomes much more complicated when more than two motifs are
being searched in order in a set of sequences. Finally, in SSMBS, the database of
sequences to be searched for the motif can be specified or uploaded. On the other
hand, in the PIR pattern search, only two options for databases exist if a search
for a user-defined motif must be carried out: UniPotKB and UniRef100. Thus,
when the user wishes to find a number of motifs in order (with an unknown
of large number of residues separating the motifs) in a user specified database,
SSMBS is the only available option.

2 Materials and Methods

2.1 Basic Definitions

If S = {A, C, G, T, U} is the alphabet defined for nucleotide sequences (U for
RNA) and S = {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y,
V} is the alphabet defined for amino acid sequences, then let S, defined over
S, represents the sequence in which the sequentially separated motifs are to be
located. Further, let n = |S| i.e. length of S. Let m be the number of input
sequences.

S[i] denotes the ith character of S, for i ∈ [1,n]. For i ≤ j ≤n, S[i,j] denotes
the substring of S starting with the ith and ending with the jth character of S.
Thus, the length of S[i,j] is j - i + 1.

Let M = { motifi|1 ≤ i ≤ 5 } be the set of up to five motifs entered by the
user and k = |M|, i.e. number of motifs, where M is defined over S.

L denotes a linked list whose elements comprise of many other linked lists,
each called L’. L’ contains the starting positions of the occurrences of the Mi

such that L’ = { (si),(si+1),. . . ,(sk) | si is starting position of Mi; 1 ≤ si ≤ n;
1 ≤ i ≤ 5 }.

2.2 Use of Quantifiers

Quantifiers, as the name implies, express quantity i.e. how much or how many.
They are used in pattern matching since they allow us to control the amount of
text in a sequence that is to be matched against a pattern. Quantifiers have al-
ready been implemented in several programming languages including JAVA and
Perl and they are an integral part of regular expression matching. In biological
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Sequence A:

TDJ MOTIF1ADY WNCV MOTIF1RAFMDOERMOTIF2FSMSMOTIF2| {z }OAH

Sequence B:

TDJMOTIF1ADYWNCV MOTIF1RAFMDOERMOTIF2| {z } FSMSMOTIF2OAH

Sequence C:

TDJ MOTIF1ADY WNCV MOTIF1RAFMDOERMOTIF2| {z }FSMSMOTIF2OAH

Fig. 1. Sequences A, B and C represent the three different query patterns [(.*), (.?) and
(.*?) respectively] used to simultaneously locate the two motifs, motif1 (solid block)
and motif2 (grey box) in that order

[MOTIF1](.∗?)[MOTIF2]...[MOTIFK ]| {z }
EXPR

Fig. 2. EXPR represents the combined query pattern which is formed by appending
the (.∗?) quantifier between the k motifs entered by the user

sequences, they can be used to match complex motifs that are defined using
regular expressions.

‘*’ is a greedy quantifier which tries to match as much text as possible in
the query string. However, ‘?’ is a reluctant quantifier which tries to match as
less text as possible. In this method, ‘minimal matching’ is utilized: the two
quantifiers, ‘*’ and ‘?’ are coupled in the order (.*?) and appended between the
two motifs motif1, motif2 ∈ M , such that: [motif1](.*?)[motif2]. This enables
the detection of both occurrences simultaneously (Figure 1c).

This concept can be further extended to simultaneously detect the first oc-
currences of any number of motifs. This can be achieved by appending ‘(.*?)’
between the motifs to form an expression EXPR as shown in Figure 2.

EXPR suggests that the SSMBS (Sequentially Separated Motifs in Biolog-
ical Sequences) method appends the (.*?) quantifier after every motif till the
kth motif. At the time of execution, the user is asked to specify whether the
sequence file provided contains amino acids or nucleotides. The method exploits
the technique explained above to search for motifs in a defined order in proteins
sequences. However, in case of large nucleotide sequences (>100,000 bp), the
method follows the divide and conquer approach, as outlined in the subsequent
sections.

2.3 Amino Acid Sequences

Let us consider a case in which the user enters five sequentially separated motifs
and a set of 10,000 amino acid sequences. As SSMBS reads each sequence, it
first checks whether there exists, in that sequence, at least a single occurrence
of the five motifs in the order specified by the user. If a match is found, then
it attempts to find all occurrences of the motifs in that particular sequence. If
there does not exist any match, it moves to the next sequence and performs the
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same check. To find all occurrences of the five sequentially separated motifs in
these sequences, SSMBS first simultaneously locates all occurrences of the last
two motifs i.e. motif4 and motif5, followed by occurrences of motif3, motif2 and
finally motif1. An explanation of this procedure for k motifs follows.

Locating all occurrences of k motifs. For k motifs entered by the user (k
≤ 5), the last two motifs are motif(k−1) and motifk ∈ M respectively. Let ‘R’
be the set of remaining motifs i.e. motif1 to motifk−2 ∈ M. The terms ‘last two
motifs’ and ‘R’ hold significance as they divide the method into two fundamental
parts: first, finding all occurrences of the last two motifs and second, finding all
occurrences of the R motifs in desired order. To locate all occurrences of the
last two motifs, the method appends the ‘(.*?)’ quantifier between the motifs
to locate their occurrences simultaneously in the order, (k-1)th motif followed
by the kth motif. The matching performed by the method returns the starting
index of motif(k−1) and the end index of motif(k). Further, a series of iterations
are performed to extract all occurrences of the two motifs in the specified order.
The procedure of the first step is illustrated in the form of a pseudo code as
shown below:

Pat = [motif(k−1)](.*?)[motifk], SEQ = S
do {
if(find(Pat)) // returns true if a match is found.
{ start-index-m(k−1) = start(); // returns starting index of m(k−1).
end-index-mk = end(); // returns ending index of mk.
start-index-mk = start(matcher(motifk,SEQ.substring(start(),end());
// searches for motifk only at the end of the substring.
SEQ.substring(start(),end());
Linked list changes ();
SEQ = S.substring(start-index-mk−1, start-index-mk-1)
+ S.substring(start-index-mk+1,n);
MOTIFK−1NDRKEMOTIFK−1LV AY
︸ ︷︷ ︸

MOTIFkAMTEMOTIFkLGL
︸ ︷︷ ︸

︸ ︷︷ ︸

SEQ

}
else { SEQ = S.substring(start-index-mk−1 + 1, n);

MOTIFk−1NDRKEMOTIFk−1LV AY MOTIFKAMTELPMOTIFKLGL
︸ ︷︷ ︸

}
} while(no more matches of Pat can be found)

}

The second step begins when no more occurrences of the last two motifs can
be found. In this step, all occurrences of the k motifs are found in the following
order: (k-p)th motif (where p = 2,3,. . . ,(k-2)) to 1st motif. Thus, while searching
for the occurrences of the (k-p)th motif, the method has already obtained all the
occurances of the (k-p+1)th to kth motifs. All occurrences of (k-p+1)th to kth

motifs are stored as a linked list L’ in the form (start positions of (k-p+1)th, (k-
p+2)th,. . . . . . . . . . . . , kth motifs). To update these ordered sets by appending the
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Fig. 3. Linked List appending and changes

start position of the (k-p)th motif at the beginning of L’, it goes on comparing
the end index of the position of the motif being dealt with, which is the (k-
p)thmotif, with the first entry of every ordered set. The comparison is made
at every iteration in which a new occurrence of motif(k−p) is detected. After
successfully attaching the start index of motif(k−p) to L’, the method appends
L’ to L.

For the subsequent iterations of this step, SSMBS retains only those elements
or ordered sets to which the append was carried out successfully. Thus, at every
iteration, the unwanted sets are eliminated, thereby shortening the size of the
linked list L, to be searched in the iterations to follow (Figure 3).

2.4 Nucleotide Sequences

Unlike amino acids sequences, nucleotide sequences are very large often com-
prising of millions of bases. Their large size poses a major challenge in locating
sequentially separated motifs because it is a memory exhaustive process. Ac-
cordingly, SSMBS adopts a divide and conquer strategy, breaking down the
large sequence into small fragments comprising of 3,500 nucleotides. The value
of 3,500 nucleotides per fragment is an optimal value that was heuristically de-
termined after considering the time taken by the program implementing this
method for varying sizes of the fragments. Let the fragments be denoted by Fs

where s ranges from 1 to (n/3500 + 1). The method begins locating the occur-
rences of the sequentially separated motifs by traversing each fragment starting
from F1. The fragment in which the first occurrence of motif1 is detected is
marked Fm. Attempts to detect the occurrences of other motifs are carried out
only in the fragments that follow Fm. In addition, the method also checks for
any occurrences of the motifs that might overlap between regions common to
two consecutive fragments, say Fa and Fa+1 where a < (n/3500 + 1). It does
so by searching for an occurrence of either of the k motifs in the string Fa +
Fa+1(‘+’ denotes concatenation) and confirming whether the starting position
of the substring that matches any of the motifs is less than the length of Fa i.e.
|Fa| and the ending position is greater than |Fa|. Finally, the method collates
all occurrences of the k motifs and displays the results by traversing the linked
list L, which stores the individual occurrences of the k motifs as in the case of
amino acids sequences explained earlier.
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Locating overlapping occurrences of motifs. The proposed method lo-
cates all overlapping occurrences of a motif as well and thus misses no occur-
rence. For instance, the motif Mexmpl = ATA{3,5} can be found to occur six
times in a sequence of the form ATAATAATAATAATA i.e three occurrences
of ATAATAATA, two occurrences of ATAATAATAATA and single occurrence
of ATAATAATAATAATA. To report such overlapping occurrences, the method
initially attempts a greedy match to find an occurrence of the Mexmpl in the
sequence. For every occurrence of Mexmpl, SSMBS then attempts a reluctant
match to find occurrences of the motif that might exist within or that overlap
with the matched string that was returned as a result of the greedy search. This
is achieved by appending the reluctant quantifier ‘?’ to Mexmpl to form the new
expression Mexmpl’ = ATA{3,5}? Now, SSMBS matches Mexmpl’ against the sub-
string that matches Mexmpl. Thus, the reluctant match returns (ATAATAATA: 1
to 9) as the first overlapping occurrence. Successive iterations of this step return
all possible overlapping occurrences.

2.5 Time Complexity

The computational complexity of SSMBS method is explained based on the
following points:

1. Complexitywith regard to number of proteins sequences: The SSMBS
method searches for occurrences of k motifs only in those sequences that have
at least one occurrence of EXPR. As explained earlier, EXPR detects the
ordered occurrence of k motifs in O(n) time, where n is the length of the
sequence. If there are m sequences in all, then in O(mn) time, the method
searches for all sequences that have at least one occurrence of EXPR. Hence,
the method scales linearly with the number of input sequences. This is no-
table especially in the context of the exponential rise in the size of sequence
databases.

2. Complexity with regard to locating all occurrences in a given se-
quence: The method is able to detect all ordered occurrences of k motifs in
k-1 scans of the sequence, as compared to k scans in a brute force approach.
Further, as the computation grows, it optimizes by reducing the length of the
query sequence based on motif positions located in previous iterations. For
instance, while searching for the motifR, the algorithm searches only till the
last occurrence of motifR+1 in the sequence. Specifically, the performance of
the method is bounded polynomially by O(nk−1).

3. Complexity specifically for nucleotide sequences: By following the
divide and conquer strategy in nucleotide sequences, the method success-
fully avoids the out of memory problem no matter how large the nucleotide
sequence is. As in the case of proteins sequences, the complexity of the
algorithm scales linearly with the size of nucleotide sequence. Thus, the al-
gorithm can be applied to search for specific regions in entire genome of
different organisms.
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3 Biological Applications

3.1 Motifs Specified Using Regular Expressions

Motifs with biological importance often occur with some mutations or substi-
tuted residues in the sequence. Thus, regular expressions are used to specify such
motifs in SSMBS. This process is quite similar to that found in the PIR pattern
search. However, one main difference between the SSMBS algorithm and the
PIR pattern search is that SSMBS can search for multiple motifs in a particular
order, while PIR’s pattern search is limited to those patterns in which the num-
ber of intervening residues between two motifs is at least approximately known.
A few examples are:

1. String motifs: Motifs such as CXXCXXC will match any substring that has
first, fourth and last characters as C. ‘X’ denotes a wild card residue that
can match any amino acid or nucleotide.

2. Range motifs: Motifs such as SEK{2,5}XXCwould match SEKKAEC,SEKK-
KAEC. . . SEKKKKKAEC.

3. Either/or motifs: Certain amino acid residues or nucleotides in motifs can
be specified using the ‘|’ operator. For instance, AA(B|C)DE will match
AABDE as well as AACDE. B and C can also be replaced by complex motifs
to form a motif of the form AA(SEKXXAF)|(SEKP{2,4}DFX)DE.

4. Start of Sequence motifs: If the motifs are prefixed by ˆ, the match will be
performed at the start of the sequence. Example, ˆCDG will match only a
CDG occurring at the start of the sequence and nowhere else in the string.

5. End of Sequence motifs: The motifs that are suffixed by $ will be matched
only at the end of the sequence.

6. Class motifs: For motifs in which amino acid residues or nucleotides are
enclosed in square brackets, the method will match any of them in any order
against the sequence. For example, ABC[EFGH] will match ABCEFGH,
ABCEFHG, ABCE, ABCGH etc.

7. Negative class motifs: If ˆ is prefixed to the characters that are inside the [ ],
SSMBS will ignore all matches of substrings that have the characters placed
in [ ]. For example, ABC[ˆEFGH] will match ABC, ABCD but not ABCE i.e.
all substrings beginning with ABC and not ending with E or F or G or H.

8. Multiple motifs can also be combined to form a single motif and searched ac-
cordingly. For instance, a motif of the form AATAX{3,10}GACATTX{20,30}
TCACTG will attempt to match three smaller motifs in the order motif1=AA
TAX, motif2=GACATT and motif3=TCACTG such that 3-10 nucleotides
separate motif1 and motif2, and 20-30 nucleotides separate motif2 and motif3.

9. Motifs with hydrophobic or polar residues: Hydrophobic or polar residues
can be substituted by the single characters B or Z respectively.

3.2 Case Study: Members of the Haloacid Halogenase HAD Family

Based on the presence of three sequentially separated motifs, DXXX(V|T),
(S|T)GX, KX16−30(G|S)(D|S)XXX(D|N), protein sequences can be categorized
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to belong to the HAD family of proteins [10],[7]. Thus, the proposed method was
executed over a set of 15 protein sequences that belong to the enzyme trehalose-
6-phosphatase. A sample of the output generated by SSMBS is shown below.

--------------------------------------------------------------------

Input FileName : fasta.txt

No of motifs to be searched : 3

Motif 1 : DXXX(V|T)

Motif 2 : (S|T)GX

Motif 3 : KX{16,30}(G|S)(D|S)XXX(D|N)

OutPut FileName : filename1.doc

--------------------------------------------------------------------

OUTPUT OF SSMBS

--------------------------------------------------------------------

>1L6R:A|PDBID|CHAIN|SEQUENCE

Motif positions for occurrence number: 1

(DGNLT: 13 to 17)

(SGN: 45 to 47)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Position of motifs with intermediate residues for occurrence number: 1

(DGNLT: 13 to 17)

(DRDRLISTKAIESIRSAEKKGLTVSLL)

(SGN: 45 to 47)

(VIPVVYALKIFLGINGPVFGENGGIMFDNDGSIKKFFSNEGTNKFLEEMSKRTSMRSILTNRWREASTG

FDIDPEDVDYVRKEAESRGFVIFYSGYSWHLMNRGED)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

--------------------------------------------------------------------

Motif positions for occurrence number: 2

(DGNLT: 13 to 17)

(TGF: 115 to 117)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Position of motifs with intermediate residues for occurrence number: 2

(DGNLT: 13 to 17)

(DRDRLISTKAIESIRSAEKKGLTVSLLSGNVIPVVYALKIFLGINGPVFGENGGIMFDNDGSIKKFFSN

EGTNKFLEEMSKRTSMRSILTNRWREAS)

(TGF: 115 to 117)

(DIDPEDVDYVRKEAESRGFVIFYSGYSWHLMNRGED)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

--------------------------------------------------------------------

--------------------------------------------------------------------

Total number of occurrences: 5

--------------------------------------------------------------------

>1L6R:B|PDBID|CHAIN|SEQUENCE

Motif positions for occurrence number: 1

(DGNLT: 13 to 17)

(SGN: 45 to 47)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

Position of motifs with intermediate residues for occurrence number: 1

(DGNLT: 13 to 17)
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(DRDRLISTKAIESIRSAEKKGLTVSLL)

(SGN: 45 to 47)

(VIPVVYALKIFLGINGPVFGENGGIMFDNDGSIKKFFSNEGTNKFLEEMSKRTSMRSILTNRWREASTG

FDIDPEDVDYVRKEAESRGFVIFYSGYSWHLMNRGED)

(KAFAVNKLKEMYSLEYDEILVIGDSNND: 154 to 181)

--------------------------------------------------------------------

*********************************************************************

93 hits were found in 15 sequences.

*********************************************************************

--------------------------------------------------------------------

Total sequences in file : 15

Running on machine : igraph9.physics.iisc.ernet.in

Program stated at (h:m:s:ms) : 3:40:6:559 on 2/3/07 3:40 AM

Program stop at (h:m:s:ms) : 3:40:6:994 on 2/3/07 3:40 AM

Executed Time (h:m:s:ms) : 0:0:0:435

--------------------------------------------------------------------

The output reports occurrences of the three motifs in each of the 15 sequences
in the particular order as specified. This is in accordance with the results pub-
lished in literature [12]. Hence, it can be concluded that all of the 15 sequences
belong to the HAD family.

This test, however, could not be run directly on the PIR pattern search as
three different motifs are be specified simultaneously, for which there is no pro-
vision on the web-server. On checking PROSITE for HAD, haloacid halogenase
and combinations thereof, no signature motifs were found that could be used to
provide a pattern to the PIR search.

3.3 Case Study: Transcription Activation of CRP in E.coli

The proposed method was tested to run over the genome sequence of E.coli to
locate the occurrences of the CRP binding complex. According to the litera-
ture [2], the consensus for the activating regions of the CRP protein is given
by the sequence S1 = TGTGAX{5,7}TCACA. The whole complex inclusive of
the CRP with the core promoter sites is specified by the consensus sequence
S2 = TGTGAX{5,7}TCACAX{15,23}TATAA [2]. SSMBS located 28 identical
matching occurrences of S1 and a single identical occurrence of S2 in the genome
sequence. A section of the output for S2 search is shown below.

--------------------------------------------------------------------

No of motifs to be searched : 1

Motif 1 : TGTGAX{5,7}TCACAX{15,23}TATAA

--------------------------------------------------------------------

OUTPUT OF SSMBS

--------------------------------------------------------------------

>gi|49175990|ref|NC_000913.2| Escherichia coli K12, complete genome

Motif positions for occurrence number: 1

...CAATCTTTA

(TGTGATACAAATCACATAAATACCCCTTTAATGTTATAA: 1986066 to 1986104)

AAATGATAAT...
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********************************************************************

1 hit(s) was found in 1 sequence(s).

********************************************************************

Running on machine : igraph9.physics.iisc.ernet.in

Program stated at (h:m:s:ms) : 21:39:12:101 on 2/6/07 9:39 PM

Program stop at (h:m:s:ms) : 21:39:13:585 on 2/6/07 9:39 PM

Executed Time (h:m:s:ms) : 0:0:1:484

--------------------------------------------------------------------

3.4 Case Study: Zinc Finger Binding Motif

In order to compare SSMBS with with the PIR Pattern Search in terms of speed
and accuracy, the extremely well knowm Zinc Finger Binding Motif HX3 HX23

CXXC was considered. SSMBS was used to search for this motif in the 90%
non-redundant dataset of PDB chains containing 14,423 chains. It found 33 hits
in 33 sequences in 7 seconds. A section of the output for the search from SSMBS
is shown below.

--------------------------------------------------------------------

No of motifs to be searched : 1

Motif 1 : HX{3}HX{23}CXXC

--------------------------------------------------------------------

OUTPUT OF SSMAS

--------------------------------------------------------------------

>1jrx_B mol:protein length:571 Flavocytochrome C

Motif positions for occurrence number: 1

...EVAETTKHE(HYNAHASHFPGEVACTSCHSAHEKSMVYCDSC: 54 to 85)HSFDFNMPYA...

--------------------------------------------------------------------

Total number of occurrences: 1

--------------------------------------------------------------------

>1wjd_B mol:protein length:55 Hiv-1 Integrase

Motif positions for occurrence number: 1

...DGIDKAQEE(HEKYHSNWRAMASDFNLPPVVAKEIVASCDKC: 12 to 43)QLKGEAMHGQ...

--------------------------------------------------------------------

--------------------------------------------------------------------

Total number of occurrences: 1

--------------------------------------------------------------------

*********************************************************************

33 hits were found in 33 sequences.

*********************************************************************

--------------------------------------------------------------------

Running on machine : igraph9.physics.iisc.ernet.in

Program stated at (h:m:s:ms) : 7:28:58:273 on 6/14/08 7:29 AM

Program stop at (h:m:s:ms) : 7:29:5:279 on 6/14/08 7:29 AM

Executed Time (h:m:s:ms) : 0:0:7:6

--------------------------------------------------------------------
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3.5 Case Study: Eukaryotic DNA Topoisomerase II

Following the results of the previous case study, another was carried out with the
signature motif of the eukaryokic DNA Topoisomerase II protein: (L|I|V|M|A)
R0−1 EG(D|N)SAF0−1 (S|T|A|G). A single sample output is shown, where the
source file is the same as the earlier case study.

--------------------------------------------------------------------

No of motifs to be searched : 1

Motif 1 : (L|I|V|M|A)R{0,1}EG(D|N)SAF{0,1}(S|T|A|G)

--------------------------------------------------------------------

OUTPUT OF SSMAS

--------------------------------------------------------------------

>1z0w_A mol:protein length:207 Putative Protease La Homolog Type

Motif positions for occurrence number: 1

...IQFVGTYEG(VEGDSAS: 91 to 97)ISIATAVISA...

--------------------------------------------------------------------

Total number of occurrences: 1

--------------------------------------------------------------------

*********************************************************************

25 hits were found in 25 sequences.

*********************************************************************

--------------------------------------------------------------------

Running on machine : igraph9.physics.iisc.ernet.in

Program stated at (h:m:s:ms) : 8:6:56:702 on 6/14/08 8:07 AM

Program stop at (h:m:s:ms) : 8:7:4:77 on 6/14/08 8:07 AM

Executed Time (h:m:s:ms) : 0:0:8:375

--------------------------------------------------------------------

The same searches for the last two case studies (outlined in sections 3.4 and
3.5) performed by the PIR pattern search over the the UniRef100 database (with
its several thousand sequences) timed out after 43 and 22 minutes respectively.
This search was not attempted for E. coli genome case study since PIR pattern
search cannot be used for nucleotides. The web-server has the additional dis-
advantage of depending upon the internet connectivity of the user, rather than
being freely available and utilized. Thus, for simple common motif searches over
large databases, perhaps the SSMBS algorithm is easier to use.

4 Implementation

SSMBS requires three input: a file of protein or nucleotide sequences in FASTA
format, the number of motifs to be searched and the motifs of interest. The
program will generate a detailed output containing the location of the motifs and
the residues which separate the motifs occurring in the given order. An option
is also provided to the user to specify the maximum number of occurrences
to be reported per sequence. This is particularly helpful in case this method
reports a large number of occurrences for the specified motifs. The number of
motifs that can be detected in a particular sequence is restricted to five due to
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the high time complexity of the method for more motifs. A standalone version
of SSMBS can be obtained upon request by sending an e-mail to Dr. K. Sekar
(sekar@serc.iisc.ernet.in or sekar@physics.iisc.ernet.in). We plan to create a web-
based computing server to locate the sequentially separated motifs in various
biological sequence databases such as SWISS-PROT, PDB, PIR and Genome
Database.

The SSMBS method has been implemented using JAVA since it has an in-
built garbage collector that works with commendable efficiency. It improves the
performance of the program by releasing occupied portions of the memory that
are no more in use during run time. Since JAVA is also a platform independent
language, the program can be executed on any operating system. The program
has been successfully tested on Microsoft Windows (XP), Linux (Red Hat 9.0)
and Sun Solaris.

5 Conclusion

Sequentially Separated Motifs in Biological Sequences (SSMBS) is a motif local-
ization method used to locate user-defined motifs in both nucleotide and protein
sequences. It has been developed to provide a comprehensive solution to the task
of locating sequence motifs occurring in a particular order in large biological se-
quence databases. The method also provides the option for the user to specify
motifs using regular expressions. By default, the method locates all the overlap-
ping occurrences of the motifs. The method has the advantage of locating the
ordered occurrences of up to five motifs in any user-defined database in FASTA
format. It is a rapid method and clearly indicates the location and occurrence
of the motifs.
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Abstract. Recent evidence suggests that SUMOylation of proteins plays
a key regulatory role in the assembly and dis-assembly of nuclear sub-
compartments, and may repress transcription by modifying chromatin.
Determining whether a protein contains a SUMOylation site or not thus
provides essential clues about a substrate’s intra-nuclear spatial associa-
tion and function.

Previous SUMOylation predictors are largely based on a degenerate
and functionally unreliable consensus motif description, not rendering
satisfactory accuracy to confidently map the extent of this essential class
of regulatory modifications. This paper embarks on an exploration of
predictive dependencies among SUMOylation site amino acids, non-local
and structural properties (including secondary structure, solvent acces-
sibility and evolutionary profiles).

An extensive examination of two main machine learning paradigms,
Support-Vector-Machine and Bidirectional Recurrent Neural Networks,
demonstrates that (1) with careful attention to generalization issues both
methods achieve comparable performance and, that (2) local features en-
able best generalization, with structural features having little to no im-
pact. The predictive model for SUMOylation sites based on the primary
protein sequence achieves an area under the ROC of 0.92 using 5-fold
cross-validation, and 96% accuracy on an independent hold-out test set.
However, similar to other predictors, the new predictor is unable to gen-
eralize beyond the simple consensus motif.

1 Introduction

SUMOylation is a post-translational modification attaching a small ubiquitin-
like modifier (SUMO) covalently to a target protein. It has been shown that
SUMO plays an important role in many essential biological functions, such as
preserving the integrity and function of intra-nuclear compartments, chromatin
organization and ultimately gene regulation [9, 14]. By modifying histones, dy-
namically competing with acetylation and ubiquitylation, SUMOylation appears
to play a pivotal role in repressing transcription. Dysfunction of the SUMOy-
lation pathway is related to several neurodegenerative diseases in human, such
as Huntington’s disease [5]. The significance of the SUMO conjugation system
is further underscored by the apparent conservation through evolution among
eukaryotic organisms.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 28–40, 2008.
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Fig. 1. SUMOylation pathway. The figure shows the role of the involved proteins
in the SUMOylation pathway. E1 activates SUMO in an ATP requiring process. E2
attaches SUMO to the Lysine in the target protein, supported by E3. SUMO-protease
removes SUMO from the protein, now free to be re-used in another cycle.

The SUMOylation pathway comprises four proteins: E1 activating enzyme,
E2 conjugating enzyme, E3 ligase and SUMO-protease (illustrated in Fig. 1).
E1 prepares SUMO for binding to the target protein (the substrate). E2 and E3
interact directly (in a concerted fashion) with the substrate at the SUMOylation
site, usually conforming to the consensus motif, ΨKxE (where Ψ is a large hy-
drophobic residue, K is Lysine and E is Glutamic acid). E2 and E3 mediate the
binding between SUMO and the central Lysine [11]. Finally, the SUMO-protease
disassociates SUMO from the target protein.

Unfortunately, the motif is an unreliable predictor. Some substrates are mod-
ified on sites not matching the consensus motif [8]. Furthermore, not every con-
sensus site in a protein is modified by SUMO. It has been suggested that there
are additional factors, such as the appropriate presentation of the substrate se-
quence and protein sub-cellular location, which determine whether modification
is completed [8].

To date, three specialized SUMOylation site predictors have been published.
SUMOplot1 is commercial. SUMOsp [17] combines two algorithms originally
designed for phosphorylation site prediction (the scoring-based function GPS [19]
and an iterative statistical approach MotifX [13]). SUMOpre [16] is based on a
probabilistic method that optimizes the entropy of the motif.

An immediate application for in silico prediction is to determine the putative
SUMOylation sites in the four core histones of S. cerevisiae. Nathan et al. [10]
demonstrated that H2A, H2B, H3 and H4 are frequently SUMOylated. However,
Nathan and colleagues were only able to experimentally identify the exact loca-
tion of a fraction of the expected sites. The SUMOylation sites of the histones do
not conform to the consensus motif. SUMOpre and SUMOsp both fail to predict
a single SUMOylation site in protein sequences of the four histones. This ex-
emplifies the need for a SUMOylation site predictor that captures dependencies
beyond the consensus motif.

1 http://www.abgent.com/doc/sumoplot

http://www.abgent.com/doc/sumoplot
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It is understood that SUMOylation site recognition by E2 and E3 depends
mainly on the amino acid composition in the immediate neighbourhood of the
central Lysine. However, it is unclear (1) if there are relevant dependencies be-
tween central residues and surrounding residues not captured by simpler models,
(2) if the site’s structural presentation influences binding and the computational
recognition of it, and (3) if sequence conservation can be used to improve the
recognition of functional sites. In this study, we investigate the ability of two
machine learning techniques in predicting SUMOylation sites. Support-Vector-
Machine (SVM) [15] and Bidirectional Recurrent Neural Networks (BRNN) [2]
have both been successful in incorporating a range of dependencies into biolog-
ical sequence models. To evaluate the contribution of dependencies putatively
relevant to SUMOylation, we explore a range of features and functions for pre-
senting our data to these machine learning algorithms.

SVMs use kernels to map samples into a high dimensional feature space to find
the best separating decision hyperplane between the two classes (by maximizing
the margin between them). In this study we investigate standard vector-based
kernels as well as sequence-adapted kernels, including the string P-kernel [7] and
the local alignment kernel [12], all acting on a fixed sequence-window around
Lysine residues.

In the BRNN, the sequence input is instead fed iteratively into a network
of interconnected nodes with feedback connections incorporating a trace of past
sequence inputs. A BRNN is thus capable of accounting for sequence information
beyond that of a current input (here coming from both a downstream and an
upstream direction). The BRNN uses a gradient-based learning algorithm [2],
which involves updating network “weights” to minimize the difference between
predicted and target values.

We investigate the usefulness of secondary structure (SS) and solvent acces-
sibility (SolvAcc) for SUMOylation site recognition. Unfortunately, experimen-
tally resolved structures are available for only a fraction of known SUMOylated
proteins, hence both SS and SolvAcc are obtained from predictors. We use the
continuum secondary structure predictor, CSSP (with a reported Q3 = 77%) [3]
and the solvent accessibility predictor, ASAP (with a correlation coefficient of
0.69) [18].

The present paper is organized as follows. First, we give an overview of the
SUMOylation sites and analyse their distribution in our dataset. Second, we in-
vestigate the abilities of the different machine learning approaches when applied
directly on the primary data and then with additional features. In the last sec-
tion, we compare the best model with previous predictors, SUMOplot, SUMOsp
and SUMOpre.

2 Methods

2.1 Dataset

This study uses the dataset of Xu et al. [16] only containing proteins with at
least one SUMOylation site. Using the same strategy as Xu et al. for dividing
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the data results in 144 proteins used for training and testing, and 14 proteins
set aside for final validation.

The 144 proteins contain a total of 241 validated SUMOylation sites, which
collectively form the positive class. Roughly 68% of the SUMOylation sites con-
tain the consensus motif. The set of 5,741 Lysines which are not modified by
SUMO form the negative class. The 13 proteins in the hold-out set contain 27
sites of which 48% match the consensus. Noteworthy, the resulting dataset is
strongly unbalanced and could bias the method to prioritize the larger (nega-
tive) class. Steps are taken to investigate any effects of this imbalance.

Redundancy reduction of sequence similarity is not performed. Standard re-
dundancy reduction targets the overall sequence similarity within a dataset and
does not reduce the similarity of the relatively short SUMOylation sites.

When a numerical encoding is required (e.g. when using vector-based kernels),
each amino acid in the sequence is represented by a one-hot bit vector (“plain”) or
the position-specific score profile produced by psi-Blast [1] for the protein (“pro-
file”). The “plain” encoding is neutral in that no similarities are incorporated a
priori. The “profile” encoding reflects the evolutionary divergence between ho-
mologous proteins, making available information about sequence conservation.
Such “profiles” have found great utility for predicting structural features from
sequence. In either case, the full sequence is represented by concatenating the
position-specific vectors.

We apply CSSP (using default setting) to predict the secondary structure from
primary sequence. The secondary structure is represented by the probability
of a residue to adopt each of the three considered classes (helix, sheet, coil).
ASAP provides predicted residue-wise relative solvent accessibility (using default
settings). The predicted value is normalized to range between zero and one (with
one indicating a maximally exposed residue). In either case, each residue-wise
prediction is concatenated to the “plain” or “profile” encoding.

2.2 Cross-Validation and Evaluation

We evaluate every predictor configuration using 5-fold cross validation, where
the dataset is randomly divided into five subsets. All but one of the five are used
for training with the remaining one used for testing. This routine is repeated
until all five subsets have been used for testing exactly once. In most cases, each
evaluation is then repeated five times, with averages and standard deviations
reported. To evaluate the performance we compare the predictions with the
known positives and report on the correlation coefficient (CC), the sensitivity
(SN), specificity (SP), and, the area under the ROC (AUC) (see e.g. [6] for
standard definitions). Only the AUC is not influenced by the arbitrary setting of
a specific classification threshold and we thus use this as the primary measure.
The large number of negatives makes it easy to reach high specificity by simply
predicting all but a few certain as negatives. We do revert to CC, SN and SP to
discuss specific issues and to compare with previous results.
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Finally, trying a large number of configurations and selecting parameter values
on basis of test results will impart some selection bias. We therefore report
and rely on results for the hold-out set, which has not influenced any predictor
settings.

2.3 BRNN

A BRNN first centered on a particular position in a sequence (in our case this
is always a Lysine). Then, in an iterated fashion it processes wn residues on the
N-terminal side and wc residues on the C-terminal side, from both flanks and
working towards the centre (in steps of wn and wc residues, respectively). The
hidden nodes in this network are divided into two “wheels”, serving as feedback
modules in the N-terminal and C-terminal direction, respectively. Each wheel is
equipped with a specified number of nodes, effectively controlling the trace of
input from the flanks. The influence decays with the distance to the centered
Lysine.

Tuning the internal weights of the BRNN is an iterative process, requiring
many passes through the training set. With an independent test set left for the
final evaluation, we monitor the performance on the cross-validation test set of
each fold and stop training when the performance starts to deteriorate.

The unbalanced dataset could potentially also compromise performance. In
addition to the original training set we create a balanced set by sampling positive
and negative training data with equal probability. However, during testing all
positives and negatives from the test set in the particular fold are evaluated.

2.4 SVM and Kernels

To train the SVM we extract a sequence window covering wn residues towards
the N-terminus of the protein and wc residues to the C-terminus surrounding
every Lysine in the dataset. To account for the imbalance of the dataset, we
evaluate the influence of class-specific soft margin parameters, C+ and C−, for
positives and negatives, respectively.

Apart from window size and C-values, the performance also depends on the
choice of the kernel. Here, we evaluate five different kernels, the three standard
kernels: linear, radial basis function (RBF) and polynomial kernel, all requiring
numerical input (“plain” or “profile” encoding) and two sequence based kernels
which operate directly on the sequence data in the window.

Haussler proposed a string kernel known as the string P-kernel that probabilis-
tically evaluates (by convolution) the similarity between sequences by exploring
their alignment with all ancestral sequences [7]. Since we are only dealing with
fixed-length (N = wn + 1 + wc) amino acid sequences without gaps, the string
P-kernel is computed as KP (x,y) =

∏N
i=1

∑

α∈A P (α)P (xi|α)P (yi|α) where A
is the amino acid alphabet and x and y are the two amino acid patterns being
evaluated. The prior and conditional probabilities of amino acids are taken from
the data used to create the BLOSUM62 substitution matrix.
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In contrast, the local alignment kernel compares two sequences by explor-
ing all their alignments including those with gaps [12]. An alignment between
the two sequences is quantified using an amino acid substitution matrix (here
BLOSUM62) and a gap penalty setting (we use the default setting). The contri-
bution of non-optimal alignments to the final score is controlled (we use β = 0.1
which implies that many local alignments influence the result). All kernels are
normalized.

3 Results

3.1 Dataset Analysis

This section illustrates the discrepancy between the dominant consensus motif
and alternative SUMOylation sites.

165 out of the 241 sites in the training set have the consensus motif of
ΨKxE. The motif seems to be direction dependent, reading in direction of the
C-terminus. However, there are four validated SUMOylation sites which show
the reverse motif. As shown in Tab. 4 a simple regular expression parser for
the consensus motif can achieve a CC of 0.68 – exceeding the 0.64 reported for
SUMOpre – by identifying the 165 SUMOylated sites containing the consensus
motif and missing 76. However, it wrongly predicts 88 sites to be SUMOylated. It
should be noted that on a proteomic scale the dataset contains an unrealistically
high proportion of SUMOylation sites so the estimates are optimistic.

The difficulty of discriminating between SUMOylated and non-SUMOylated
sites on basis of the consensus is illustrated in Fig. 2a-b using sequence Logos
of both positives and negatives that match the motif [4]. A Logo of the known
SUMOylation sites not matching the consensus motif is shown in Fig. 2c. The

Fig. 2. Comparison between the sequence Logos of SUMOylated and non-
SUMOylated sites as well as site distribution in the dataset. Panel a shows
the sequence Logo created from 165 SUMOylated sites containing the consensus motif
(positive class). Panel b shows the Logo of 88 non-SUMOylated sites which contain
the consensus motif. Panel c shows the Logo of the remaining 76 non-consensus sites
of the positive class. Panel d shows a pie diagram of the SUMOylation distribution in
the dataset.
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central Lysine is still predominantly flanked by Glutamic acid (E) on the C-
terminal side, however the N-terminal hydrophobic residue is missing.

Fig. 2d shows the distribution of consensus vs non-consensus SUMOylation
sites in the dataset of 144 proteins. 56% of the proteins have a single SUMOy-
lation site only of which two thirds are consensus sites. A similar ratio can be
observed for proteins, which contain more than one SUMOylation site. Only 12
proteins contain consensus as well as non-consensus sites. This indicates that
there is no cascade effect, where the “strong” consensus site is SUMOylated first
and then aids in the SUMOylation of “weaker” non-consensus sites.

3.2 Performance of BRNN

The optimal parameter setting of the BRNN was determined empirically. The
window size of wn = 1 and wc = 3 has the highest AUC. Smaller windows give
worse accuracy while larger windows do not bring any improvements. Tab. 1
summarizes the performance of several settings of hidden nodes, and on balanced
and unbalanced presentation of data.

The performance is rather even across all settings. The BRNN performs
slightly better when trained on the unmodified, unbalanced dataset. Increas-
ing the number of hidden nodes appears to only decrease accuracy – suggesting
that the site is simple to represent. The simplest topology with one hidden node
in each wheel, trained without compensating for the class imbalance provides the
best result with an average AUC of 0.93 (henceforth referred to as BRNNBest).
The BRNNBest model contains 125 parameters to be optimized during training
on approx. 4,800 samples. We do not observe a trend to overfit, which indicates
a sufficient amount of training samples.

Table 1. Overview of the performance of examined BRNN settings. Average
area under the ROC (AUC) of different benchmark settings for BRNN (five times
repeated).

Dataset hidden AUC
nodes (sd)

unbalanced 2 0.923 (0.006)
unbalanced 10 0.919 (0.004)
unbalanced 20 0.914 (0.007)
balanced 2 0.895 (0.012)
balanced 10 0.906 (0.007)
balanced 20 0.906 (0.010)

3.3 Performance of SVMs

In this section the performance of several SVM-settings are evaluated. Kernel,
C-values and window size are problem specific and thus determined empirically.
Fig. 3 exemplifies the influence of the choice of window size, as well as C-values
for the linear, RBF and string P-kernel respectively. The optimal window sizes
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Fig. 3. Performance of different SVM settings. Each panel exemplifies the AUC
on the test set for different configurations with varying window sizes (upper panels)
and C-values (lower panels) for the linear, RBF and P-kernel respectively.

Table 2. Overview of the performance of the examined machine learning
methods. The methods are ordered according to the average AUC, achieved by the
different kernels and BRNNBest. Each SVM and BRNN is represented by its best
performing parameter setting regarding test error, 5-fold CV, five times repeated.

ML method AUC parameter settings
(sd) wc wn C+ C− method specific

RBF kernel 0.923 (0.001) 6 4 2 1 σ = 0.014
String P-kernel 0.923 (0.004) 6 4 8 1 γ = 0.1, BLOSUM62
BRNNBest 0.923 (0.006) 3 1 hidden nodes=2
Linear kernel 0.920 (0.004) 6 1 2 2
Polynomial kernel 0.920 (0.004) 12 1 4 1 order = 3
Local alignment kernel 0.913 (0.002) 3 2 1 1 β = 0.1, BLOSUM62

agree with the information content visualized in the Logos (Fig. 2): while there
seems to be some conservation towards the C-terminus the performance drops
when more than three residues are included towards the N-terminus. The best
C-values for the linear kernel put equal weight for the negative and positive
classes. For the RBF and the string P-kernel there seems to be specific C-value
pairs, which perform better than others.

Tab. 2 summarizes the performance of the best setting for each kernel in terms
of C-values, window sizes and kernel specific parameters.

Once the optimal parameter setting is determined, all kernels seem to be
able to recognize SUMOylation sites quite accurately, since the average AUC is
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Table 3. Influence of evolutionary and structural features on the perfor-
mance of SUMOsvm. Panel a: average ROC for SUMOsvm using plain encoding
(five times repeated). Panel b: Performance of SUMOsvm with additional features
input. The structural features are secondary structure (SS), solvent accessibility
(SolvAcc) or both. Evolutionary features are psi-Blast profiles.
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SS 0.92
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(a) ROC of SUMOsvm (b) Enriched encoding

around 0.92 (with no statistical significant difference using t-test p-value < 0.05).
The RBF and string P-kernel achieve the highest average AUC (both at 0.923)
and have the same predictive power as the BRNN, albeit with a smaller standard
deviation.

We choose the SVM with RBF kernel (wc = 6, wn = 4, C+ = 2, C− = 1) as
our final predictor. Though not statistical significantly better its performance
is more robust than the BRNN approach. Compared to the string P-kernel the
RBF-kernel is much faster to train and test. We refer to the SVM-RBF kernel
as SUMOsvm.

3.4 Assessing Enhanced Input Data and Multi-SVM Architecture

In this section we evaluate the impact of incorporating structural features and
evolutionary information into the predictor, as well as combining several kernels
into one “committee”-like SVM.

The results from the extended input features are summarized in Tab. 3. We
observe no performance increase when incorporating secondary structure or sol-
vent accessibility. The small increase using psi-Blast profiles is not statistically
significant.

A multi-SVM committee yields no observable performance increase. An im-
provement in performance due to a committee-style prediction is expected only
when the kernels deliver qualitatively different predictions. This is not the case
here as we observe at least 90% of the false predictions are shared amongst the
majority of all kernels.

3.5 Comparison and Discussion

In this section we compare SUMOsvm with the previously reported SUMOyla-
tion site predictors. In Tab. 4, we show the testing error measured on the 144
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Table 4. Performance overview of the existing predictors and SUMOsvm.
The values for the area under the ROC (AUC), correlation coefficient (CC), sensitivity
(SN), specificity (SP) and accuracy (AC) are obtained from the original publications of
SUMOpre and SUMOsp. The threshold chosen for SUMOsp was 18. *Though reported
by Xu et al. as CV and hold-out error, the values are understand to be training error
because “self-consistency test was used as the testing strategy” [16].

Method Validation AUC CC SN SP AC

SUMOsvm CV 0.92 0.67 0.62 0.99 0.97
hold-out - 0.56 0.44 0.99 0.96

RegularExp training NA 0.68 0.69 0.99 0.98
hold-out - 0.54 0.48 0.99 0.97

SUMOpre CV* 0.87 0.64 0.74 0.98 0.97
hold-out* - 0.66 0.54 1.0 0.97

SUMOsp CV 0.73 0.26 0.83 0.93 0.93
hold-out - 0.37 0.61 0.93 0.91

SUMOplot training NA 0.48 0.80 0.93 0.90
hold-out - 0.35 0.57 0.93 0.91

proteins during cross-validation and the prediction error on the 14 proteins in
the hold-out set. To obtain the hold-out error, we perform a voted prediction of
the SVMs trained during the 5-fold cross-validation. The performance measures
from the other methods are obtained from the original publications.

The comparison with other methods for predicting SUMOylation sites is com-
plicated by the use of different validation methods. For SUMOpre, only three
different test protocols are used: self-consistency (where “the SUMOylation state
for each motif in the entire dataset is predicted by the rules derived from the
same dataset” [16]), K-fold cross-validation and Leave-one-out cross-validation
(which is identical to K-fold CV when K equals the size of the dataset minus
one). The hold-out set is inspected only in the context of these protocols (all of
which involve training on this set).

The AUC is not explicitly reported for SUMOpre, but here estimated from
their ROC curve. Sensitivity and specificity are altered by simply changing the
classification threshold. The threshold setting similarly affects the correlation
between observed and predicted sites. We thus assume that all reported results
are achieved when the threshold is the best possible.

SUMOsvm is not significantly better than the previously published methods,
which in turn are not more powerful than a simple regular expression scan with
[LVI]K.E. Neither the motif-flanking residues nor structural features appear to
aid prediction. This begs the question how non-consensus sites are processed by
SUMO.

One hypothesis is that sites are SUMOylated by different means (correspond-
ing to different SUMOylation pathways). We would then expect that SUMOy-
lation sites of proteins group in accordance with shared means. To identify such
groups, we performed a kernel hierarchical cluster analysis, where the distances
in the feature space (as seen by the RBF kernel) are used to generate a distance
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Fig. 4. Hierarchical clustering of the SUMOylation sites in the hold-out set.
We use the RBF-kernel with wc = wn = 3 to obtain the hierarchical clustering plot.
Sites SUMOsvm predicts correctly are marked with *.

map between the different sites. The resulting map of the SUMOylation sites in
the hold-out set is shown in Fig. 4. The correctly predicted sites (all conform to
the consensus motif) are clustered and form the largest entity. There is only one
other cluster formed containing a putative KxK motif in the hold-out set.

To investigate if SUMOylation binding is species or compartment dependent,
we extracted all proteins in the dataset that belong to human and are localized
to the nucleus. If the SUMOylation pathway is species and/or compartment de-
pendent, one would expect to see a correlation of either with sequence motif.
However, a similar fraction of the consensus motif appears amongst human nu-
clear proteins as in the original set, and no alternative motifs were obvious when
Logos were used from this smaller group of binding sites. Also, no performance
gain could be observed when retraining on this subset.

4 Conclusion

We developed a SUMOylation site predictor, SUMOsvm, based on support vec-
tor classification and the RBF kernel. Several other configurations performed
equally well including models based on alternative kernels and the bidirectional
recurrent neural network. However, in the comparison to previously published
SUMOylation site predictors we found that neither SUMOsvm nor the previ-
ously published methods are significantly better than a simple regular expression
scanner.

The disappointing result is particularly noteworthy because we presented
SUMOsvm with sequence data which were enriched with predicted structural
features (secondary structure and relative solvent accessibility) and evolution-
ary information (psi-Blast profiles).

No predictor to date is able to identify the SUMOylation sites in the four core
histones of yeast–a group of proteins which are known to be regulated by SUMO



Predicting SUMOylation Sites 39

but for which we still have only partial understanding of actual sites involved.
All predictors tend to rely on the consensus motif that describe a majority of
known SUMOylated sites but do not include the sites on the histones. Until
more of the SUMOylation pathway is uncovered, SUMOylation site prediction
from the current paucity of data remains challenging.
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Abstract. Nondeterministic conformational search techniques, such as Genetic 
Algorithms (GAs) are promising for solving protein structure prediction (PSP) 
problem. The crossover operator of a GA can underpin the formation of poten-
tial conformations by exchanging and sharing potential sub-conformations, 
which is promising for solving PSP. However, the usual nature of an optimum 
PSP conformation being compact can produce many invalid conformations (by 
having non-self-avoiding-walk) using crossover. While a crossover-based con-
verging conformation suffers from limited pathways, combining it with depth-
first search (DFS) can partially reveal potential pathways. DFS generates ran-
dom conformations increasingly quickly with increasing length of the protein 
sequences compared to random-move-only-based conformation generation. 
Random conformations are frequently applied for maintaining diversity as well 
as for initialization in many GA variations.  

Keywords: Depth-first search, protein structure prediction, genetic algorithm, 
lattice model. 

1   Introduction 

We are seeking to solve the ab initio (meaning ‘from the origin’) or the de novo pro-
tein structure prediction problem [1]. In an ab initio approach, the building of a 3D 
conformation (structure) is essentially based on the properties of amino acids, where 
protein is a three dimensionally folded molecule composed of amino acids [2] linked 
together (called the primary structure) in a particular order specified by the DNA 
sequence of a gene. Particular folded structures are essential for the functioning of 
living cells as well as for providing body structure. Protein structure prediction (PSP) 
is a problem of determining the native state of a protein from its primary structure and 
is of great importance because three dimensionally folded structures determine the 
biological function [3] and hence proves extremely useful in applications like drug 
design [4].  



42 Md. T. Hoque et al. 

For investigating the underlying principles of protein folding, lattice protein mod-
els introduced by Dill [5] are widely used [6]. Protein conformation as a self-avoiding 
walk in the lattice model has been proven to be NP-complete [7, 8]. Therefore a de-
terministic algorithm for folding prediction is not feasible. So, a nondeterministic 
approach with robust strategies that can extract minimal energy conformations effi-
ciently from these models becomes necessary. Still, this is a very challenging task as 
there exists an astronomical number of possible conformations even for a very short 
sequence of amino acids [9, 10].  

We have chosen the Genetic Algorithm (GA) as a vehicle for providing solutions 
to the PSP problem for better performance, where crossover is regarded as the key 
operation of GA [11]. The core concepts of GAs and their components are often 
adapted by many PSP solving algorithms for the effectiveness [12-16]. While cross-
over can be very effective in joining two different potential sub-conformations, it can 
be repeatedly unsuccessful as the converging conformations (hence the sub-
conformations), being compact in nature, leave limited pathways to a valid (i.e., self-
avoiding-walk) conformation. This means many potential conformations may be lost, 
which motivates us to apply partial pathways based on depth first search (DFS) [17] 
to regain potential conformations, leading to effective PSP solution. 

2   Background and Preliminaries  

In nature, a protein folds remarkably quickly, requiring between a tenth of a millisec-
ond and one second in general, whereas any algorithm on any modern computer is 
still unable to simulate this task in anything approaching similar time[11, 18]. For the 
immensely complex protein structure prediction problem, there are several issues and 
approaches which are yet to be considered [11, 19, 20]:  

First, the energy function, which is a combination of several factors that determines 
the free energy of a folded protein, is not fully understood. Therefore, existing formu-
lations for energy functions do not suggest any obvious path to solution of the PSP 
problem.  

Second, conformational search algorithms are promising approaches toward this 
hard optimization problem, but the PSP problem still needs considerable research to 
find an effective algorithm. The aim of the search is to identify an optimum confor-
mation within a huge and very convoluted search landscape.  

Third, Cyrus Levinthal postulated, in what is popularly known as the Levinthal 
paradox, that proteins fold into their specific 3D conformations in a time-span far 
shorter than it would be possible for the molecule to actually search the entire con-
formational space (which is astronomically large) for the lowest energy state [21]. As 
proteins cannot, while folding, be sampling all possible conformations, therefore 
folding pathways must exist.  

While focusing on the second issue [22-27], we are utilizing DFS strategies, devel-
oping novel search algorithms in a form to address the pathway hypothesis. It has 
been concluded that conformational searching is the bottleneck in protein folding 
prediction and the observed folding rates have been found to be proportional to the 
number of microscopic folding routes [28]. These routes can be captured by the 
crossover operation from suboptimal conformations and then partial DFS can mimic 
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the existing microscopic path guided by the converging sub-conformation, whereas a 
crossover operation alone can encounter more collisions [13] (while mating dissimilar 
converging conformations) before having a SAW conformation and thus often can 
reject the potential sub-conformation as being unfit when paired with the available 
counterpart of the crossover portion (from a dissimilar conformation). To determine 
the effect of DFS in such situations we will rely on empirical results. 

2.1   The HP Lattice Model 

The simplified HP lattice model [29, 30] is based on hydrophobicity [31], dividing the 
amino acids into two different beads – hydrophobic (H) and hydrophilic (or polar 
(P)). The model allows HP protein sequences to be configured as self-avoiding walks 
(SAW) on the lattice path favoring an energy free state due to HH interaction. The 
energy of a given conformation is defined as the number of topological neighboring 
(TN) contacts between those Hs, which are not adjacent in the sequence. This contact 
between two neighboring H residues (or HH contact) is TN and is assigned a value for 
the potential, termed interaction potential which is define as -1 for the regular HP 
model [32]. Further, the HP interaction and PP interaction potential value is assigned 
0, which basically implies that there is no interaction between an H and a P of HP 
contact or between the Ps of PP contacts. 

To define PSP formally, assume for an amino-acid sequence nsssss ,,,, 321 L= , a 

conformation c needs to be formed where )(* sCc ∈ , )(sC  is the set of all valid (i.e., 

SAW) conformations of s, n is the total number of amino acids in the sequence  and 

energy { }CccECEE ∈== |)(min)(*  [15]. If the number of TNs (for HH contact) in 

a conformation c is q then the value of )(cE  is defined as qqcE −=×−= 1)(  and the 

fitness function is qF −= . The optimum conformation will have a maximum possi-

ble value of |F|. In a 2D HP square lattice model (Figure 1), a non-terminal and a 
terminal residue, each with 4 neighbours, can have a maximum of 2 TNs and 3 TNs, 
respectively. In this paper, we will confine ourselves to using the 2D HP square lattice 
model only, as this model will be sufficient for our needs. However, its simplicity 
may encourage interested readers to do further research, which would otherwise be 
very difficult. The HP lattice model is also very popular with the research community 
[11, 23, 29, 30, 33-39], since it allows easy development, validation and comparison 
of new techniques for protein structure prediction (PSP) [22-24, 26, 27, 40]. 

 

Fig. 1. HP conformation in the 2D HP model shown by a solid line. 2D square lattice having 
fitness = - (TN Count) = -9.  indicates a hydrophobic and  indicates a hydrophilic residue. 
The dotted line indicates a TN. Starting residue is indicated by a ‘1’ in the figure. 
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2.2   Complexity of the Lattice Model  

Even if we use this simplified model we have an inordinate number of valid (i.e., 
SAW) conformations, even for a shorter sequences [9, 10, 41]. For instance, for a 

sequence of n amino acids, the number of valid conformations is proportional to nµ , 

where the connective constant or the effective coordinate number µ , is lattice de-

pendent [10]. Prediction of the optimal conformation using the lattice model is also an 
NP-complete problem [7, 8]. To predict the backbone conformation of the folded 
protein from its amino acid sequence based on global interactions such as hydropho-
bicity, lattice models are used for approximation [29, 30, 33-35]. For ab initio predic-
tion in Critical Assessment of Structure Prediction (CASP) [33-35], most successful 
approaches followed the hierarchical paradigm where the lattice-based, backbone 
conformational sampling works very effectively at the top of the hierarchy. With 
further advancement toward all-atom or full modeling from the lattice, the energy 
functions include atom-based potentials from molecular mechanics packages such as 
CHARMM, AMBER, ECEPP and so on [42, 43]. Conformational search algorithms 
built on lattice models, which play a key role in solving PSP, are discussed next.  

2.3   Nondeterministic Conformational Search Algorithms  

For solving ab initio PSP using the lattice model numerous nondeterministic ap-
proaches have been investigated: Monte Carlo (MC) simulation, Evolutionary MC 
(EMC) [12, 13], Simulated Annealing (SA), Tabu Search with Genetic Algorithm 
(GTB) [14], Ant Colony Optimisation [15], and Immune Algorithm (IA) based on Arti-
ficial Immune System (AIS) [44]. Due to their simplicity and search effectiveness, 
Genetic Algorithms (GAs) [11, 26, 32, 45-48] are the most attractive. They also pro-
vided superior performance over MC [46, 47]. The concepts of GAs are also widely 
adapted within these algorithms. For instance, a new MC algorithm [12] adopted the 
population-based cut-and-paste (i.e. crossover) operation to achieve higher fitness. The 
evolutionary Monte Carlo (EMC) [13] algorithm incorporated the evolutionary fea-
tures of genetic algorithms, such as a population which is updated by crossover and 
mutation operations. Jiang et al. applied the GA with Tabu (GTB) search to solve PSP 
using lattice models [14]. Also, the conformational space annealing (CSA) [16, 49] 
algorithm is based on GA concepts, where the population is renamed as a “bank”. 

2.4   Focus of the Paper  

Given the widespread adaptation of GAs for PSP, the heart of a GA, i.e. the crossover 
operation, can be made more effective by combining it with DFS which can have a 
significant positive impact on solving the PSP problem. In a conventional GA, since 
the optimum conformation is mostly compact physically (see Figure 2), a crossover-
based converging conformation suffers from limited pathways and the algorithm 
increasingly generates invalid conformations. Our hypothesis is that the combination 
of depth-first search (DFS) with crossover can instead reveal potential pathways in 
solving PSP. Thus, a repeatedly failing crossover with a congested but potential sub-
conformation can be allowed a limited number of pathways for possible candidate 
crossover counterparts obtained by using DFS if there exists at least one path. 
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(a): Fitness = -15 (b): Fitness = -33 (c): Fitness = - 42 

Fig. 2. As the search proceeds the conformation gets more compact: For a typical run, confor-
mations at generation 1, 1434 and 5646 have been shown in (a), (b) and (c) respectively, show-
ing the fitter conformation is relatively more compact. 

2.5   Defining the GA Operators for PSP Problem 

Here, we define the GA operators for the PSP problem based on the HP lattice model: 

Crossover operation: For PSP, this aids the construction of global solutions by the 
cooperative combination of many local substructures [11]. We particularly followed 
the commonly-used crossover operation pioneered by Unger et al. [46], as illustrated 
in Figure 3, a single-point crossover. We follow this single-point crossover, since 
otherwise the converging conformation, being compact in nature, would generate 
more collisions or invalid conformations [13]. The ability to rotate before joining 
within the crossover, in addition, provides a mutation-equivalent operation. With the 
help of relative encoding [40], this can be seen easily. For example, if we emulate the 
crossover in Figure 3 without the rotation, we can write using relative encoding that: 

Crossover (a:‘LFLLRRLRLLFLRFRLFL’, b:‘RFFFRFRFLFLRFRLLFL’)  would 
output, c': ‘LFLLRRLRLLFL*RLLFL’ without the rotation before joining. (Here, ‘*’ 
indicates an undefined move in relative encoding but here it indicates a non-SAW 
move.) But, with rotation, the conformation can have SAW, i.e. c: 
‘LFLLRRLRLLFLRRLLFL’. 

 

   

(a) (b) (c) 

Fig. 3. An example of the crossover operation [46]. Conformations are randomly cut and pasted
with the cut point chosen randomly between residues 14 and 15. The first 14 residues of (a) are
rotated first as needed (as allowed by the degree of freedom by the model configuration) and
then joined with the last 6 residues of (b) to form (c), where fitness, F = -9. ‘ ’ indicates 
crossover positions.  
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Comparing c':‘LFLLRRLRLLFL*RLLFL’and c:‘LFLLRRLRLLFLRRLLFL’, it 
becomes clear that the ‘*’ is replaced by an ‘R’ after the rotation, which is genotypi-
cally a single-point mutation. 

Crossover failure: This implies that before joining two parts all, possible, rotated 
positions at the joining point have been tried but failed to produce at least one valid 
conformation (i.e., a SAW). 

Combination of crossover and DFS: For generating a conformation this implies that a 
DFS-generated random and partial path has been joined with the first half of the sub-
conformation. 

DFS after crossover failed: This implies that ‘combination of crossover and DFS’ has 
been performed after an occurrence of ‘crossover failure’. 

Mutation operation: This involves pivot rotation (Figure 4) as basically pioneered by 
Unger et al. [46]. We employed single-point mutation to avoid more collisions. 

  
(a) (b) 

Fig. 4. An example of the mutation operation [46]. Dotted lines indicate TN. Residue number 
11 is chosen randomly as the pivot. For the move to apply, a 180° rotation (among a number of
possible degree of freedom defined by the model configuration) alters (a) with F = -4 to (b) F = 
-9. ‘ ’ indicates the mutation residue. 

Ordinary random conformation generation: This implies the generation of a SAW 
conformation based on random-move-only (RMO). In a 2D square lattice model Left, 
Right and Forward moves are permissible but Backward move is prohibited. For a 
conformation, once a path search has failed after looking in the three possible degrees 
of the freedom the whole process restarts. 

Random conformation generation by DFS: This implies that we apply DFS to gener-
ate a SAW conformation. As the DFS proceeds, it stores the possible pathways using 
a stack-memory [17] and, upon total failure after trying all possible degrees of free-
dom on a particular location (i.e. lattice point), it can backtrack to restart from the 
stored options instead of restarting the creation of the whole conformation. 

3   Experiments and Results 

We carried out experiments to empirically verify our hypothesis that combining  
DFS with crossover will be advantageous. The simple GA (SGA) applied for PSP is  
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1. Initialize the fixed size current population ( zPop ) of randomly generated conformations. 

2. Obtain a new solution ( newS ) from the current population by using Crossover and 

Mutation operations at the pre-specified rates ( cp  and mp  respectively). 

3. Assess the quality or fitness, F, of newS .

4. Promote the obtained newS , and elite and untouched chromosomes, to the next generation 
and assign the new generation as the current population.

5. IF END-OF-SOLUTION is not reached THEN repeat from Step 2.  
 

Fig. 5. Genetic Algorithm for solving PSP problem†1 

(a) (b) 
 1. DO single-point Crossover. 
 2. IF ‘Crossover failure’ = TRUE then 
 3.      REPLACE one of the parents.
 4.      DO single-point Crossover.

 END IF    

 1.  DO single-point Crossover.
 2.  IF ‘Crossover failure’ = TRUE then 
 3.       DO ‘DFS after crossover failed’.
      END IF 

(c) (d) 
1. DO single-point ‘Combination of
    crossover and DFS’.

 1. DO apply option: (a). 
 2. IF no improvement for 5 consecutive generations,
 3.    DO apply option: (b). 

   END IF  

Fig. 6. Crossover operation and variation details 

illustrated in Figure 5 and the crossover variations with the possible implementation 
have been shown in Figure 6. As shown in Figure 6, we have experimented with four 
variations of the crossover operation. Crossover (a) (see Figure 6(a)) represents a 
conventional crossover operation for PSP without DFS. Crossover(b) (see Figure 
6(b)) applies DFS-based partial path generation with the sub-conformation immedi-
ately the sub-conformation fails to join with its counterpart sub-conformation after 
trying all possible degrees of freedom. Crossover(d) (see Figure 6(d)) is similar to 
Crossover(b) in operation but allows more time to a failed crossover to search for a 
suitable counterpart sub-conformation to match. Crossover(c) is a the most dissimilar 
variation of Crossover(d) where, instead of a sub-conformation looking for its coun-
terpart sub-conformation in the population, Crossover(c) directly uses DFS to gener-
ate the rest of the path to complete the conformation. This alternative was investigated 
to determine an effective rate of DFS.  

The default GA parameters for all experiments were set as population size ( zPop ) 

to 200, crossover rate ( cp ) to 0.85 or 85%, mutation rate ( mp ) to 5% and for elitism 

the elite rate was set to 5% [50, 51]. 
The fold for longer PSP problems generally has complex energy landscapes [30, 

52-57], and hence those sequences will take longer to converge. So we chose those 
longer sequences to highlight the true benefit of this approach. A maximum of 2000  
 

                                                           
† Terms in bold and italic are explained in section 2.5. 
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Table 1. Benchmark protein sequences for 2D HP model 

Length Sequences  Ref. 

50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 [59] 
60 P2H3PH8P3H10PHP3H12P4H6PH2PHP [59] 
64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 [59] 
85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H [58] 

100 
3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6H9P1H1P2H1P11H2P3H1P2H
1P1H2P1H1P3H6P3H [58] 

‘H’ and ‘P’ in the sequence indicate hydrophobic and hydrophilic amino acids, respectively. 

 
Table 2. Run results of 10 iterations on each PSP sequence (see Table 1 for the sequences). GA 
runs with four different crossover options (shown in Figure 6), have been compared. 

Length X(a) X(b) X(c) X(d) CSA UGA 
50 -17.3/-20 -17.6/-20 -14.5/-17 -18/-20 -17 / -19 -16.6 / -18 
60 -29.2/-32 -29.8/-32 -27.8/-31 -30.5/-32 -30.4/-32 -29/-31
64 -29.1/-31 -29.3/-31 -25.2/-29 -32/-35 -29/-30 -27.8/-31 
85 -39.4/-44 -39.6/-45 -34.5/-38 -43.4/-46 -43.2/-46 -41.4/-46
100 -37.1/-39 -37.6/-41 -30.2/-37 -38.5/-42 -37.2/-38 -37.4/-40 

The format of column entries is ‘Average / Minimum’. The X implies Crossover operation. Thus, X(a)
indicates Crossover(a) as described above, and so on. CSA and UGA indicate Conformational Space 
Annealing Algorithm [16] and Unger’s GA [46], respectively. Bold entries indicate the row-wise best 
values obtained.  
 

generations was allocated for each of the 10 iterations carried out per sequence, per 
category of experiments. Benchmark PSP sequences shown in Table 1 for the 2D 
square HP lattice model [5], length ranging from 50 to 100 were used [58, 59]. The 
results are shown in Table 2.  

It may be noted that in Table 2, we include two other algorithms in their generic 
form: Unger’s GA (UGA [46]) and Conformational Space Annealing (CSA) algo-
rithm [16, 49] with our proposed algorithm for solving the PSP problem. UGA has 
already outperformed many MC variations, as reported in [11, 46]. We emulated 
UGA in our experiment with the same parameter for cooling, i.e. the cooling tempera-
ture was set to 2 at the start and decreased by 0.99 every 200000 steps until the tem-
perature became 0.15. 

We abstracted the general form of the CSA algorithm by removing the heuristic-
based special moves, keeping the generic form intact, to provide a fair comparison in 
our experiment. Comparison with CSA algorithm is particularly important for our 
work, since the CSA approach has recently been applied in the PSP software 
ROSETTA [33, 60-63]. Both UGA and CSA ran 2000 GA generation equivalent runs 
per iteration. 
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4   Discussion of the Experimental Results  

We have introduced the concept of finding potential partial pathways using a depth-
first search (DFS) strategy when a converging, potential sub-conformation in a  
crossover failed to find a matching counterpart to produce a valid (i.e., having a  
self-avoiding-walk) conformation. Crossover variation X(c) has the worst result in 
Table 2. X(c) involves applying DFS constantly at the same rate as the crossover op-
eration to generate the other half of the crossover portion, which is misguiding the 
optimum results more that guiding them. X(a) represents the crossover-only approach, 
that is, crossover with DFS, and X(b) is the variant where DFS is applied whenever a 
crossover fails. X(b) is a slight improvement over X(a). X(d) performed the best, with 
results comparable to the UGA and CSA algorithms. This is because, in X(d), cross-
over was applied exhaustively by allowing a failed crossover to look for more coun-
terparts to match and when there is no improvement at all in the whole population for 
consecutive few generations, the failed crossover is combined with DFS to generate 
the possible potential pathways. It is interesting to note that, in our experiment we 
find DFS has zero failure in finding pathways. Thus, a constantly failing sub-
conformation in a crossover operation, which is likely to have few possible pathways, 
can be salvaged using DFS to unravel the hidden paths effectively. As an alternative 
to DFS, breadth-first search (BFS) [17] could have been used; however, BFS is both 
memory and time intensive. 

5   Supplementary Applications of DFS in PSP  

It is important to remember that ordinary random conformation generation†2takes 
exponential time (fitted curve: y = 2.8723 e0.0326x with square of coefficient of deter-
mination, R2 = 0.9832) with increasing sequence length using the random-move-only  
 

 

Fig. 7. Random conformation generation: DFS approach versus random-move-only (RMO) 
approach. An average of 100 iterations is taken for a particular length of a single random con-
formation generation. 
 

                                                           
† Terms in bold and italic are explained in section 2.5. 
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(RMO) approach. In contrast, the run-time for random conformation generation by 
DFS remains quadratic (fitted curve: y = 0.02 x2-0.5717x+54.789, with R2 = 0.9996) 
(see Figure 7).  

The application of random conformation generation by DFS may have a gener-
ally lower impact because totally random conformations are only generated for ini-
tialization of the population. To maintain diversity many GA approaches replenish the 
population a considerable amount and at frequent intervals [64, 65]. For example, 
Hoque et al. have shown removal of chromosomes having 80-90% or greater similar-
ity from a GA population helps it to perform better [64]. After removal it is necessary 
to replenish the population by random conformations of 20 to 30% in each generation. 
Thus, in such a case, for longer sequences, random conformation generation by DFS 
would make the GA search far more efficient. 

6   Conclusions 

A depth-first search (DFS) strategy at a low rate has been applied in combination with 
a powerful crossover operation. Together they revealed convoluted and microscopic 
pathways in solving protein structure prediction problem. Experiments using a variety 
of longer, standard benchmark sequences from the literature have demonstrated the 
efficacy and improved performance characteristics of this approach. The search strat-
egy developed was inspired by the pathway hypothesis. Further work will be directed 
to exploring the biological significance and relevance of this novel approach. 
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Abstract. The development of a method that accurately predicts pro-
tein folding nucleus is critical at least on two points. On one hand, they
can participate to misfolded proteins and therefore they are related to
several amyloid diseases. On the other hand, as they constitute struc-
tural anchors, their prediction from the sequence can be valuable to
improve database screening algorithms. The concept of Most Interact-
ing Residues (MIR) aims at predicting the amino acids more likely to
initiate protein folding. An alternative approach describes a protein 3D
structure as a series of Tightened End Fragments (TEF). Their spatially
close ends have been shown to be mainly located in the folding nucleus.
While the current sequence-driven approach seems to capture all MIR,
the structure-driven method partially fails to predict known folding. We
present a stability-based analysis of protein folding to increase the recall
and precision of these two methods.

Results: Prediction of the folding nucleus by MIR algorithm is in agree-
ment with mutation stability prediction.

Availability: The database is available at:
http://bioinformatics.eas.asu.edu/Stability/index.php. The MIR calcu-
lation program is available at:
http://bioserv.rpbs.univ-paris-diderot.fr/cgi-bin/MIR and the TEF pro-
gram at:
http://bioserv.rpbs.univ-paris-diderot.fr/TEF.

Contact: jacques.chomilier@impmc.jussieu.fr

Keywords: Protein folding, folding nucleus, structure stability, point
mutations.

1 Introduction

Structural bioinformatics has been particularly productive for the past decade
partially thanks to the contribution of physics disciplines. One of its main fo-
cuses is the study of protein folding and, in particular, the prediction of folding
nuclei. Modeling and predicting protein folding mechanisms is critical because
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a misfolded protein may result in the formation of aggregates that may play a
role in most misfolding diseases such as amyloid ones [1,2,3,4].

The folding nucleus model [5,6,7,8,9] is based on the assumption that protein
folding begins with just a few amino acids that strongly interact with each other.
These strong interactions initiate the folding that is completed by a successive
folding of the remaining parts of the structure to constitute a compact globule.
Within this model, a precise and accurate prediction of the main amino acids
responsible for initiating the folding provides enough constraints to simulate the
whole folding mechanism. For that purpose, Papandreou et al. developed an
algorithm devoted to the search of the Most Interacting Residues (MIR) [10].
The current algorithm has a good recall however its precision needs improvement
as several studies consider that the minimal number of amino acids needed to
initiate a folding process is significantly less than the 15% found in average with
the MIR prediction algorithm [8,11,12,13].

Proteins can be described as a succession of Tightened End Fragments or
TEF [14,15,16,17] which spatially close ends (lower than 10 Å) are deeply buried
in the cores of globular domains. Their ending positions could represent the
folding nucleus while TEF would correspond to the final fold for these por-
tions. Indeed, we have previously demonstrated that the TEF ends correspond
statistically to hydrophobic residues highly conserved in multiple alignments of
proteins of common function [17]. These particular positions have been called
topohydrophobic, and they are clearly related to amino acids belonging to the
folding nucleus [18]. They are derived from multiple alignments of distantly re-
lated sequences, typically less than 30% identity. It constitutes a limitation of the
prediction process since most of the available algorithms for multiple alignments
of highly divergent sequences produce controversial results [19]. We have shown
that MIR and tophohydrophobic positions match in two thirds of the cases which
confirms a reasonable recall of the MIR prediction algorithm. In other words,
one has a mean to predict, from the single information of the sequence, positions
(MIR) including the folding nucleus.

In this paper we present a stability-based analysis that was conducted to
better characterize MIRs. The expected results were to improve the precision
of the MIR method by refining the algorithm with constraints related to the
prediction of the stability changes induced by point mutations. We assume that
the folding nucleus is the deep core of the structure and thus should be very
sensitive to point mutations. For example, if a keystone substitutes another one
with a different shape, the vaulting will collapse almost every time.

2 Material and Methods

2.1 MIR Prediction Algorithm

A Monte Carlo algorithm is used to simulate the early steps of protein folding
on a (2,1,0) lattice. An amino acid is randomly selected and displaced to a new
available position on the lattice. The energy of both initial and final conforma-
tions is computed from the Miyazawa and Jernigan potential of mean force [20]
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and the Metropolis criterion is then applied [21,10]. The starting point is the
protein structure in a random coil conformation and the simulation is typically
conducted on 106 Monte Carlo steps.

This simulation is repeated 100 times with different initial conformations.
The number of first neighbors is recorded after each series of 10 Monte Carlo
steps, and at the end of the process, an average Number of Contact Neighbors
(NCN) is calculated for each amino acid of the sequence. Actually, amino acids
surrounded by many others play a role in the compactness of the protein and
thus are called Most Interacting Residues (MIR). In contrast, the ones with few
neighbors are called Less Interacting Residues (LIR).

2.2 TEF Assignment

Along the backbone of a protein, some pairs of amino acids can be very close
in several places, with a typical distance between their alpha carbons below
10 Å. The histogram of the sequence separation between these ”contact” amino
acids is not smooth, and presents a maximum around 25 amino acids [15]. These
sequence fragments were initially called closed loops [14].

Later on, it has been shown that the ends of these closed loops are mainly
occupied by hydrophobic amino acids. A thorough analysis demonstrated that
these hydrophobic amino acids were highly conserved among structures of the
same family, although containing distantly related sequences: these positions
were called topohydrophobic [22].

The concept of TEF emerged from the junction between closed loops and
topohydrophobic positions mainly located at their ends.

2.3 Free Energy Calculation

Gibbs free energy change due to mutation is a good approximation to character-
ize the stability of a given structure. It consists of a succession of energetic terms
that attempt to capture all the properties and forces that drive the conformation
of a protein. In our study we focus on the difference of these energies for the wild
type structure ∆Gwild and for the mutant structure ∆Gmutant. Considering that
in the literature various stability prediction methods use different nomenclature,
∆∆G is defined as follows:

∆∆G = ∆Gmutant − ∆Gwild . (1)

The unit is kcal/mol. ∆∆G describes whether it costs more in energy to have
the mutated amino acid or the wild type one. For example, if ∆∆G < 0 then
it costs more in energy to have the wild type structure than the mutant one
thus the mutation is more favorable to the structure stability. Conversely, if
∆∆G > 0, the mutant structure ∆G is higher than the wild type one thus the
mutation is less favorable to the structure stability.
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2.4 Stability Analysis

Many methods have been implemented to predict stability changes induced by
point mutations. MUpro [23] and I-Mutant (sequence version) [24] both predict
stability changes on a protein sequence whereas DFIRE [25], I-Mutant (sequence
+ structure version) [24] and PoPMuSiC [26] use protein sequence and structure
to predict these changes. Other methods exist but have been rejected due to some
restrictions: CUPSAT1 [27] was not available in a standalone version and the cur-
rent version of FoldX2 [28] only computes mutations to Alanine. To avoid biases
from one or the other method, we present a comprehensive analysis with five ex-
isting tools (the two versions of I-Mutant are considered as two different tools).

We use the Protherm database [29] that collects thermodynamic data pub-
lished in the scientific literature and thus includes measured values of ∆∆G to
compare our prediction to experimental data. It is available at the following
URL: http://gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html.

2.5 Data Set

Our analysis was conducted on a dataset published by the Protein Folding Frag-
ments European consortium that can be found at the URL: http://bioserv.rpbs.
univ-paris-diderot.fr/PFF/. MIR predictions and TEF calculations were already
performed on the selected 116 protein sequences.

The experimental dataset consisted of 116 protein sequences for a total of
15,183 amino acids. Each sequence was processed with each of the five sta-
bility prediction tools, for each amino acid, and for each of the 19 possible
mutations. We computed 1,442,385 different ∆∆G values. In order to man-
age and publish our produced data and results in a more efficient way than
output flat files, a database was created and is available to the community at
http://bioinformatics.eas.asu.edu/Stability/ where more information about the
data can be found.

3 Results

3.1 MIR and TEF

The MIR concept aims at characterizing the main amino acids involved in the
early steps of the protein folding process. The TEF method splits a structure
into fragments with spatially close ends that interact with each other. A previous
study [10] has demonstrated that TEF ends (within a range of ±5 positions)
correspond to MIR in 57% of the cases. As we are looking at coherent methods
to determine the folding nucleus, we observe that MIR over predict the TEF
ends, therefore we hypothesize that restricting the MIR to the ones in agreement
with TEF ends would capture the expected amino acids responsible for protein
folding.
1 CUPSAT is available at http://cupsat.tu-bs.de/.
2 FoldX is available at http://foldx.crg.es//.

http://gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html
http://bioserv.rpbs.
univ-paris-diderot.fr/PFF/
http://bioinformatics.eas.asu.edu/Stability/
http://cupsat.tu-bs.de/
http://foldx.crg.es//
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Then, separation between ”good” MIR and ”bad” MIR emerges, and we de-
fine them as TEF related and TEF independent MIR. The TEF independent
MIR are expected to be the noise in the MIR prediction algorithm. The TEF
related ones are those in a ±3 amino acids window around a TEF end. As the
experimental validation of folding nucleus is rather difficult, one way to validate
MIR prediction (i.e., TEF related MIR are the nucleus residues) is the com-
parison with other structural data. Indeed, there is nowadays no experimental
technique able to determine which residues constitute the folding nucleus.

The Φ value experimental determination [30] attests whether one amino acid
is in the folding nucleus or not, but all the mutants need to be constructed to
validate the hypothesis. Nevertheless in some cases, such as CI2 for instance,
a low Φ value can be obtained for a residue attributed to the folding nucleus
by convergent experiments [31]. We propose here to add constraints derived
from energy stability evaluation in order to increase the agreement between
prediction and experiment; these constraints are restrictred to thermodynamics
experiments as they are not supposed to be suspicious.

3.2 Stability Changes upon Point Mutations

Because they are structurally compulsory for the complete folding, we assume
that folding nucleus positions are very sensitive to mutation, in the sense that a
mutation would destabilize the protein. We thus decide to verify this assumption
by computing stability changes upon point mutations for all the sequences which
already have been processed for the MIR and TEF predictions (See Material and
Methods section). There exist numerous software devoted to this task among
which we focused on: DFIRE, two versions of I-Mutant, MUpro, and PoPMuSiC.

We first start by calculating ∆∆G resulting from mutations at each position
for the five tools. We retrieve all experimental values for proteins either present
in our database and in Protherm [29]. 1409 different mutations with their exper-
imental ∆∆G were gathered. A correlation then appear between experimental
∆∆G and predicted ∆∆G. The two versions of I-Mutant obtain the best score
(represented in Fig. 1) with 0.96 correlation coefficient, just followed by MUpro
with 0.86. The remaining tools PoPMuSiC and DFIRE show an average corre-
lation with 0.53 and 0.48 respectively. The goal of these correlations is to verify
that the tools used in this work are accurate and truthfully. The excellent corre-
lation for I-Mutant and MUpro can be explained by the fact that both software
used data extracted from the Protherm database as a training set for their al-
gorithm. No other experimental data was available for this study.

Three tools can be considered as efficient and two others have to be carefully
apprehended. Nevertheless, for a better overview of the stability changes concept,
all five tools are kept in this study and a comparison between the two types of
MIR and their relative stability changes upon mutation can be performed. We
then verify if stability upon mutation would allow to discriminate among the
two types of MIR, according to their location relative to TEF ends. Stability
prediction is characterized by ∆∆G on each amino acid and for each possible
mutation. We compute a stability score to compare with MIR prediction as
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Fig. 1. Graph of ∆∆G (kcal/mol) predicted by I-Mutant (sequence only version) as a
function of the experimental one, taken from the Protherm database. The line repre-
sents the correlation between both experiment and prediction.

follows. To synthesize the mean stability change tendency for a given amino
acid, the 19 ∆∆G have been summed in one value. Actually, to normalize this
result, instead of summing the ∆∆G, a score has been given to each ∆∆G. If
∆∆G < 0, the mutation is considered as stabilizing and it is granted a value of
+1. Conversely, if ∆∆G > 0, the mutation is considered as destabilizing and the
value is −1. This procedure produces a score in the range of [−19,+19] which
reflects the global stability change for an amino acid upon its mutation. The
lower the score, the more sensitive to mutation, i.e., the native residue is the most
stable. This stability score is computed for each amino acid of all the sequences
in the data set and for the five different tools. Moreover, a consensus tool has
been created which corresponds to the mean of the five programs. Graphs are
plotted, upon request on the server, to get an overview of the stability score
over a whole sequence. One example is given in Fig. 2 where the stability scores
along a whole sequence have been represented for the five tools in the case of
the engrailed homeodomain (PDB code: 1enh). Stability scores curves have also
been smoothened for an easier interpretation.

We observe that along the homeodomain sequence, stability changes score
ranges from −19 to +15. One can notice that most values are under 0 which
means that there are more positions destabilized by mutations than stabilized
ones. This observation is in agreement with the principles of Evolution which
tend to favor stable protein structures.

It is thus possible to detect the most sensitive positions to a mutation. Indeed,
the minima of stability scores are positions for which mutations induce the most
destabilizing changes, regarding free energy, along the structure. We can locate
these positions and compare them with the MIR.
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To bear evidence of an eventual co-localisation of MIR and stable positions,
we compute the distance in sequence that separates each MIR (TEF related and
TEF independent) from the nearest minimum of stability score. These differences
of positions have been computed for all the sequences of the database and for
each tool. Figure 3 shows an example of these deltas of positions for the consensus
tool. It appears that there is no distinction between the two classes of MIR as
both have their respective peak centered on the same position.

Fig. 2. Representation of the stability scores for each amino acid of the 1enh sequence.
The five lines represent each one a different tool. The consensus graph is also repre-
sented.

Fig. 3. The origin of the abscissa corresponds to the position of each MIR (TEF related
and independent) and one calculates the distance to the closest minimum of stability
scores on the whole dataset and for the consensus tool.
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Fig. 4. Sequence separation (Delta) between MIR, LIR, and minima of stability scores
on the whole data set and for the consensus tool. The origin is taken as for Fig. 3.

However, MIR have been shown to statistically match the topohydrophobic
positions, corresponding in several experiments to the folding nucleus [18]. The
conservation of the folding nucleus among species is still under a strong debate.
If we assume, in agreement with Shakhnovich [31], that the folding nucleus is the
subject of an additional evolution pressure, considering simulations on distantly
related sequences of the same fold, instead of single one, may help in a better
definition of the folding nucleus.

Two hypotheses emerge: the MIR algorithm is not accurate enough or the TEF
assignment has to be improved. A direct comparison of each of these methods
with minimua of protein stability scores has been processed.

The determination of MIR accuracy relies on their good match with minima
of stability scores but also on the comparison between their antagonists i.e.,
LIR for Less Interacting Residues and stability scores under the same protocol.
These amino acids are the ones with the smallest number of contact neighbors
and are thus assumed to be mainly located at the interface of the protein and
the solvent. Results are shown in Fig. 4. As already seen in Fig. 3, MIR are
statistically located at minima of stability scores with a peak for a delta of 0.
If one takes a window centered on 0, on the [−1, +1] range, 55% of the MIR
correspond to a minimum of stability score. For the LIR, we observe that there
is a clear minimum on the 0 position and two peaks centered on the -2 and +2
positions. The conclusion is that the MIR concept is in good agreement with the
concept of sensitivity to the structure stability. This prediction method succeeds
in correctly locating the most stable residues, that can be either located at the
ends of TEF or elsewhere, because both classes of MIR match the location of
the lowest scores.
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Fig. 5. Sequence separation (Delta) between TEF ends, TEF centers, and minima of
stability scores on the whole data set and for the consensus tool.

We then compare specific TEF positions to the positions with the lowest sta-
bility scores. We consider on one hand TEF ends, as they are assumed to be in
the folding nucleus, and TEF centers on the other hand. Figure 5 represents the
distance in terms of amino acids (delta) between the TEF ends/TEF centers and
minima of stability score on the other side. The results are compatible with the
ones presented for Fig. 4 with MIR and LIR. TEF ends match the positions where
stability is the highest (lowest scores), while TEF centers do not. Therefore, one
can conclude that MIR predictions capture some physics of the folding process, by
finding residues forming the core, evaluated here on the basis of the most stable
positions toward mutation, independently of their location relative to the TEF.

The relative efficiency of this method has been confirmed by the calculation of
solvent accessible surface for all amino acids and for each sequence of the database.
The mean value is of 53 Å2 for one amino acid among all the sequences of the
dataset. If we now consider amino acids which are characterized as MIR, this mean
drops to 33 Å2. For the LIR, we obtain a rise to 64 Å2. This observation also gives
another evidence of the efficiency of the MIR method as low solvent accessible sur-
face induces that the considered amino acid is buried inside the globular domain.

For the results observed for the TEF the conclusion is less evident. TEF ends
are centered on the positions of the highest stability, but TEF centers graph
is more ambiguous as there is kind of a plateau in the range [−3, +3]. It thus
means that TEF ends are quite in agreement with stability scores minima but
TEF centers do not show any tendency to be reluctant to stability scores minima.

4 Conclusion

Protein folding is nowadays one of the biggest challenges in structural bioinfor-
matics. The MIR method is devoted to the prediction of the residues forming the
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folding nucleus of proteins. Some refinement has been proposed to improve the
accuracy of the current algorithm such as the use of additional input based on
topology and stability. The structural analysis of proteins in terms of TEF was
a relevant choice as it captures ends of fragments buried in the core of the pro-
tein. MIR are constituted of two families, the ones present at the ends of TEF
and the other ones found elsewhere. It was hypothesized that folding nucleus
would preferentially be located at TEF ends. We checked the relevance of this
separation by comparing the presence of MIR with positions known to be stable
upon point mutation. We actually evidenced that both classes of MIR are highly
stable positions with respect to mutations. This result may be interpreted in the
following way: if we admit the assumption that most stable positions toward
mutation are indicative of the inclusion in the folding nucleus, then MIR is a
rather satisfactory method to predict this nucleus. In addition, we assume that
split of the protein structures into TEF should be improved, and in particular,
one might think of secondary contacts, i.e. two residues located in the middle of
a TEF, and close from one each other.

Although we probably overestimate the number of amino acids involved in
the folding nucleus, our approach might be a help for selecting positions sus-
ceptible of experimental muations in order to perform ΦF determination. A long
term application of this prediction nucleus algorithm is its inclusion in database
screening tools, in order to give a stronger weight once a residue has been pos-
tulated as belonging to the nucleus. One might guess that this would help in
retrieving more distantly related sequences than present methods.
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Abstract. Protein secondary structure prediction is one major task in
bioinformatics and various methods in pattern recognition and machine
learning have been applied. In particular, it is a challenge to predict β-
sheet structures since they range over several discontinuous regions in
an amino acid sequence. In this paper, we propose a dynamic program-
ming algorithm for some kind of antiparallel β-sheet, where the proposed
approach can be extended for more general classes of β-sheets. Experi-
mental results for real data show that our prediction algorithm has good
performance in accuracy. We also show a relation between the proposed
algorithm and a grammar-based method. Furthermore, we prove that
prediction of planar β-sheet structures is NP-hard.

Keywords: β-sheet, dynamic programming, formal grammar, compu-
tational complexity.

1 Introduction

Protein structure prediction is one of the central problems in bioinformatics and
computational biology, and various approaches have so far been proposed. Sec-
ondary structure prediction is one of the major approaches. It asks which type of
secondary structure (α-helix, β-strand, or others) each residue belongs to. Since
it is a kind of classification problem, various machine learning and pattern recog-
nition techniques have been applied, including hidden Markov models [3,16], logic
programming [20], neural networks [22], stochastic tree grammars [1] and support
vector machines [12]. Although the overall prediction accuracy of existing meth-
ods is around 75% [18], it is recognized that β-strand regions are more difficult
to predict than α-helix regions. This discrepancy may come from the fact that
β-sheet structures typically range over several discontinuous regions, whereas α-
helices are continuous and thus depend more on local sequence patterns.

Protein threading is another major approach for protein structure predic-
tion. In this approach, alignment between an input amino acid sequence and a
template protein structure is computed. It is known that protein threading is
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NP-hard if pairwise interactions of residues must be taken into account [2,17].
However, several optimal algorithms have been developed for protein threading
with pairwise residue-residue interactions under an assumption that insertions
or deletions do not occur in core regions (i.e., α-helices and β-strands) [26]. Al-
though it is usually overlooked in literature, there is a similarity between protein
secondary structure prediction and protein threading. In protein threading (with
pairwise interactions), configuration of core regions is given in advance (from a
template 3D structure) and each core (α-helix or β-strand) region is searched for
in an input protein sequence. In secondary structure prediction, configuration of
core regions is not given in advance and each residue is assigned to one of the
three classes of secondary structures.

Although we have discussed about protein structure prediction, RNA sec-
ondary structure prediction is another important problem in bioinformatics and
computational biology. One of the common approaches of RNA secondary struc-
ture prediction is use of (stochastic) grammars, which include stochastic context-
free grammar [10,23], stochastic multiple context-free grammar [15], parallel
communicating grammar [7], crossed-interaction grammar [21] and tree adjoin-
ing grammar [25]. These grammars may also be useful to model other pattern
recognition problems.

Recently, Chiang et al. [8] proposed some grammar-based methods for pro-
tein secondary structure prediction. In particular, they proposed use of range
concatenation grammar (RCG) [5] for β-sheet modeling. They suggested that
linearly ordered β-sheets can be modeled by using a simple RCG and can be
predicted in O(n5) time, where n is the number of residues in a given protein
sequence. They also suggested that β-barrels and more complex β-sheet struc-
tures can be modeled by using RCG, while the time complexity increases to
O(n7) ∼ O(n12) depending on the complexity of β-sheet structures. However,
they did not show how to incorporate residue-residue interaction preferences
into the RCG-based methods. Furthermore, they posed the following question
for proving NP-hardness of β-sheet prediction: “it remains to be seen whether
such dependencies might be needed, for example, in calculating conformation
counts for β-sheets.”

In this paper, we propose a simple and flexible dynamic programming algo-
rithm for prediction of antiparallel up-down β-sheets. This algorithm is based on
RCG approach [8], where no experimental results on structure prediction were
provided. It is noteworthy that our method explicitly takes pairwise interaction
preferences into account and thus can be applied to real protein sequences. Hub-
bard [13] also used interstrand residue pairing preferences to predict β-strand
contact maps, but did not show an original prediction algorithm specific for β-
sheet prediction. Our prediction algorithm achieved good performance of overall
per-residue accuracy Q3 ≈ 80% for nonhomologous protein sequences with up-
down topology, where there are only two secondary structural states. Although
types of β-sheet structures that can be handled by our method are restricted, the
technique is extensible to more complex β-sheet structures including β-barrel.
We also provide insight into an existing grammar-based method. Furthermore,
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we show that prediction of planar β-sheet structures is NP-hard. This result
gives an answer to the question posed by Chiang et al. [8].

2 Methods

2.1 Ungapped Antiparallel β-Sheet

β-sheets are formed by pairwise interaction of several (consecutive) amino acids,
called β-strands, in parallel and/or antiparallel way. Antiparallel β-structure
is a fundamental topology of β-sheet, and many proteins include it in their
domain. Although there are a large number of combinations of β-strands, it
is known that the number of topologies of the class of antiparallel β-sheets is
relatively few [6]. In this section, we are concerned with the simplest topology
among them, called up-down β-sheet, where all strands have antiparallel topology
via hydrogen bonding and they are connected by hairpin. In addition, suppose
that every amino acid of β-strands is involved in hydrogen bonding, which we
call ungapped β-sheet. Fig. 1 (a) illustrates an ungapped up-down β-sheet. This
assumption enables us to design more efficient prediction algorithm in terms of
computational complexity.

(a) An ungapped up-down β-sheet. A
white circle represents an amino acid and
a dashed line indicates a hydrogen bond.

L

j

i

k1

…

2 k−1

W(k−1, i)

(b) A schematic diagram of the dynamic
programming algorithm

Fig. 1. Illustration of an ungapped up-down β-sheet

Let a = a1a2 · · ·an denote an amino acid sequence to be analyzed. We consider
an ungapped up-down β-sheet that have N strands of the same length L where
N ≤ �n

L�. The reason why we can assume L is fixed is that we are concerned
with only ungapped β-sheets. Because of this assumption, a β-sheet can be
represented by an N -tuple of the start positions of β-strands (p1, p2, . . . , pN)
in the amino acid sequence a. Note that pi + L ≤ pi+1 must be satisfied to
prevent adjacent strands from overlapping each other. Let s : (ai, aj) → R be a
score (energy) function between two amino acid residues. Then, the ungapped
up-down β-sheet prediction problem can be defined as follows:

Definition 1. (Ungapped up-down β-sheet prediction problem)
Input: An amino acid sequence a = a1a2 · · ·an, the number of strands N , their
common length L and a score function s.
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Output: An ungapped up-down β-sheet (p1, p2, . . . , pN ) that minimizes the fol-
lowing score:

N−1
∑

i=1

L
∑

j=1

s(api+j−1, api+1+L−j),

subject to pi + L ≤ pi+1 (i = 1, 2, . . . , N).

2.2 Dynamic Programming Algorithm

We provide a dynamic programming (DP) algorithm for predicting ungapped
up-down β-sheets. In the experiments described later, we predict β-sheet by
changing the value of N , though N is fixed in the algorithm described below.
Let W (k, j) be the minimum free energy of up-down β-sheet for a1 · · · aj , where j
is the last position of the kth β-strand (see Fig. 1 (b)). W (k, j) can be calculated
by the following simple recursion formula:

W (k, j) = min
i
{W (k − 1, i) + S(i, j, L)},

where

S(i, j, L) =
L
∑

h=1

s(ai−L+h, aj−h+1).

The detailed description of the DP algorithm is presented below.

Initialization:
for j = L to n do W (1, j) = 0.
Recursion:
for k = 2 to N do
for j = kL to n do

W (k, j) = min
(k−1)L≤i≤j−L−2

{W (k − 1, i) + S(i, j, L)}.

Note that this algorithm takes the length of hairpin into consideration by re-
stricting the range of i in the recursive step.

A simple inspection of the recursive step yields the time complexity of the
algorithm. Since the double “for loop” takes O(n2) time and the minimum op-
eration takes O(n) time, the time complexity is evaluated as O(n3). Obviously,
the algorithm requires O(n2) space. Note that the optimal β-sheet itself can be
constructed by a simple traceback procedure.

Although our DP algorithm can only handle up-down β-sheets, we can easily
extend our method to predict more complicated structures, including consecutive
parallel β-sheets, β-barrels as well as gapped structures.

In order to extend the algorithm for β-barrels, we compute the following:

W (k, j, i0) = min
i
{W (k − 1, i, i0) + S(i, j, L)}
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for each i0 under the condition that

W (1, j, i0) =

{

0 (j = i0),
∞ (otherwise).

Then, we compute the minimum of

W (N, j, i0) +
L
∑

h=1

s(ai0−L+h, aj−h+1).

In this case, the time complexity increases from O(n3) to O(n4). More complex
β-sheet structures may be treated by using the divide-and-conquer approach
proposed by Xu et al. [26]. However, the time complexity would increase as
the complexity of β-sheet increases as suggested by the NP-hardness result in
Section 5.

In order to extend the algorithm for gapped antiparallel β-sheets, it is enough
to modify the definition of S(i, j, L) so that it denotes the score of an optimal
alignment between ai−L+1 · · · ai and aj · · · aj−L+1. In this case, the total time
complexity increases to O(n4). Of course, we can extend it for prediction of
gapped β-barrels. In that case, the time complexity remains O(n4). Capability
of handling gapped β-sheets is one of the big advantages of our proposed method
since gaps in core regions are not allowed in protein threading with residue-
residue pairwise interactions [26].

3 Experimental Results

3.1 Data

In our experiments on prediction of up-down β-sheets with β-barrels, we used
real protein sequences with known structure available in PDB SELECT (2007)
[11] as the test sets (see Table 1). The criteria for selecting test data are as
follows:

(1) The test sequences are contained in the 25% threshold list of PDB SELECT,
where no two proteins have more than 25% sequence identity.

(2) They have at least four β-strands specified in DSSP [14]. Note that we do
not count a residue involved in an isolated β-bridge as one strand.

(3) All but at most one pair of adjacent β-strands in the primary sequence are
involved in hydrogen bonding. This constraint results from lack of a perfect
set of up-down β-sheets in the list.

3.2 Tests

Since the sequences selected above actually have different strand lengths, we
set the strand length constant L by rounding the mean of their actual lengths.
We used a contact potential table derived from 785 proteins described in [9] as
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Table 1. Accuracy of antiparallel β-sheet prediction

(a) Up-down β-sheet prediction
PDBID N n L Q3 [%] QE [%] Qpred

E [%]
2B9K 4 47 7 72.34 77.78 75.00
1AUU 4 55 4 83.64 70.59 75.00
1NY4 4 82 6 84.15 72.00 75.00
1TPN 5 50 4 68.00 61.11 55.00
2E6Z 5 59 4 74.58 61.90 65.00
2DIG 5 68 5 82.35 74.07 80.00
2JN4 6 66 5 87.88 89.29 83.33
2BT9 8 90 8 80.00 88.33 82.81

Average 79.12 74.38 73.89

(b) β-barrel prediction
PDBID N n L Q3 [%] QE [%] Qpred

E [%]
1Q9F 7 148 10 70.95 69.01 70.00
1MM4 8 170 9 64.71 58.11 59.72
1G90 8 176 11 82.39 81.32 84.09
1FW3 12 269 12 63.20 65.73 65.28
1PHO 16 330 11 66.36 67.96 69.89

Average 69.52 68.43 69.80

the score function s. Implementation of the prediction algorithms for up-down
β-sheet and β-barrel was carried out in Java (version 1.6.0 03) on a machine
with Intel Core2 CPU 6700 2.66GHz, 1.57GHz and 2.99GB RAM. To evaluate
prediction accuracy of our algorithms, we measured per-residue accuracy Q3, QE

and Qpred
E . Q3 is the ratio of correctly predicted residues in overall secondary

structural elements. Note that there are only two secondary structural states
in this case (i.e., strand and other), and observed structures that we referred
to are specified in DSSP. QE is defined as the ratio of the number of correctly
predicted residues of the β-strands to the total number of residues of the strands
in the observed structure, which corresponds to sensitivity. Qpred

E , corresponding
to specificity, is the ratio of the number of correctly predicted residues of the
β-strands to the total number of predicted residues of the strands. Prediction
results on up-down β-sheet prediction are shown in Table 1 (a) and Fig. 2, and
results on β-barrel prediction are shown in Table 1 (b). Computation time of up-
down β-sheet prediction was 0.19 seconds on average, whereas computation time
of β-barrel prediction was 480.04 seconds on average. Note that this discrepancy
arises from the difference of time complexity (i.e., O(n3) vs. O(n4)).

Observed beta sheet (E: extended strand, participates in beta ladder):
MKVMIRKTATGHSAYVAKKDLEELIVEMENPALWGGKVTLANGWQLELPAMAADTPLPITVEARKL
..EEEEE....EEEEE....EEEEEEEE........EEEE....EEE...........EEE.....

Predicted beta sheet:
MKVMIRKTATGHSAYVAKKDLEELIVEMENPALWGGKVTLANGWQLELPAMAADTPLPITVEARKL
..EEEEE....EEEEE.......EEEEE.......EEEEE...EEEEE........EEEEE.....

Fig. 2. Comparison of the observed structure with the predicted one for 2JN4. Under-
lined residues indicate that they agree with correct residues of the β-strands.

3.3 Discussion

Experimental results on up-down β-sheet prediction show that our prediction
algorithm has good performance in accuracy for several real protein sequences.
One reason for high accuracy is that the contact potentials computed in [9] are
good in quality. In fact, we performed the same prediction tests using other
contact potentials presented in [4,24,27], where average prediction accuracy is
76.62% in Q3, 71.71% in QE and 71.52% in Qpred

E for [4], 72.52% in Q3, 66.14%
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in QE and 65.68% in Qpred
E for [24], and 67.86% in Q3, 60.01% in QE and 59.73%

in Qpred
E for [27]. These values are lower than the average accuracy when using

the contact potentials in [9]. It should be noted that a few protein structures
(1AUU and 1TPN) used to compute the contact potentials in [9] were also used
for our experiments. However, most accuracy assessment for these two proteins
is lower than the average (see Table 1 (a)), and there seems to be no positive
bias that improves the accuracy of the algorithm.

It can be seen that the choice of the number of β-strands N is important to
achieve good prediction accuracy. After we performed the test shown in Table
1 where N was actually chosen as the observed number of strands Nobs, we
developed a simple method of selecting N during computation of the DP table
W . More specifically, we calculated the average of W (k, j) for each k (2 ≤
k ≤ �n

L�), denoted by Wavg(k), and then selected N as the first k such that
Wavg(k) < Wavg(k + 1) holds while calculating in an increasing order of k.
Although the average prediction accuracy for up-down β-sheets drops to 72.52%
in Q3, 74.41% in QE and 65.17% in Qpred

E , the value N determined by this
method ranges from Nobs−1 to Nobs+2, which shows a relatively good tendency
in choice of N .

As Table 1 (b) indicates, prediction accuracy for β-barrels is not so good as
compared with the results on up-down β-sheet prediction. This may suggest
that achieving good accuracy is difficult if the topology of the β-sheet to be
analyzed becomes complex. To achieve higher accuracy than the present accuracy
for β-barrels, it would be interesting to incorporate “torsion changes” into our
algorithms, which is considered to be important for the stability of a protein.

As compared to another approach for β-sheet prediction, accuracy of a method
using ranked node rewriting grammar (RNRG) [1] is roughly 74% in QE , which
is comparable to the performance of our method. Although the test data used in
our experiments are different from the data used in the RNRG-based method,
we tested more sequences than they did. Furthermore, it should be noted that
we never used a training algorithm to estimate score parameters, whereas the
RNRG approach performed training of probability parameters using an inside-
outside algorithm, which is prohibitively time-consuming.

4 Remarks on Grammatical Modeling

4.1 Definitions

Range concatenation grammar [5] is defined as a deductive system on sequences. A
(positive) range concatenation grammar (RCG) is a 5-tuple G = (N, T, V, P, S),
where N , T , V and P are finite sets of predicate names, terminals, variables, rules,
respectively, and S ∈ N is the start predicate. For each predicate name A ∈ N ,
a nonnegative integer dim(A) is specified. Each rule in P has the shape ψ0 →
ψ1 · · ·ψk. This rule means that ψ0 holds when all of ψ1, . . . , ψk hold. Each ψi (0 ≤
i ≤ k) in the rule is a predicate of the shape Ai(αi1, . . . , αi dim(Ai)), where Ai ∈ N
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and each αij (1 ≤ j ≤ dim(Ai)) is just a variable in V if 1 ≤ i ≤ k. The following
is a simple example of rules:

S(xyz) → A(x, y)B(z), A(axb, cyd) → A(x, y), B(ez) → B(z),
A(ab, cd) → ε, B(ε) → ε.

Let ⇒ denote the one-step derivation relation. For example,

S(aabbccdde) ⇒ A(aabb, ccdd)B(e) ⇒ A(ab, cd)B(e) ⇒ B(e) ⇒ B(ε) ⇒ ε.

Let +⇒ denote the transitive closure of ⇒. The language generated by an RCG
G is defined as L(G) = {w | S(w) +⇒ ε}. For the above example, L(G) =
{ambmcmdmen | m ≥ 1, n ≥ 0}. We also say that A generates w when A(w) +⇒ ε.

If every variable occurs at most once in the left-hand side (rsp. right-hand
side) of a rule, the rule is called left linear (rsp. right linear). For example,
S(x) → S1(x)S2(x) is left linear but not right linear.

4.2 Modeling by RCG

Chiang et al. [8] presented the following RCG to generate linearly ordered β-
sheets:

Beta(xy) → B(x, y), B(xyz, y′) → B(x, y)Adj(y, y′),
B(yz, y′) → Adj(y, y′),
Adj(x, y) → Anti(x, y), Adj(x, y) → Par(x, y),
Anti(ax, ya) → Anti(x, y), Anti(ε, ε) → ε,

Par(ax, ay) → Par(x, y), Par(ε, ε) → ε,

where a, a ∈ T stand for amino acid residues that are connected with each
other by hydrogen bond. (We extend the notion u for a sequence u.) Par and
Anti generate parallel and antiparallel strands, respectively. B(u, v) means that
uv is a β-sheet where the second argument v is the “last” strand. Thus, the
second rule says that if xy is a β-sheet (with y the last strand) and (y, y′)
constitutes a pair of adjacent strands, then xyzy′ is also a β-sheet (with y′ the
last strand) for an unpaired subsequence z. In this rule, the right nonlinearity
plays a crucial role that expresses the constraints that the last strand y should
be one component y of pair strands (y, y′). The time complexity of the structure
prediction based on parsing of RCG is easily derived by counting the independent
positions that appear in the arguments of the left-hand side for each rule and
taking the maximum of them. For example, the independent positions are marked
by ∗i (1 ≤ i ≤ 5) for the second rule as B(∗1x∗2y∗3z∗4 , y

′
∗5

). This is the maximum
among all the above rules, thus the complexity is O(n5) where n is the length
of an input sequence.

Returning to the problem of this paper, we assume that the length of each
strand is L. This means that |y| = |y′| = L in the second rule, implying that
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the position ∗3 and ∗5 is determined by ∗2 and ∗4, respectively. Thus, the time
complexity becomes O(n3), which is the same order as our algorithm for up-
down β-sheet in Section 2. Note that the formalism in [8] does not incorporate
residue-residue interaction preferences. Implementation or experimental results
on β-sheet prediction based on RCG has not been reported as far as the authors
know. On the other hand, we have performed experiments with real protein
sequences. Although our algorithms currently consider only antiparallel β-sheets,
it is not difficult to extend our proposed algorithms so that parallel structures
can be treated, as described in Section 2.2.

5 Hardness Result

Although we have presented an O(n3) time dynamic programming algorithm
in Section 2, it remains a question whether generalized ungapped β-sheets can
be predicted in polynomial time or not. To discuss the complexity of such a
prediction problem, we define the corresponding decision problem as follows:

Definition 2. (Ungapped β-sheet prediction problem, UGBETA)
Input: An amino acid sequence, a topology diagram and a real number e.
Output: “Yes” if and only if there exists an ungapped β-sheet with some free
energy e or less.

In the following, we will show that UGBETA is NP-complete by reducing the
longest common subsequence problem that is known to be NP-complete [19]:

Definition 3. (Longest common subsequence problem, LCS)
Input: m sequences over an alphabet and a positive integer k.
Output: “Yes” if and only if there exists a common subsequence of length k or
more, which is not necessarily consecutive.

Theorem 1. UGBETA is NP-complete even if the topology diagram is planar.

Proof. Assume that each β-strand consists of exactly one amino acid (i.e., L = 1)
(see Fig. 3). We can also show that NP-completeness result holds for L ≥ 2.

First, it is easy to see that UGBETA belongs to NP . Guess an ungapped
β-sheet from the amino acid sequence, and check that it has at most e of free
energy value under some energy function.

Next, let us show how to reduce LCS to UGBETA for the proof of NP-
hardness. Let w1, w2 . . . , wm ∈ {0, 1}∗ be instance sequences of LCS. Without
loss of generality, we assume that m is an even number. If it is odd, we simply
add a new sequence wm+1 that is the same as wm. Also, we can assume that a
positive integer k is an odd number. If it is even, we simply add 0 at the end
of each wi (i = 1, 2, . . . , m). We construct from w1, w2, . . . , wm an amino acid
sequence A = B0B1B2 · · ·BmBm+1 ∈ {0, 1, x, y}∗, where

B0 = x(xyx)(k+1)/2y, B2i−1 = xw2i−1xy (i = 1, 2, . . . , m/2),

B2i = xwR
2ixy (i = 1, 2, . . . , m/2), Bm+1 = x(xyx)(k+1)/2
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: Amino acid
: Peptide bond
: Hydrogen bond
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(a) A β-sheet from the viewpoint of sequence

1 6 7 8 5 2 3 4 9

(b) The topology diagram of β-sheet of (a)

Fig. 3. A simplified ungapped β-sheet (L = 1). For simplicity of illustration, we allow
hydrogen bond to be compatible with peptide bond.
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Fig. 4. Example of an amino acid sequence over {0, 1, x, y} constructed from an LCS
instance, where w1 = 011010, w2 = 010010, w3 = 010100, w4 = 011010, m = 4 and
k = 5.

(see Fig. 4). Note that wR
i denotes the reverse sequence of wi, and Bi,j that will

be used below denotes the jth symbol of Bi. The score (energy) function s is
defined in such a way that s(0, 0) = s(1, 1) = −1, s(x, x) = −α where α is set
at some positive constant times nm, and defined as 0 for the other pairs. It is
obvious that this transformation can be accomplished in polynomial time. Then,
we must show the following:

– There exists a common subsequence of length k in w1, w2, . . . , wm if and only
if there exists an ungapped β-sheet of A with free energy −k(m + α − 1) −
α(2m + 3).

We omit a detailed proof of the above statement in this version as space is limited.
It should be noted that the topology diagram used in this proof is planar (see
Fig. 3 (b)). �
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6 Concluding Remarks

We presented dynamic programming algorithms for predicting ungapped up-
down β-sheet and its extensions. Experimental results on ungapped up-down β-
sheet prediction showed that performance is good enough to distinguish β-sheet
regions from non-β-sheet ones. However, we have not presented complete com-
parison with other models for β-sheet prediction, which is left as our future work.

Computational models that predict biomolecule structure with high accuracy
are needed in bioinformatics. When we develop a model for prediction, it is
important to assign some biologically appropriate score to the model. In our
experiments using the dynamic programming algorithms, we used contact po-
tentials and did not perform training from the sequence sets. It might be possible
to design a training algorithm based on the EM algorithm, in which case, the pre-
diction accuracy would be higher. If we choose a grammatical approach, training
has to be carried out due to the difficulty in assigning optimal probabilities.

As shown in Section 5, arbitrary ungapped planar β-sheet prediction is NP-
hard. However, this claim does not always imply that efficient algorithms never
exist for small input sets. Most protein sequences consist of at most a few hun-
dred amino acid residues, and there is room for further investigation into the
development of efficient algorithms even if topologies that we wish to handle are
complex. Furthermore, it is a challenging task to develop an efficient algorithm
for predicting protein structures that include the combination of α-helix and
β-sheet.
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R.C., Haussler, D.: Stochastic Context-Free Grammars for tRNA Modeling. Nucl.
Acids Res. 22, 5112–5120 (1994)

24. Tanaka, S., Scheraga, H.A.: Medium- and Long-Range Interaction Parameters
between Amino Acids for Predicting Three-Dimensional Structures of Proteins.
Macromolecules 9, 945–950 (1976)

25. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree Adjoining Grammars
for RNA Structure Prediction. Theor. Comp. Sci. 210, 277–303 (1999)

26. Xu, Y., Xu, D., Uberbacher, E.C.: An Efficient Computational Method for Globally
Optimal Threading. J. Comp. Biol. 5, 597–614 (1998)

27. Zhang, C., Kim, S.H.: Environment-Dependent Residue Contact Energies for Pro-
teins. PNAS 97, 2550–2555 (2000)



 

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 78–86, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Using Multi-scale Glide Zoom Window Feature 
Extraction Approach to Predict Protein  

Homo-oligomer Types 

QiPeng Li, Shao Wu Zhang, and Quan Pan 

School of Automation/School of Mechatronics, Northwestern Polytechnical University,  
127 YouYi West Rd., Xi’an 710072, Shaanxi, China 

liqipeng@nwpu.edu.cn 

Abstact. The concept of multi-scale glide zoom window was proposed and a 
novel approach of multi-scale glide zoom window feature extraction was used 
for predicting protein homo-oligomers. Based on the concept of multi-scale 
glide zoom window, we choose two scale glide zoom window: whole protein 
sequence glide zoom window and  kin amino acid  glide zoom window, and for 
every scale glide zoom window,  three feature vectors of amino acids distance 
sum, amino acids mean distance and amino acids distribution, were extracted. A 
series of feature sets were constructed by combining these feature vectors with 
amino acids composition to form pseudo amino acid compositions (PseAAC). 
The support vector machine (SVM) was used as base classifier. The 75.37% to-
tal accuracy is arrived in jackknife test in the weighted factor conditions, which 
is 10.05% higher than that of conventional amino acid composition method in 
same condition. The results show that multi-scale glide zoom window method 
of extracting feature vectors from protein sequence is effective and feasible, and 
the feature vectors of multi-scale glide zoom window may contain more protein 
structure information.  

Keywords: Multi-scale glide zoom window, feature extraction, pseudo amino 
acid compositions, homo-oligomer. 

1   Introduction  

In the protein universe, there are many different classes of oligomer, such as mono-
mer, dimer, trimer, tetramer, and so forth. These quaternary structures are closely 
related to the functions of the proteins [1, 2]. Some special functions are realized only 
when protein molecules are formed in oligomers; e.g., GFAT, a molecular therapeutic 
target for type-2 diabetes, performs its special function when it is a dimer [3], some 
ion channels are formed by a tetramer [4], and some functionally very important 
membrane proteins are of pentamer [5,6,7]. It is generally accepted that the amino 
acid sequence of most, not all, proteins contains all the information needed to fold the 
protein into its correct three-dimension structure structure [8,9]. So, predicting oli-
gomers types from given protein sequences is important. 
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Garian [10], Chou and Cai [11], Zhang [12] predicted homodimer and non-
homodimer using decision-tree models and a feature extraction method (simple 
binning function), pseudo-amino acid composition feature extraction method, amino 
acid index auto-correlation functions respectively. Zhang [13] also predicted protein 
homo-oligomer types by pseudo amino acid composition. They found that protein 
sequences contain quaternary structure information. 

The concept of multi-scale glide zoom window based on the protein sequence was 
proposed in this paper. Three kinds of feature vector incorporating sequence order 
effect, that is,  amino acids distance sum, amino acids mean distance and amino acids 
distribution , were extracted from whole protein sequence glide zoom window and  
kin amino acid  glide zoom window of protein sequence. This new feature extraction 
method is combined felicitously with a support vector machine [14, 15] to predict 
homodimers, homotrimers, homotetramers and homohexamers.  

2   Materials and Methods  

2.1   Database 

The dataset1283 consists of 1283 homo-oligomeric protein sequences, 759 of which 
are homodimers (2EM), 105 homotrimers (3EM), 327 homotetramers (4EM) and 92 
homohexamers (6EM). This dataset was obtained from SWISS-PROT database [16] 
and limited to the prokaryotic, cytosolic subset of homo-oligomers in order to elimi-
nate membrane proteins and other specialized proteins. 

2.2   The Concept of Multi-scale Glide Zoom Window 

Multi-scale glide zoom window of every nature amino acid can be described as multi-
scale segment sequence (or, whole sequence) of one protein sequence, that is, the 
every scale glide zoom window of one nature amino acid can be decided by three 
factors: constructing rule of xth scale glide zoom window, kth protein sequence and 
ith amino acid. So, for one protein sequence, we can obtain many glide zoom win-
dows and extract feature vectors from every glide zoom window. This novel multi-
scale glide zoom window feature extraction method is very depends on constructing 
rule of every scale glide zoom window. In this paper, we extract feature vectors of 
one protein sequence from 2-scale glide zoom window. The first scale glide zoom 
windows of every nature amino acid are all the whole protein sequence, which pro-
vide panorama of a protein sequence. The second scale glide zoom window of every 
nature amino acid are kin amino acid glide zoom window, which begins from the 
position where every kin amino acid appears firstly and ends at the position where 
this kin amino acid appears lastly among the whole protein sequence, which focuses 
on corresponding local of every nature amino acid in a protein sequence. There are 
one first scale glide zoom window and twenty second scale glide zoom windows for 
every protein sequence. For example, for the protein sequence ‘MITRM-
SELFLRTLRDDP’, the first scale glide zoom windows of every nature amino acid 
are all the whole protein sequence itself ‘MITRMSELFLRTLRDDP’. The second 
scale glide zoom window of nature amino acid M is ‘MITRM’, the second scale glide 
zoom window of nature amino acid T is ‘TRMSELFLRT’, the second scale glide 
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zoom window of nature amino acid D is ‘DD’, and so on. If one nature amino acid 
does not appear in the protein sequence, the second scale glide zoom window of this 
nature amino acid is empty. The position and the width of every second scale glide 
zoom window are variable. Apparently, the second scale glide zoom window contains 
some sequence order information. The width of first scale glide zoom window is 
equal to the length of the protein sequence.  

2.3   The Multi-scale Glide Zoom Window Feature Extraction Methods 

Suppose the dataset consists of N homo-oligomeric protein sequences. kp  represents 

the kth protein sequence. iα  represents the ith amino acid of the nature amino acid set 

AA, { }, , , , , , , , , , , , , , , , , , ,AA A R N D C O E G H I L K M F P S T W Y V= . Here, We can use 
,x k

iz  to represent the xth scale glide zoom window of iα  in kp . ,x k
if and ,x k

il repre-

sent the first position and last position of ,x k
iz in the kth protein sequence kp , respec-

tively. ,x k
iL is defined as length of ,x k

iz . According to the definition of first scale glide 

zoom window in section 2.2, every first scale glide zoom window of iα  in kp is the 
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Here, position indicator vector k
iv  shows where iα  locates in the kp . 

In order to extract various feature vectors of ,x k
iz  with k

iv , we defined a coordi-

nate axis vector ,x k
iw . 
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To integrate more sequence order information, according to the concept of multi-
scale glide zoom window, three kinds of feature vector of every scale glide zoom 
window are extracted to predict homo-oligomers. The three kinds of feature vector of 
every scale glide zoom window are defined as follows: 

1)  Amino Acids Distance Sum Feature Vector 

The amino acids distance sum feature vector of kp  is expressed as the following 20-

D feature vector: 

 , , , ,
1 20[ ,..., ,...,  ]   1, ,x k x k x k x k

iS k Nη η η= = L                                      (6) 

Here,  

  , , ( )    1, ,x k x k k T
i i iw v k Nη = × = L                                         (7) 

Conveniently, S1and S2 are respectively used to present the amino acids distance sum 
feature sets of first and second scale glide zoom windows. 

2)  Amino Acids Mean Distance Feature Vector  

The amino acids mean distance feature vector of kp is expressed as the following 20-

D feature vector: 

, , , ,
1 20[ ,..., ,...,  ]   1, ,x k x k x k x k

iM k Nµ µ µ= = L                                    (8) 
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Conveniently, M1 and M2 are respectively used to present the amino acids mean dis-
tance feature sets of first and second scale glide zoom windows.                                         
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3)  Amino Acids Distribution Feature Vector  

The amino Acids distribution feature vector of kp is expressed as the following 20-D  

feature vector: 
, , , ,

1 20, , , , , 1, ,x k x k x k x k
iD k Nρ ρ ρ⎡ ⎤= =⎣ ⎦L L L                             (10) 
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Conveniently, D1 and D2 are respectively used to present the amino acids distribution 
feature sets of first and second scale glide zoom windows. It is easy to certified that 
D1 is equal to D2, so, we can marked D1 and D2 as D. 

2.4   Assessment of the Prediction System 

The prediction quality can be examined using the jackknife test. The cross-validation 
by jackknifing is thought the most objective and rigorous way in comparison with 
sub-sampling test or independent dataset test [17, 18]. During the process of jackknife 
analysis, the datasets are actually open, and a protein will in turn move from each to 
the other. The total prediction accuracy (Q), Sensitivity (Q(class(k))) and Matthew’s 
Correlation Coefficient (MCC) [19] for each class of homo-oligomers calculated for 
assessment of the prediction system are given by: 

1

100%
M

k
k

Q p N
=

= ×∑                                               (12) 

( ) ( )( ) /k k kQ class k p p u= +                                                (13) 

    
( ) ( )( ) ( )

( ( )) k k k k

k k k k k k k k

p n u o
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−=
+ + + +

       (14) 

Here, M is the total number of classes, kp  is the number of correctly predicted se-

quences of k class protein homo-oligomers, ku  is the number of under-predicted 

sequences of k class protein homo-oligomers, kn is the number of correctly predicted 

sequences not of k class protein homo-oligomers, ko  is the number of over-predicted 

sequences of k class protein homo-oligomers. According to The dataset1283 used in 
this paper, M=4, class(1), class(2),class(3) and class(4) are 2,3,4 and 6 respectively. 2, 
3, 4 and 6 represent 2EM, 3EM, 4EM and 6EM respectively. 
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3   Results and Discussion 

3.1   The Results of Different Pseudo Amino Acids Composition Feature Sets 

C presents the feature set based on the amino acid composition approach [20]. 
Twenty-seven feature sets of pseudo amino acid composition (PseAAC) are con-
structed by feature sets D, M1, M2, S1, S2 of glide zoom window and C. The results of 
these twenty-seven PseAAC feature sets and feature set C with RBF SVM and one-
versus-one strategy in jackknife test are shown in table 1.  

From Table 1, we can see that the result of CDM1M2S2 is the best in all the feature 
sets, and the total accuracy is 75.53%, which is 6.71% higher than that of C. The 
accuracies of feature sets which include M1, M2 or both of them are higher than that 
of other feature sets which do not include M1, M2 or both of them. These results sug-
gest that, in every scale glide zoom window, the feature set of amino acids mean dis-
tance is more effective and robust than other feature sets. In addition, the accuracies 
of feature sets which include D, S1, S2 except M1 and M2 are near that of feature set C. 
The reasons are that there may be some redundancy and conflict information between 
these feature sets, or the unbalance of sample numbers among the four classes. 

Table 1. Results of 28 Feature sets with RBF SVM and one-versus-one strategy in jackknife 
test 

2EM 3EM 4EM 6EM Feature sets 
Q(2) % MCC(2) Q(3) % MCC(3) Q(4) % MCC(4) Q(6) % MCC(6) 

Q% 

C
CD
CM1

CM2

CS1

CS2

CDM1

CDM2

CDS1

CDS2

CM1M2

CM1S1

CM1S2

CM2S1

CM2S2

CS1S2

CDM1S1

CDM2S2

CDS1S2

CM1M2S1

CM1M2S2

CM1S1S2

CM2S1S2

CDM1M2S1

CDM1M2S2

CDM2S1S2

CM1M2S1S2

CDM1M2S1S2

91.57 
95.39 
92.23 
91.17 
95.12 
94.33 
92.89 
91.04 
94.60 
95.92 
92.36 
91.44 
91.96 
91.30 
91.17 
95.65 
92.23 
90.78 
94.07 
92.49 
92.36 
92.89 
91.04 
92.75 
92.89 
91.57 
92.23 
92.36 

0.3582 
0.6630 
0.5152 
0.7497 
0.3341 
0.6813 
0.5051 
0.7495 
0.3325 
0.6612 
0.5013 
0.5105 
0.5113 
0.5025 
0.7514 
0.3347 
0.5133 
0.7481 
0.3429 
0.5085 
0.5065 
0.5137 
0.4985 
0.5125 
0.5145 
0.4965 
0.5072 
0.5065 

42.86
32.38
50.48
53.33
32.38
36.19
50.48
53.33
32.38
28.57
53.33
53.33
53.33
53.33
53.33
30.48
53.33
53.33
32.38
53.33
53.33
52.38
53.33
53.33
53.33
53.33
53.33
53.33

0.5726
0.5276
0.6621
0.6511
0.5188
0.5150
0.6690
0.6511
0.5188
0.4922
0.6898
0.6765
0.6765
0.6573
0.6572
0.5102
0.6765
0.6634
0.5190
0.6899
0.6899
0.6831
0.6573
0.6900
0.6900
0.6635
0.6831
0.6831

38.53
33.03
57.49
55.35
33.95
37.61
55.35
55.05
35.17
32.11
55.66
57.49
56.57
55.66
55.05
33.33
56.27
55.35
37.61
56.27
56.27
56.27
55.96
56.27
56.27
54.43
56.57
56.27

0.3568
0.3611
0.5258
0.5053
0.3627
0.3753
0.5155
0.4989
0.3696
0.3569
0.5178
0.5183
0.5201
0.5065
0.4973
0.3641
0.5235
0.4995
0.3679
0.5233
0.5213
0.5235
0.5070
0.5273
0.5294
0.5019
0.5218
0.5250

18.48
1.09

29.35
30.43

2.17
3.26

26.09
30.43

3.26
1.09

25.00
30.43
29.35
32.61
31.52

1.01
30.43
31.52

3.26
26.09
26.09
26.09
32.61
26.09
26.09
32.61
26.09
26.09

0.3088 
0.0992 
0.4412 
0.4373 
0.1403 
0.1439 
0.4318 
0.4373 
0.1720 
0.0992 
0.3955 
0.4447 
0.4267 
0.4587 
0.4480 
0.0992 
0.4447 
0.4480 
0.1720 
0.4151 
0.4151 
0.4319 
0.4657 
0.4152 
0.4152 
0.4657 
0.4151 
0.4073 

68.82 
67.58 
75.45 
74.59 
67.73 
68.59 
75.06 
74.43 
67.81 
67.34 
74.98 
75.29 
75.29 
74.90 
74.59 
67.65 
75.45 
74.43 
68.12 
75.29 
75.21 
75.45 
74.82 
75.45 
75.53 
74.75 
75.21 
75.21  
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3.2   The Influence of the Unbalance of Sample Numbers among the Four  
Classes  

We used the weighted factor approach to investigate the influence of the sample un-
balance among the four classes. According to the number of four types of protein 
homo-oligomer, the weighted factor values of 2EM,  3EM, 4EM and 6EM are calcu-
lated as follow: 759/759, 759/105, 759/327, 759/92. The results of twenty-eight fea-
ture sets using weighted factor approach are shown in table 2. 

From table 2, we can see that, in the weighted factor conditions, the total accura-
cies of all feature sets except CS1S2 based on the two scale glide zoom window are 
higher than that of C. The result of CDM1M2S1 is the best, and the total accuracy are 
75.37%, which are 10.05 higher than that of feature set C. These results suggest that 
weighted factor approach can weaken influence of the unbalance of sample numbers 
among the four classes. 

Table 2. Results of 28 feature sets with RBF SVM and one-versus-one strategy in jackknife test 
using weighted factor approach 

2EM 3EM 4EM 6EM Feature sets 
Q(2)% MCC(2) Q(3) % MCC(3) Q(4) % MCC(4) Q(6) % MCC(6) 

Q% 

C
CD
CM1

CM2

CS1

CS2

CDM1

CDM2

CDS1

CDS2

CM1M2

CM1S1

CM1S2

CM2S1

CM2S2

CS1S2

CDM1S1

CDM2S2

CDS1S2

CM1M2S1

CM1M2S2

CM1S1S2

CM2S1S2

CDM1M2S1

CDM1M2S2

CDM2S1S2

CM1M2S1S2

CDM1M2S1S2

70.36 
76.02 
78.79 
78.00 
74.31 
76.81 
78.92 
78.79 
75.89 
75.76 
82.35 
78.52 
80.24 
78.52 
78.39 
65.88 
80.37 
80.24 
77.47 
82.48 
82.21 
79.18 
76.68 
83.27 
83.16 
80.50 
83.14 
83.53 

0.3577 
0.4105 
0.4881 
0.4647 
0.4163 
0.4363 
0.4838 
0.4723 
0.4327 
0.4271 
0.5150 
0.4833 
0.4931 
0.4763 
0.4735 
0.3722 
0.4797 
0.4837 
0.4424 
0.5172 
0.5085 
0.4843 
0.4546 
0.5246 
0.5255 
0.4830 
0.5176 
0.5223 

49.52 
53.33
59.05
59.05
57.14
55.24
60.00
60.00
58.10
57.14
60.95
59.05
57.14
60.00
59.05
62.86
56.19
60.00
58.10
61.90
61.90
57.14
62.86
61.90
61.90
60.95
61.90
61.90

0.4772
0.5213
0.5911
0.5532
0.5196
0.5371
0.5981
0.5677
0.5375
0.5300
0.6450
0.5991
0.5811
0.5713
0.5604
0.4681
0.5736
0.5866
0.5450
0.6520
0.6519
0.5848
0.5643
0.6522
0.6522
0.5899
0.6521
0.6568

63.91 
64.83
69.72
67.58
65.75
66.36
68.50
66.97
65.44
64.83
68.50
69.42
69.72
68.20
67.89
64.53
67.58
66.36
64.83
68.20
67.28
69.42
66.67
67.89
68.20
65.44
66.97
66.97

0.3859
0.4383
0.5127
0.5035
0.4571
0.4665
0.5041
0.5039
0.4609
0.4537
0.5279
0.5031
0.5265
0.5054
0.5025
0.4211
0.5117
0.5077
0.4686
0.5258
0.5164
0.5103
0.4823
0.5328
0.5322
0.5019
0.5236
0.5269

46.74
42.39
51.09
53.26
48.91
45.65
51.09
54.35
47.83
46.74
51.09
51.09
51.09
53.26
53.26
51.09
53.26
54.35
47.83
52.17
52.17
51.09
53.26
52.17
51.09
54.35
52.17
52.17

0.3752 
0.4092 
0.4983 
0.5188 
0.4237 
0.4305 
0.4982 
0.5356 
0.4312 
0.4127 
0.5463 
0.5020 
0.5275 
0.5355 
0.5270 
0.3296 
0.5533 
0.5443 
0.4485 
0.5646 
0.5595 
0.5102 
0.5264 
0.5648 
0.5513 
0.5529 
0.5646 
0.5647 

65.32 
68.90 
72.88 
72.02 
68.90 
70.15 
72.72 
72.49 
69.76 
69.37 
74.82 
72.64 
73.58 
72.56 
72.33 
64.22 
73.19 
73.19 
70.54 
74.98 
74.59 
72.88 
71.32 
75.37 
75.29 
73.19 
75.06 
75.29  

4   Conclusion  

A novel concept of multi-scale glide zoom window was proposed in this paper. Based 
on the concept of multi-scale glide zoom window, a protein sequence can be investi-
gated from two scale glide zoom windows (whole protein sequence glide zoom  
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window and kin amino acid glide zoom window). Twenty-seven feature sets were 
constructed by combining five kinds of feature sets of the two scale glide zoom win-
dows with amino acids composition to form pseudo amino acid compositions (Pse-
AAC). The results show that the twenty-six feature sets based on the two scale glide 
zoom windows are better than feature set C in the weighted factor conditions, and 
weighted factor approach can weaken influence of the unbalance of sample numbers 
among the four classes. In the three kinds of feature sets of the two scale glide zoom 
window, amino acids mean distance feature set is most effective and robust. It is 
demonstrated that the concept of multi-scale glide zoom window provide a new scope 
to investigate primary protein sequence, the feature sets extracted from multi-scale 
glide zoom window may contain more protein structure information. 
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Abstract. There is much research on the automatic extraction of new
binding sites in proteins by searching for common sites in proteins with
identical functions. While many binding sites consist of concave struc-
tures, it is difficult to compare such concaves directly due to the various
sizes of concaves. To cope with this difficulty and to realize detailed and
precise comparisons between concaves, we propose a method of searching
for and comparing concaves by gradually changing the size. By experi-
ments with enzyme proteins, we confirmed that extraction accuracy for
the binding sites is improved.

1 Introduction

The functional analysis of proteins is an important research area for elucidating
the mechanism of living bodies. Recently, a variety of papers concerning the
analysis of protein, e.g, constituent atoms, amino acid sequences and character-
istic structures, have been published [1]. The sites on the molecular surface of
a protein related to functions are called functional sites, and specifying them
can provide clues for further analysis. Some proteins can function by binding to
other proteins or compounds (ligands) at functional sites. Moreover, it is well-
known that the surface shape and the physical properties of binding sites are
involved in bindings to ligands because binding occurs on the molecular sur-
face [2]. Therefore, analysis at the functional sites and the molecular surfaces is
useful for specifying the protein function [3,4]. For example, one can identify an
unknown binding site by searching for structures that resemble well-known bind-
ing sites as well as by extracting structurally common sites within proteins that
have the same function. The local pattern that commonly appears in a group of
proteins is generally known as a motif. Moreover, various kinds of protein motifs
are based on target patterns. While a sequential pattern that repeatedly appears
in the base sequence and amino acid sequence is called a sequence motif, a struc-
tual pattern that appears in the structural feature is called a structural motif.
These motifs extracted from proteins having the same function often correspond
to functional or binding sites. Moreover, a binding site, which usually forms a
concavity called a pocket, is regarded as a structural motif candidate. Therefore,
searching for similar pockets within proteins that have the same function helps
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specify binding sites. However, deciding the size of pockets for similarity evalu-
ation beforehand is difficult because the size of pockets may vary from protein
to protein.

In this paper, we approach the problem of flexible comparisons between pock-
ets. We propose the following way to evaluate similarity between pockets. If we
specify the size of the local sites of pockets, the local sites of pockets with spec-
ified size can be extracted, and we can compute similarity between local sites.
While slightly modifying the size, we repeatedly perform the above computa-
tion. Similarity between pockets is the highest similarity between local sites.
Comparisons between pockets that do not depend on pocket size are enabled by
focusing on local sites in pockets. Pockets of proteins with identical functions
are compared using a defined similarity measure to extract similar pockets as
motifs.

The rest of this paper is organized as follows. In Section 2, we introduce
motifs on molecule surfaces. In Section 3, the proposed framework is described
in detail. In Section 4, the parameter settings for the experiments are described.
After mentioning the experimental results in Section 5, we conclude this paper
in Section 6.

2 Motifs on Molecule Surfaces

2.1 Protein Motifs

Locally common amino acid residues exist in amino acid sequences of proteins
having the same function. They are called sequence motifs. Since functional
and binding sites are often included in a sequence motif, sequence motifs are
considered candidates of binding sites. Sequence motifs are crucial, but motifs
based on structural data have recently become of major interest because of the
following facts [5]:

– Extraction of residues located far from each other in the sequence
Amino acid residues that are located far from each other in the sequence,
despite located close to each other in space, interact to form an binding site
(Fig. 1). Thus, it is difficult for these amino acid residues to be defined as a
sequence motif.

– Evolutionary conservation of structural features
An amino acid sequence is altered during evolution. On the other hand, the
structural features of a protein tend to be conserved more than amino acid
sequences. Structural motifs provide biologically and evolutionarily interest-
ing insights and help predict protein functions.

In this paper, local patterns that commonly appear on molecular surfaces are
defined as surface motifs (hereafter, motif).

2.2 Pockets as Motif Candidates

A protein family is a group of proteins with similar functions. Some functional
sites, which commonly appear in each member of a protein family, have a similar
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Fig. 1. Folding of distant amino acid

shape on the molecular surface and similar physical properties. Moreover, bind-
ing sites include a complex shape structure on molecule surfaces. For instance,
when a serine protease acts as a catalyst, an other protein binds nonpolar pock-
ets in the neighborhood of its functional site. Thus, the pocket is a candidate for
a binding site [6]. We consider extracting motifs from surface data as extracting
similar pockets among a protein family.

We use the surface data in eF-site1 to extract the motifs. The surface data
consist of polygons, and each polygon vertex has its position and physical prop-
erties (maximum curvature, minimum curvature, electrostatic potential, and hy-
drophobicity). These data are provided in an xml format. An example of surface
data is shown in Fig. 2.

Fig. 2. Example of surface data

2.3 Extraction of Pockets

In this paper, we attempt to extract pockets using curvature. Gaussian curvature
K and mean curvature H are defined as follows using maximum curvature κmax

and minimum curvature κmin [8]:

K = κmax · κmin , H =
1
2
(κmax + κmin).

1 http://ef-site.hgc.jp/eF-site/[7]
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Each vertex belongs to one of eight shapes base on the values of K and H . One
is called concave if and only if K > 0 and H > 0. We extract the set of vertices
that belongs to concave as a pocket using the region growing method [9]. That is,
a pocket is extracted as a set of vertices. To remove pockets that are too small to
be binding sites, we set a lower bound of the number of vertices that constitute
a pocket. In addition, the cavities inside the protein are excluded because they
do not appear on the surface.

3 Motif Extraction

3.1 Overview

In this section, we give an overview over our method for extracting the motifs
of proteins, namely, for extracting similar pockets. A family that consists of n
proteins is denoted as F = {P1, P2, . . . , Pn}. The set of pockets of each protein
Pi is denoted as mc(Pi) =

{

pi
1, p

i
2, . . .

}

, and we consider the Cartesian product
set of pocket set S(F ) = mc(P1)×mc(P2)× ...×mc(Pn) in F and call it a motif
group. In this paper, we rank an element of a motif group using some similarity
measure and extract pockets in superior elements as the motif in each protein.
However, a multiple comparison of an element of the motif group is difficult
because, if a family has n proteins, each of which has 30 pockets, | S(F ) |= 30n,
we conduct pairwise comparison. The motif extraction procedure is as follows.

1. First, given pocket p, msp(p, P ) denotes a pocket in protein P that is the
most similar to p, called the most similar pocket. The formal definition of the
similarity between pockets will be explained later in Section 3.2. Next, the
most similar pockets are calculated for all pockets in Pi. The set of the pairs
of a pocket in Pi and the most similar pocket in Pj , denoted as pair(Pi, Pj),
are formally defined as follows:

pair(Pi, Pj) = {〈p, q〉 | p ∈ mc(Pi), q = msp(p, Pj)} . (1)

2. M(F ) is obtained by applying the above operation to all proteins in protein
family F :

M(F ) =
⋃

x,y∈F ,x �=y

pair(x, y). (2)

3. Finally, an element of motif group s ∈ S(F ) is ranked using the following
score:

score(s) =| {x, y ∈ s | 〈x, y〉 ∈ M(F )} | . (3)

Equation (3) is based on the idea that the pocket equivalent to the motif has a lot
of frequency that is most similar pockets for pairwise comparison. The elements
of S(F ) are ranked using Equation (3), and the pockets in the superior one
are extracted as the motif in each protein. An example of the process of the
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extraction of motifs from F = {P1, P2, P3} is illustrated in Fig. 3. Proteins P1,
P2, and P3 only have four, three, and three pockets respectively. First, the most
similar pocket is calculated for each pocket of proteins P1, P2, and P3 (Fig. 3
1©). For instance, if the most similar pocket of p1

1 is p2
2, then (p1

1, p
2
2) becomes

an element of pair(P1, P2). M(F ) is the union of pair(P1, P2), pair(P1, P3),
pair(P2, P1), pair(P2, P3), pair(P3, P1), pair(P3, P1), and | M(F ) |= 20 in Fig.
3. Next, the element of the motif group is ranked using Equation (3). In the case
of s4, score(s4) is the number of arbitrary pairs of elements in s4 that are also
in M(F ) (Fig. 3 2©). As a result of ranking, s5 has the high score, and pockets
in s5 are extracted as motifs on proteins P1, P2, P3 (Fig. 3 3©).

In the above method, one crucial thing to consider is the similarity measure
between pockets, which is needed to get the most similar pocket msp(p, P ). It is
difficult to compare pockets directly because sizes differ in each protein. In the
next section, we introduce a similarity measure between pockets.

Fig. 3. Overview of motif extraction
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Fig. 4. Dissimilarity between pockets

3.2 Dissimilarity between Pockets

As mentioned above, the surface data consist of polygons, and each polygon
vertex has its position and physical properties. In this section, we present a
similarity measure between pockets that is independent of the size of pockets
by comparing neighboring vertices that compose pockets. The procedure is de-
scribed as follows (Fig. 4).

1. Each pocket is represented as a set of vertices. Consider two pockets, p1 =
{u1, u2, . . .} and p2 = {v1, v2, . . .}, where ui and vj are the vertices of p1 and
p2. Moreover, let n(ui, d) be a set of neighboring vertices located within dÅ
from ui.

2. The distance between two sets of neighboring vertices n(ui, d) and n(vj , d)
is denoted as ns(n(ui, d), n(vj , d)). To evaluate the distance of neighboring
vertices, we use physical properties and give three definitions of the distance
between two sets of neighboring vertices: ns1, ns2, and ns3. They are de-
fined by combining the average and the variance, which are representative
measures for set comparisons:

ns1(n(ui, d), n(vj , d)) =
∑

i∈c,h

|avei(n(ui, d)) − avei(n(vj , d))| (4)

ns2(n(ui, d), n(vj , d)) =
∑

i∈c,h

|avei(n(ui, d)) · vari(n(ui, d))

−avei(n(vj , d)) · vari(n(vj , d))| (5)

ns3(n(ui, d), n(vj , d)) =
∑

i∈c,h

|avei(n(ui, d)) − avei(n(vj , d))|

+|vari(n(ui, d)) − vari(n(vj , d))|, (6)
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where avec(X) and aveh(X) denote the average value of the electrostatic po-
tential and hydrophyobicity of vertex set X . Similarly, varc(X) and varh(X)
denote those variances. Note that electrostatic potential and hydrophobicity
are normalized from 0 to 1.

3. The dissimilarity between pockets p1 and p2 is defined as the minimum
distance of neighboring vertices in p1 and p2:

NSlocal(p1, p2) = minui∈p1,vj∈p2(ns(n(ui, d), n(vj , d))). (7)

From the above definition, the most similar pocket is defined about pocket p and
protein P using the dissimilarity between pockets:

msp(p, P ) ⇔ q ∈ mc(P ), s.t. ∀x ∈ mc(P ), NSlocal(p, q) ≤ NSlocal(p, x). (8)

The first experiment assessed which equation is more suitable to define dis-
tance. This experiment used ten proteins (1owe-A, 1owd-A, 1gjc-B, 1sqt-A, 1sqo-
A, 1sqa-A, 1owi-A, 1u6q-A, 1gj7-AB, and 1owk-A) that belong to a urokinase-
type plasminogen activator, where 1owe is PDB-ID and A is a chain name. The
Structure Classification of Protein (SCOP [10]) is referred to for obtaining infor-
mation about the protein family. The ten proteins are divided into one training
protein and nine test proteins. The pocket that corresponds to the binding site
in the training protein is compared to pockets in the test proteins. The above
operation is iterated ten times by altering the training protein. The most sim-
ilar pocket in each test protein is obtained using Equation (8). Note that to
calculate the most similar pocket in (8), we need Equation (7), which must be
instantiated by Equations (4), (5), or (6). If the most similar pocket in each test
protein is actually a binding site, we consider that the method has successfully
obtained correct pockets in the test protein. To judge whether the pocket is
actually a binding site, we use the information on the nonpolar pockets located
in neighborhood of functional sites as a binding site. PROSITE2 is used as the
information of functional sites. The accuracy, which is the ratio of successfully
obtaining binding sites, of the three definitions (4), (5), and (6) is 56%, 67%,
and 87%, respectively. From these results, Equation (6) is employed as a distance
measure between neighboring vertices.

The second experiment confirmed the effectiveness of using local parts of
pockets. We compared the proposed dissimilarity measure to that based on all
vertices in pockets. The dissimilarity between pockets using all vertices in pockets
is formally defined as follows:

NSglobal(p1, p2) = ns(p1, p2). (9)

Ten experiments were conducted by altering a training protein, as in the first
experiment, and we aggregated the results for each training protein. The re-
sult is shown in Fig. 5. In this experiment, the neighboring range was set to
4Å. The horizontal axis is a protein ID (PDB-ID), and the vertical axis is the
accuracy of detecting a correct pocket. “Global” means the results obtained us-
ing all the vertices in the pockets, and “Local” means the results obtained using
the neighboring vertices. We see that “Local” consistently outperforms “Global”.
2 http://www.expasy.org/prosite/[11]
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Fig. 5. Efectiveness of using local part of pockets

In this experiment, the neighboring range is 4Å, but it is not obvious which
neighboring range is really effective. If the neighboring range is too small, it
may cause sites noise that is accidentally similar. On the other hand, if the
neighboring range is too wide, it targets all the vertices of the pockets. In the next
section, we introduce a method that dynamically determines the neighboring
range.

4 Automatic Setting of Neighboring Range

4.1 Alternation of Neighboring Range

Since it is not obvious how far the neighboring range is effective for comparing
pockets, we show the influence of the neighboring range in pocket comparisons.
We used a family containing ten proteins (1gbt-A, 1fn8-A, 1f0t-A, 1eb2-A, 1fy5-
A, 1fn6-A, 1fni-A, 1bra-A, 1co7-E, and 1fy8-E) that belong to a trypsin. Ten
experiments were conducted by altering training proteins, as in the first exper-
iment in Section 3.2, and we altered the neighboring range from 0.25 to 6.0Å.
The accuracy of detecting a correct pocket is shown in Fig. 6, where the optimal

Fig. 6. Validation of neighboring range
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neighboring range differs with each protein. The accuracy greatly differs with
the neighboring range, which suggests that the optimal neighboring range value
should be explored automatically. The neighboring range is expanded stepwisely,
and the most similar pockets are calculated using the optimal neighboring range.

4.2 Similar Neighboring Range Prior Method

The similar neighboring range prior method (SNP method) gives priority to
the most similar neighboring range between pockets. An overview of the SNP
method is shown in Fig. 7. This method is based on the idea that the important
neighboring range about binding site is restricted. If the dissimilarity between
p1 = {u1, u2, . . .} and p2 = {v1, v2, . . .} is calculated, the dissimilarity between
pockets is redefined as Equation (10). Note that dissimilarity between pockets is
reflected in neighboring range dÅ, because similarity in a narrow range tends to
include noise. Less the dissimilarity between pockets means more similar between
pockets:

NS(p1, p2)local = mind(
min(ns(n(ui, d), n(vj , d)))

d
). (10)

Fig. 7. SNP method

5 Experiments and Results

To verify the effectiveness of the proposed method, we conducted experiments
for extracting motifs. We also evaluated whether the extracted motif is a binding
site. Nonpolar pockets located in neighborhood of functional sites were used as
correct data. The information of the function sites was obtained from PROSITE.
The proposed method needs family information because it extracts common
pockets within the same family as motifs. In this experiment, we used family
information from SCOP and proteins classified as serine proteases. The family
information used is shown in Table 1. In the automatic settings of the neighboring
range, the initial range was 0.25Å, and the upper bound of the neighboring



96 S. Koizumi et al.

Table 1. Family and member proteins (PDB-ID)

Family Protein

Chymotrypsin 2gmt, 1cho-E, 1gcd, 1gl0-E, 1acb-E

Protease B 1sgq-E, 1sgp-E, 1ds2-E, 1ct4-E, 1ct2-E

Trypsin 1gbt, 1fn8-A, 1f0t-A, 1eb2-A, 1fy5-A

Alpha-Lytic protease 1ssx-A, 1qq4-A, 1p12-E, 1qrw-A, 1qrx-A

Urokinase-type plasminogen activator 1owe-A, 1owd-A, 1gjc-B, 1sqt-A, 1sqo-A

Coagulation factor VIIa 1dva-H, 1o5d-H, 1klj-H, 1dan-H, 1kli-H

Table 2. Result of extracted motifs

RANK (SNP) SCORE (SNP)

Chymotrypsin 2 17

Protease B 1 20

Trypsin 1 19

Alpha-Lytic protease 7 14

Urokinase-type plasminogen activator 1 16

Coagulation factor VIIa 1 17

range was 6Å. All experiments were done on an Intel Xeon 2.80 GHz PC with 2
GB of main memory running Debian Linux (32 bits). The experiment runtime
to extract motifs from six families was about half a day. The results of the
extraction of motifs are shown in Table 2, where SCORE means the score value
of the elements of the motif group. RANK means the level at which the elements
of the motif group are ranked by their SCOREs. A motif group has thousands of
elements, but pockets in the elements of the top-ranked motif group are binding
sites.

One method closely related to our work is LFM-Pro [12], which is a framework
for identifying family specific local sites. LFM-Pro resembles our method in terms
of extracting family specific structural features. We focus on the pockets in a
protein, and features are extracted as surface motifs, which are a portion of the
molecular surface. On the other hand, in LFM-Pro, geometrically significant local
structural centers are first identified, and then the geometrical and biochemical
environment around these centers are evaluated at the atom-level to distinguish
a target family. Quantitative comparison with LFM-Pro is future work.

6 Conclusion

In this paper, we proposed a method of extracting binding sites from protein
molecular surfaces using a similarity measure between pockets by comparing
neighboring vertices. We successfully found binding sites in enzyme proteins by
applying the proposed method.
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The proposed method assumes that information about the protein family can
be clarified in advance. If we cannot get complete information about the protein
family, we will explore a new method in which protein-protein interaction is
employed complementarily as a substitute for family information. In addition,
applying the proposed method to the protein classification problem is a crucial
remaining work.
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Abstract. Recently, much attention has been given to the mass spec-
trometry (MS) technology based disease classification, diagnosis, and
protein-based biomarker identification. Similar to microarray based in-
vestigation, proteomic data generated by such kind of high-throughput
experiments are often with high feature-to-sample ratio. Moreover, bio-
logical information and pattern are compounded with data noise, redun-
dancy and outliers. Thus, the development of algorithms and procedures
for the analysis and interpretation of such kind of data is of paramount
importance. In this paper, we propose a hybrid system for analyzing such
high dimensional data. The proposed method uses the k-mean cluster-
ing algorithm based feature extraction and selection procedure to bridge
the filter selection and wrapper selection methods. The potential infor-
mative mass/charge (m/z) markers selected by filters are subject to the
k-mean clustering algorithm for correlation and redundancy reduction,
and a multi-objective Genetic Algorithm selector is then employed to
identify discriminative m/z markers generated by k-mean clustering al-
gorithm. Experimental results obtained by using the proposed method
indicate that it is suitable for m/z biomarker selection and MS based
sample classification.

1 Introduction

With the development of high-throughput proteomic technologies such as mass
spectrometry (MS), we are now able to detect and discriminate disease patterns
in complex mixtures of proteins derived from biological fluids such as serum,
urine or nipple aspirate fluid [1,2]. The technologies commonly employed in such
kind of differential studies are time-of-flight (TOF) spectroscopy with matrix-
assisted or surface-enhanced laser desorption/ionization (SELDI) or SELDI-TOF
[3,4]. Similar to microarray studies, SELDI-TOF datasets consist of tens of thou-
sands of mass/charge (m/z) ratios per specimen [5,6]. Each m/z value of the
spectrum approximately reflects the abundance of peptides of certain mass [7].
Despite of its great promise, the analysis of the data generated by such studies
presented several major challenges. The challenges originate from the nature that
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SELDI-TOF datasets are often with large number of features and limited size
of samples which are known as the curse-of-dimensionality and curse-of-dataset-
sparsity problems [8]. To make the problem worse, SELDI-TOF data are often
extremely noisy and redundant. Thus, how to select a subset of m/z biomark-
ers that not only can yield low sample misclassification rate but also have true
biological importance are of great value.

Generally, feature selection algorithms can be categorized into three groups,
namely, filter, wrapper and embedded.

With filter approaches, the feature subsets are selected with certain kind of
evaluation criterion such as Mutual Information [9], t-statistic [10], χ2-statistic
[11] and Information Gain [12]. Although, filter selection methods are relatively
computational efficient, they totally ignore the effects of the selected feature sub-
set on the performance of the inductive algorithm [13]. More importantly, fea-
tures selected with filter approaches are often highly correlated [14]. Therefore,
redundancy and data noise are introduced, leading to the decrease of the classi-
fication accuracy while increasing the computational burden. Wrapper method
get its name because the inductive algorithm is used or “wrapped” as the fea-
ture evaluation tool in the selection process. Classical wrapper methods often
utilize forward selection and backward elimination to search feature sub-space,
while advanced types of wrappers introduce the use of Evolution Strategy (ES)
[15] and Genetic Algorithm (GA) [5,16,17]. Although wrapper methods often
produce higher sample classification accuracy than filter methods, they are ex-
tremely computational intensive compared with filters. Overfitting is another
problem of applying wrapper methods to high feature-to-sample ratio dataset
analysis. The third group of selection methods are embedded approaches, which
use the inductive algorithm itself as the feature selector and classifier. Examples
are ID3 [18] and C4.5 [19]. The drawback of such kind of feature selection meth-
ods is that they are often greedy search based algorithms [20], using only the top
ranked feature to perform sample classification in each step while an alternative
split may perform better.

Since each type of feature selection method has its advantage and weakness,
hybrid systems are often preferred for robustness and efficiency in feature se-
lection application [6,21,22,23,24,25]. In [14], Jaeger et al. suggested that in mi-
croarray data analysis genes with high correlations are potentially belong to the
same biological pathway. Therefore, if certain pathway has the main influence,
the gene selection results may be dominated by such pathway, while other infor-
mative pathways will be totally ignored. This is especially phenomenal when one
performs aggressive feature reduction with filter based methods which often con-
sider each feature separately. To include information from other disease related
pathways, several feature extraction methods have been proposed [22,24,25]. In
[25], a k-mean clustering procedure is conducted to cluster the genes with simi-
lar expression pattern into groups. Then the mean expression level of a group of
genes is calculated and used as the “prototype gene” for the later learning and
classification process. However, a disadvantage of this method is that the “pro-
totype gene” is a transformed feature vector which does not bear true biological
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meaning. In [22], 50-100 genes from a microarray dataset are firstly pre-filtered
by filter algorithms such as ReliefF, Information Gain and χ2-statistic, and then
hierarchically clustered. A representative gene which is most similar to the mean
expression of its belonging cluster is then selected for later sample classification
purpose. While this method does hold promise in identifying biologically impor-
tant biomarkers, the size of the pre-filtered genes (50-100) potentially confined
its power to include as much useful pathway information as possible. As for [24],
the gene ranking and gene clustering processes are conducted independently. The
final gene sets are then selected by using gene ranking and clustering informa-
tion collaboratively. One drawback of this process is that the number of selected
genes is still too large for any biological validation.

Similar to gene expression studies, when analyzing SELDI-TOF datasets, it’s
reasonable to assume that high correlation of m/z markers are the indication
that they may belong to the same protein or proteins in the same pathway. The
rationale of this argument is based on the central dogma of biology that proteins
are the functional products of various mRNAs which are produced by their
corresponding genes. Therefore, if the resulting classifier is created by several m/z
markers with high correlation, the classifier will gain not much extra information
than using just one representative m/z marker in this correlated group. In this
study, we propose a k-mean clustering based biomarker extraction and selection
method to bridge filter based and wrapper based feature selection algorithms.
The advantages of this hybrid system are as follows:

– Filter based algorithm is employed to speed up the feature selection process
by pre-filtering the potential disease related m/z markers. Therefore the total
computation time is shortened than using wrapper based algorithm directly.

– The potential disease related m/z markers selected by filters are subject to
the k-mean clustering algorithm for correlation, redundancy and data noise
reduction. This procedure generates an information enriched and redundancy
reduced dataset, which is crucial in creating accurate classification model.

– With above dimensional reduction, data cleansing and information extrac-
tion processes, the wrapper algorithm can be easily applied to identify a
minimum m/z marker set, while also create accurate classification model.

We applied the proposed feature selection strategies to the analysis of two
SELDI-TOF datasets and the experimental results are encouraging.

This paper is organized as follows: An overview of the proposed system is given
in Section 2. Section 3 details the experiment designs while Section 4 provides
the experimental results. Section 5 concludes the paper.

2 System Overview

The proposed system can be sequentially divided into following five steps:

– Firstly, a filter based feature selection method is conducted to pre-filter the
potential biomarkers, by selecting the top 2000 m/z biomarkers with rela-
tively high differential power.
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Fig. 1. The work flow of the proposed system for m/z marker selection and evaluation

– After the pre-filtering process, k-mean clustering is conducted on the re-
sulting feature set. Ideally, each cluster corresponds roughly to a biological
pathway.

– The mean intensity pattern of each cluster is calculated (also known as fea-
ture extraction) and an m/z marker which has the most similar intensity
pattern to the mean intensity pattern is then selected as the representative
m/z marker of this cluster.

– A multi-objective GA based wrapper selector is employed to further minimize
feature redundancy by identifying informative pathway representatives and
discard the uninformative ones.

– Lastly, an ensemble classifier integrated by majority voting is utilized to
evaluate the selected m/z markers by performing sample classification.

Figure 1 visualizes the entire system work flow.

3 Methods

In this section we give a short description of the SELDI-TOF datasets used in
the experiment and detail the design of each step.

3.1 Dataset

The SELDI-TOF MS datasets generated from prostate cancer analysis [3] and
from ovarian cancer analysis [4] are applied to evaluate the proposed system.

The first dataset named “Prostate dataset”, consists of 322 serum samples
which are categorized into four classes. The first class contains 190 serum samples
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which have been diagnosed as benign prostate hyperplasia with serum prostate-
specific antigen (PSA) level greater than or equal to 4 ng/mL. The second class
has 63 serum diagnosed as no evidence of disease with serum PSA level less than
1 ng/mL. The third class contains 26 serum samples diagnosed as prostate cancer
with serum PSA level between 4 and 10 ng/mL. The last 43 serum samples were
categorized as the fourth class with serum PSA level greater than 10 ng/mL.

The second dataset is a binary dataset, which contains only two classes referred
as “Cancer” and “Normal”. We named this dataset “Ovarian dataset”. It includes
253 samples which can be divided into 91 normal samples and 162 ovarian cancer
samples. Finally, the total m/z number of the dataset is 15154. Both datasets were
split into training set for feature selection and test set for evaluation in our exper-
iment. Table 1 summarizes the datasets and the partitions.

Table 1. SELDI-TOF MS datasets used in the experiment

Prostate dataset training test Ovarian dataset training test

benign: 190 95 95 normal: 91 46 45
no evidence: 63 32 31
cancer(4-10): 26 13 13 cancer: 162 81 81
cancer(10-): 43 22 21

3.2 Pre-filtering

Most SELDI-TOF datasets contain several tens of thousands of m/z features, but
only a small portion of these markers are trait associated [8,26]. By preforming
a filter based pre-selection, we can eliminate the unrelated markers which may
skew the final selection results. At the same time, the computation burden is
also greatly decreased. However, the main concern is that the reduction should
be carried out without sacrificing any useful information. In this study, we used
two types of filter algorithms, namely, χ2-statistic and Information Gain for the
pre-filtering purpose. A safe number of m/z markers used in our experiment is
2000, which is large enough to capture most differential markers from various
pathways while also suitable for k-mean clustering algorithm to work with.

3.3 k-Mean Clustering

k-mean clustering is an iterative algorithm. It groups the similar elements into a
cluster while also increases the dissimilarity among different clusters by using a
given definition of similarity and cluster mean. One major challenge of applying
k-mean clustering algorithm is that the number of the clusters (k) must be
determined before conducting the clustering process [22,24]. Yet, previous study
[24] illustrated that the change of the k value (from 100 to 220) had quite limited
impact on the classification results with different size of feature sets.

In this work, we carried out the k-mean clustering on the pre-filtered 2000
m/z markers and group them into 50 clusters. By doing so, markers with high
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correlations are put into the same blocks for later feature extraction and repre-
sentative marker selection. However, since k-mean clustering is stochastic, in our
experiment we found that a different initial partition can result different clus-
tering outcomes. To include as many potential pathways as possible while also
avoiding the clustering results been affected by certain initialization, we repeated
the k-mean clustering on the pre-filtering set 5 times with different initialization,
producing five 50-cluster sets (a total of 250 clusters) for later process.

3.4 Cluster Feature Extraction and Representative Selection

Followed by k-mean clustering, we extract the mean intensity pattern of each
cluster by averaging each m/z intensity value within the same cluster. After ob-
taining the mean intensity pattern of each cluster, a representative m/z for each
cluster is then selected by comparing the similarity of mean intensity pattern
of the cluster and the individual m/z markers and choosing the m/z with the
minimum difference. The difference is defined as follow:

difference =
n
∑

i=1

(xi − xi)2 (1)

where n is the total number of samples, while xi is the mean intensity values
of m/z markers of the ith sample within a cluster. With above extraction and
selection process, our method selects one representative marker per cluster. One
may ask that whether one representative m/z marker of a cluster is sufficient.
In [24], Cai et al. evaluated using more than one representative per cluster to
form the resulting feature subset, their experimental results demonstrated that
one representative per cluster actually outperforms other choices (from 2 to 5).

After performing above procedures on all five k-mean clustered datasets with
different initial partition, the selected representatives were then combined to
form the clustering processed set for later wrapper based selection.

3.5 Multi-objective GA Based Feature Selection

It is important to notice that not all biological pathway information in the
dataset are related to the disease or the biological trait of interest. Thus, those
unrelated pathway representatives are redundant features in classification. In-
cluding these redundant features will increase the computational expenses while
also compounds the identification of disease related biomarkers. Therefore, a
multi-objective GA based feature selection step is employed to further minimize
the m/z marker size by only selecting those highly discriminative representatives
and their combinations.

The detail of the multi-objective GA based ensemble algorithm is described
in [23]. Basically, this hybrid algorithm utilizes a multi-objective GA as the
feature space searching engine while an ensemble classifier is used as the feature
subsets evaluator to evaluate feature combination produced by multi-objective
GA. Here the ensemble classifier is the combination of five individual classifiers
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(decision tree, logistic regression, support vector machine, naive bayes and k-
nearest neighbor) integrated with majority voting strategy.

The fitness function of the multi-objective GA is defined as the average sample
classification accuracy and the consensus sample classification accuracy:

fitness1(s) =

n∑

j=1

accuracyj(s)

n
(2)

fitness2(s) = consensus(s) (3)

fitness(s) =
fitness1(s) + fitness2(s)

2
(4)

where accuracyj(s) specify the classification accuracy of the jth classifier upon
the sth feature set, while consensus(s) specify the classification accuracy using
majority voting with the five classifier committee upon the sth feature set.

Table 2 provides the details of the GA parameters used in the experiment,
and the training portion of the datasets were used to perform the m/z marker
selection.

Table 2. Genetic Algorithm Parameter Settings

Parameter Value

Genetic Algorithm Multi-Objective
Population Size 100

Selector Binary Tournament Selection
Crossover Single Point (0.7)
Mutation Multi-Point (0.05 & 0.25)

Termination Condition 50th generation

3.6 Subset Evaluation

After the m/z marker selection process, the selected m/z markers are then evalu-
ated by the ensemble classifier itself with the test portion of the datasets. Three
repeated runs of 10-fold stratified cross-validation with random partition are ap-
plied to the test datasets, and the sample classification accuracy is calculated
by averaging the results. It is worth noting that the feature selection and eval-
uation processes are accomplished using multiple classifiers. Therefore, they are
less subject to certain inductive algorithm and have better generalization.

For the comparison purpose, we provide a baseline by using filter selected
m/z markers as the inputs of the ensemble classifier directly. Also, we compare
the evaluation accuracy of the m/z markers selected by applying multi-objective
GA based algorithm directly to the 2000 pre-filtered candidate markers with the
proposed method (which applying multi-objective GA based algorithm after the
k-mean clustering process). With the consideration of the stochastic nature of



A Clustering Based Hybrid System for Mass Spectrometry Data Analysis 105

GA, each GA based method is conducted with 5 independent runs. We report
the mean results of the 5 runs and give the standard deviation in the form of
mean ± σ.

4 Results

The first question should be asked is how many m/z markers we should select as
the final feature set for sample classification. To answer this question we utilized
the proposed methods (using both χ2-statistic and Information Gain) to test
the marker size varying from 5 to 40 with a step of 5, using Prostate dataset.
Figure 2 depicts the test results. It’s evident that a size of 20-25 m/z marker
set is sufficient. Therefore, in the following comparison experiments, we evaluate
the m/z combinations with size varying from 5 to 25 with a step of 5 for both
SELDI-TOF datasets.
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Fig. 2. To determine the size of the m/z markers for sample classification, we test the
marker size varying from 5 to 40 with a step of 5, using Prostate dataset

As aforementioned, each of the two feature filter methods was used to rank
the m/z markers, respectively. Then we compared the evaluation accuracy of the
following three different processes:

1. Using filter ranked top m/z marker combinations (5, 10, 15, 20, and 25) for
subset evaluation and sample classification.

2. Using the top 2000 m/z markers ranked by a filter as a pre-filtered marker
pool, and applying multi-objective GA based algorithm to select m/z marker
combinations (5, 10, 15, 20, and 25) for subset evaluation and sample clas-
sification.
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3. Applying the proposed process. Using the top 2000 m/z markers ranked
by a filter as a pre-filtered marker pool, and employing k-mean cluster-
ing and representative selection process to reduce correlation, redundancy
and noise. Then utilizing multi-objective GA based algorithm to select m/z
marker combinations (5, 10, 15, 20, and 25) for subset evaluation and sample
classification.

The subset evaluation process was carried out as described in Section 3.6.
Table 3 provides detailed evaluation accuracy of each method with m/z combi-
nation size of 5, 10, 15, 20, and 25. As can be seen, the evaluation accuracy of
using solely filters of χ2-statistic and Information Gain from 5 to 25 features with
both MS datasets does not differ significantly. For prostate dataset, the average
of 80.08 for χ2-statistic and the average of 82.90 for Information Gain are ob-
tained. As for ovarian dataset, the average results are 95.20 for χ2-statistic and
95.17 for Information Gain. This is consistent with the assumption that the filter
selected top markers is strongly correlated. When used to construct classifier,
such a redundant feature set does not provides much extra information than us-
ing just a subset of it. Based on the experiment results, it is also readily noticed
that GA based methods achieved higher classification accuracy than using filter
ranked features directly. This evidence suggests that beside several top ranked
features more information for sample classification do contained in the rest of
the feature pool and GA based selection scheme be able to identify these “im-
portant” features. When comparing the results of applying multi-objective GA
method directly with the 2000 pre-filtered m/z features and the results of apply-
ing multi-objective GA method with k-mean clustering processed datasets, we
found that the classification accuracy of the later is generally about 2-3 percent
higher with few exceptions. These results indicate that the k-mean clustering
based feature correlation and redundancy reduction process can further improve
the final feature selection and sample classification outcomes.

Table 3. Evaluation accuracy of each method using test datasets

Prostate Dataset

m/z Size χ2 χ2+GA χ2+Cluster+GA Info Info+GA Info+Cluster+GA

5 80.88 83.05 ± 3.7 86.63 ± 2.2 83.69 83.48 ± 3.3 85.22 ± 3.1
10 79.28 87.79 ± 1.6 88.26 ± 1.4 82.54 86.09 ± 2.7 88.62 ± 1.7
15 81.06 88.63 ± 1.3 90.36 ± 1.7 81.88 86.46 ± 3.4 87.76 ± 2.9
20 79.85 90.58 ± 1.5 91.82 ± 1.8 83.13 87.97 ± 1.5 90.21 ± 1.5
25 79.34 89.46 ± 1.0 91.31 ± 1.9 83.27 88.31 ± 2.0 90.25 ± 1.2

Ovarian Dataset

m/z Size χ2 χ2+GA χ2+Cluster+GA Info Info+GA Info+Cluster+GA

5 94.39 96.88 ± 1.4 97.66 ± 1.1 94.54 97.13 ± 1.3 97.96 ± 1.1
10 95.02 97.08 ± 0.9 98.58 ± 0.8 95.49 97.27 ± 1.4 98.88 ± 0.9
15 95.94 97.22 ± 0.8 98.24 ± 0.8 94.86 98.63 ± 0.6 98.47 ± 0.3
20 95.79 96.48 ± 1.0 98.82 ± 0.9 95.46 97.26 ± 0.8 98.48 ± 0.5
25 94.86 96.39 ± 1.3 98.12 ± 1.3 95.48 98.42 ± 0.8 98.32 ± 0.9
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Table 4. Top 5 frequently selected m/z biomarkers of the proposed system, using the
Prostate and Ovarian datasets, respectively. Each m/z marker is ranked by selection
frequency, and the overlapped ones are shown in bold.

χ2-Statistic Information Gain

Rank No. m/z id selection freq. m/z id selection freq.

1 0.054651894 0.96 125.2173 0.92
2 125.2173 0.76 0.054651894 0.80
3 497.9286 0.64 478.95419 0.72
4 271.33373 0.60 271.33373 0.72
5 478.54579 0.56 362.11416 0.68

1 MZ436.63379 0.88 MZ245.53704 0.94
2 MZ245.53704 0.82 MZ436.63379 0.78
3 MZ4003.6449 0.74 MZ6803.0344 0.72
4 MZ28.900817 0.68 MZ7898.4503 0.56
5 MZ6803.0344 0.62 MZ557.06335 0.56

Table 5. The classification results of prostate dataset (test set) using top 5 m/z markers
selected by the proposed method with χ2-statistic and Information Gain, respectively.
Correctly classified samples are in bold.

χ2-Statistic Information Gain

Class Samples B NE C4-10 C10- B NE C4-10 C10-

benign (B) 95 93 0 2 0 94 0 1 0
no evidence (NE) 31 2 28 0 1 1 27 0 3

cancer(4-10) (C4-10) 13 2 0 9 2 3 0 8 2
cancer(10-) (C10-) 21 1 0 3 17 1 0 3 17

Table 4 lists the top 5 most frequently selected m/z markers using the pro-
posed method with χ2-statistic and Information Gain, respectively. There are
several overlapped biomarkers (marked with bold type) in the two independent
results despite the use of two different pre-filtering algorithms, indicating the po-
tential disease association of them. For prostate dataset, using these top 5 m/z
markers selected with χ2-statistic filtering, the evaluation accuracy with the test
set is 91.88, while using the top 5 m/z markers selected with Information Gain,
the evaluation accuracy with the test set is 91.25. As for ovarian dataset, the
classification accuracy using the top 5 m/z is 98.40 with χ2-statistic filtered
dataset and 97.97 with Information Gain filtered dataset. Table 5 provides the
confusion matrix of the prostate data classification results.

5 Discussion and Conclusion

In this paper, we proposed a k-mean clustering based feature extraction and
selection approach for the analysis of mass spectrometry dataset. The proposed
method sequentially combines pre-filtering, k-mean clustering based correlation
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reduction and GA based wrapper selection processes. The clustering process
serves as the bridge between filter based pre-selection and final wrapper based
feature selection. It decreases the dimensionality of the pre-filtered dataset while
also reduces the correlation of the m/z markers, outputting a nearly noise-free
and information enriched dataset.

The experimental results suggest that the clustering based correlation reduc-
tion process can improve the sample classification accuracy and the system’s
power in disease related biomarker selection. It also demonstrates the potential
use of this hybrid system in disease related biological pathway identification.
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Abstract. In this paper we propose a modified Markov clustering algo-
rithm for efficient clustering of large protein sequence databases, based
on previously evaluated sequence similarity criteria. The proposed alter-
ation consists in an exponentially decreasing inflation rate, which aims
at helping the quick creation of the hard structure of clusters by using a
strong inflation in the beginning, and at producing fine partitions with
a weaker inflation thereafter. The algorithm, which was tested and val-
idated using the whole SCOP95 database, or randomly selected 10-50%
sections, generally converges within 12-14 iteration cycles and provides
clusters of high quality. Furthermore, a novel generalized formula is given
for the inflation operation, and an efficient matrix symmetrization tech-
nique is presented, in order to improve the partition quality with rela-
tively low amount of extra computations. A large graph layout technique
is also employed for the efficient visualization of the obtained clusters.

Keywords: Markov clustering, protein sequence clustering, sparse ma-
trix, large graph layout, SCOP95 database.

1 Introduction

One of the main goals of functional genomics is to establish protein families in
large databases. Successful classification of protein families can have significant
contributions to the delineation of functional diversity of homologous proteins,
and can provide valuable evolutionary insights as well [9].

By definition, protein families represent groups of molecules showing rele-
vant sequence similarity [4]. Members of such protein families may serve sim-
ilar or identical biological purposes [12]. Identifying these families is generally
performed by clustering algorithms, which are supported by similarities and/or
dissimilarities, previously computed between all pairs of protein sequences.

Performing an accurate clustering results in such protein families, whose mem-
bers are related by a common evolutionary history [10]. If this condition holds,
well established properties of some proteins in the family may be reliably trans-
ferred to other members whose functions are not well known [11]. Several pro-
tein clustering methods are currently available in the literature [7,14]. One of
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the greatest obstacle for them represents the multi-domain structures of many
protein families [5].

TRIBE-MCL is an efficient protein sequence clustering method proposed by
Enright et al. [9], based on Markov chain theory [6,7]. The authors assigned a
graph structure to the protein database such a way that each protein has a cor-
responding node, while edge weights in the graph represent a priori computed
similarity values, obtained via BLAST search methods [2]. Clusters were then
obtained by alternately applying two operations to the similarity matrix: infla-
tion and expansion. The former represents a task, which re-evaluates the values
within columns of the matrix by raising higher probabilities and suppressing the
small ones, while the latter aims at favoring longer walks along the graph, which
is obtained via matrix squaring.

In this paper we propose a modification of the TRIBE-MCL algorithm, in
order to enhance its accuracy and improve its time complexity. This is achieved
by introducing a time-varying inflation rate and thus forcing the algorithm to
apply a stronger inflation in the first iteration when the hard structure of the
clusters is established, and reduce inflation strength for fine tuning the cluster
shape in later iterations.

The remainder of this paper is structured as follows: Section 2 takes into
account the functional details of the TRIBE-MCL algorithm and presents the
proposed modifications. Section 3 presents our own considerations upon large
graph layout techniques. Section 4 evaluates and discusses the efficiency and
accuracy of the proposed method. Section 5 presents the conclusions and gives
some hints for further research.

2 The Proposed Markov Clustering Approach

2.1 The TRIBE-MCL Algorithm

TRIBE-MCL is an iterative algorithm, which operates on a directional graph.
The nodes of the graph represent the protein sequences we wish to cluster,
while edges show the similarity between pairs of protein sequences. The edge
lengths are stored in a so called similarity matrix. Theoretically, the initial edge
lengths can be computed using any sequence alignment method. However, the
convergence speed will depend on the initial similarities.

In most of the cases, this initial similarity matrix is not symmetrical. This may
be treated as a problem or not. If one only wishes to cluster the sequences, that is,
to find certain groups of proteins, which show high similarity within the cluster
and low similarity between different clusters, then using symmetrical similarity
matrix is recommendable. Asymmetrical similarity values, however, may reveal
the direction of evolution among the proteins situated within a given cluster.
Consequently, making the similarity matrix symmetrical in every iteration is an
extra step, whose benefits and costs will be tested in the followings.

The TRIBE-MCL algorithm treats the similarity matrix as a stochastic ma-
trix [8]. In such a matrix, probability or possibility values are stored: in general,
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Sij represents the possibility, that protein i becomes protein j during an evolu-
tionary step. A decision has to be made at the beginning, whether S is treated
as a column stochastic matrix or a row stochastic matrix. The difference is sig-
nificant: if S is a column stochastic matrix, the columns are normalized in every
iteration and thus they become probability values of past evolutionary steps: for
example Sij shows what is the probability that protein j was i before the latest
evolutionary step. On the other hand, rows of a column stochastic matrix are not
normalized, so values in row j show the possible outcomes of a next evolutionary
step, and their likelihood values, which are not probabilities as their sum is not
1. In this paper we chose to treat the similarity matrix as a column stochastic
matrix.

The TRIBE-MCL algorithm consists of two main operations, namely the infla-
tion and expansion, which are repeated alternately until a convergence is reached,
that is, clusters become stable. Inflation has the main goal to favor more likely
direct walks along the graph in the detriment of less likely walks, while expansion
reveals possible longer walks along the graph.

2.2 The Inflation Operation

The inflation operation has the main goal to modify the similarity values within
the columns of the similarity matrix such a way, that differences gain some
emphasis. In other words, inflation favors more probable walks over less probable
walks along the protein graph [9]. Literature recommends using the following
inflation operation:

S
(n+1)
ik =

(

S
(n)
ik

)r

N∑

j=1

(

S
(n)
jk

)r
, (1)

where r represents the inflation rate, which controls the strength of inflation.
The larger the inflation rate, the more favored will be the high similarities.

Besides the inflation itself, an intentional side effect is the normalization of
the columns: whatever the similarity values were before inflation (except for a
zero column, which is unlikely to occur), the column will sum up at one after
the operation.

If we examine the evolution of the number of clusters of different sizes (one
such representation can be seen in Fig. 2(left)), we can remark, that TRIBE-
MCL has two stages of its runtime: it needs some iterations until the changes
influence the number of clusters significantly. The end of this first stage is shown
by a significant maximum in the numbers or small clusters (not singletons).
The number of iterations in this first stage strongly depends on the inflation
rate: in case of r = 1.1, this first stage may need 7-8 iterations, while in case
of r = 1.5, 3-4 iterations suffice. During the second stage, the number of small
clusters decreases and finally stabilizes after 8-12 iterations.

In our opinion, the inflation rate has to be chosen such a way, that it is large
enough in the first stage, so that the formation of cluster begins quickly and thus
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the first stage doesn’t last too long. On the other hand, in the second stage the
inflation rate has to be small enough, to obtain high-quality clusters. In order
to deal with both these requirements, in this paper we propose the usage of a
variable inflation rate, given by the equation:

r(n) = 1 + r0 × exp
(

−n

τ

)

, (2)

where 1 + r0 represents the initial inflation rate, n is the ordinal number of the
current iteration, and τ is a time constant. In this paper we use: r0 = 2 and
τ = 10, which gives the inflation rate the variation shown in Fig. 3(right).

This inflation operation could be generalized in the following manner: let
us define a continuous function I : [0, +∞) → [0, +∞), I(0) = 0, I ′(x) > 0,
I ′′(x) > 0 ∀x > 0. It can be proved, that the generalized inflation, defined as:

S
(n+1)
ik =

I(S(n)
ik )

N∑

j=1

I(S(n)
jk )

, (3)

where I was established according to the above mentioned conditions, favors
high similarities over low ones. Nevertheless, this generalized formula give us a
higher freedom to choose the inflation operation. Obviously, setting I(x) = xr

returns us to (1).

2.3 The Expansion Operation

The expansion operation is associated with random walks of higher lengths along
the graph, which may include several steps [9]. It is computed with the normal
matrix squaring operation. It produces new probabilities with all pairs of nodes,
where one node is the point of departure and the other is the destination. Obvi-
ously, we will get high probabilities for pairs of nodes situated within the same
cluster, and low ones for nodes from different clusters.

Expansion needs two instances of the similarity matrix. Consequently this
is the operation, which determines the amount of directly processable protein
sequences, due to the memory limitations of the PC.

2.4 Matrix Symmetry

Even if similarity measures are initially symmetrized, this property gets lost after
the first inflation, due to the nature of the operator, as it treats the similarities
as a column stochastic matrix. If there is any reason (dictated by the biological
scenario) for which symmetrical similarity matrix is required, the following extra
processing step should be inserted in every iteration of the TRIBE-MCL.

1. For any i, j = 1 . . . n, i �= j, if |Sij − Sji| > ε, set S
(new)
ij = S

(new)
ji =

√

Sij × Sji, where ε is a previously set small constant.
2. Normalize the columns of the stochastic matrix.
3. Repeat steps 1-2, until symmetry is reached with ε tolerance.
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2.5 Implementation Issues

The amount of protein sequences involved in clustering is theoretically limited
by the following relation:

2 × N2 × d ≤ M , (4)

where d represents the memory required by one probability value (acceptable
resolution requires 16 bits), and M is the available amount of memory. Consid-
ering 1GB storage space, this means a theoretical limit of N < 16384 proteins.
Most protein databases contain even more data. When the necessary storage for
two similarity matrices required by the expansion is not available, we propose
using a sparse matrix representation. If we suppose three decimal representation
of transition probabilities, a maximum number of 1000 values can be nonzero
in each column, but practically their count will be less with at least an order of
magnitude. So the sparse matrix representation, even if needs three times more
space for a single probability value, can reduce the necessary memory, and can
significantly increase the amount of simultaneously processable proteins.

2.6 Algorithm

The proposed algorithm can be summarized as follows:

1. Compute initial similarity matrix.
2. Inflate the similarity data according to Eq. (3).
3. Expand the similarity data via matrix squaring.
4. Symmetrize the similarity matrix if desired.
5. Repeat steps 2-4 until transition probabilities stabilize. Generally 10-15 it-

erations suffice.

3 Graph Visualization

By applying the proposed Markov clustering method to subsets of the SCOP95
database, we obtain a few large clusters among the small ones. In order to
visualize the structure of such large clusters, we propose a modified version of
the large graph layout (LGL) algorithm given in [1].

The subgraph obtained from the Markov clustering (from now on: subgraph),
representing a large cluster, provides the input data for the proposed layout
generating algorithm.

The proposed algorithm places the nodes within the setting gradually, and
allows them to move according to some attractive and repulsive forces that
interact among them (see Fig. 1). The magnitude of the attractive forces between
two given nodes only depends on their similarity value, their relative position
only influences the direction of the force. There is also a repulsive force between
any two nodes, whose strength only depends on their physical distance. This
force has the main goal to keep nodes distant from each other. Short distance
implies extremely strong repulsive force, which loses its strength if distances
grow, and at a given distance limit the repulsive force is extinguished.
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These forces are not meant in physical terms, and the equation (8) that de-
scribes the movement of nodes doesn’t correspond to physical laws either.

The computation of the graph is performed according to the following rules:

1. As a first step, a minimum spanning tree (MST) of the subgraph is generated,
using as weights the dissimilarity values obtained as a negative power of the
computed similarities. This MST will establish the order in which the nodes
will be placed into the layout.

2. One of the nodes in the MST needs to be declared central node. This node
could be arbitrarily chosen, however, we always choose the node showing
largest similarities to its neighbors.

3. The central node is placed into the origin, and it’s frozen in that position.
4. We look for the neighbors of the central node in the MST, and place them

on a hypersphere having its center in the origin and its radius of unit length.
We let these nodes move without leaving the surface of the hypersphere,
according to the attractive and repulsive forces that interact among them.
Finally these nodes are frozen in their stabilized positions.

5. We look for the neighbors of the nodes found in the previous step in the MST,
and place them on a double-radius hypersphere according to the following
formula:

vnew node =
(

vΩ

||vΩ|| +
vparent − vgrandparent

||vparent − vgrandparent||
)

+ vparent + ν , (5)

where the notation v refers to position vector, Ω represents the set of nodes
already present in the layout, and ν is a random noise vector, which assures
that newly introduced nodes will not be placed into identical positions. The
movement of nodes are governed by attractive and repulsive forces among
them. The sum of forces that influence node nk is given by

F k =
∑

i∈Ωk

[

F
(a)
i,k + F

(r)
i,k

]

. (6)

where F
(a)
i,k stands for the attractive force emerging from the similarity be-

tween proteins represented by nodes ni and nk, while F
(r)
i,k is the repulsive

force born from the mutual positions of nodes ni and nk, and Ωk = Ω−{k}.
The forces influencing node nk are computed as follows:

F k =
∑

i∈Ωk

[

(vi − vk)
||vi − vk|| × S(ni, nk) + (vi − vk) × g (||vi − vk||)

]

, (7)

where S(ni, nk) = Sik is the similarity value provided by the Markov cluster-
ing, and g(·) represents the function that describes the behavior of repulsive
forces: it is considered as an exponentially decreasing function that reaches
the zero value at a given distance. The movement of node nk is described by
the equation

vk ← vk + ∆t × F k , (8)
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where ∆t is the considered time step. As a final computation step, the posi-
tion vector vk is brought back to its hypersphere of radius rk:

vk ← vk × rk

||vk|| . (9)

Nodes are frozen in the stable position they reach in several movement steps.
A single movement step is depicted in Fig. 1.

6. Repeat the previous step until all nodes of the subgraph will be included
into the layout.

Fig. 1. Balance of forces of one node in case of a 3-node setting

4 Results and Discussion

The proposed modified TRIBE-MCL method was evaluated using the SCOP95
database [3,13], which contains protein sequences that show at most 95% simi-
larity with each other.

The number of protein sequences in the database is quite large to handle using
a PC. That’s why, in some cases, we decided to randomly choose only a part
(multiples of 10%) of the database to test the efficiency and accuracy of the
clustering.

Tests revealed the efficiency of the proposed algorithm: the first stage, during
which the hard structure is established, usually requires 3 or 4 iteration cycles.
The second stage needs further 8-10 cycles to reach convergence.

Figures 2-4 show the results of the algorithm performed on 40% of the SCOP95
database. Figure 2 (left) shows the varying number of clusters of different sizes
over 20 iterations.

The boundary between the running stages of the algorithm, indicated by the
maxima, are clearly visible at iteration number 3. Figure 2 (right) indicates the
total number of non-singleton cluster after each cycle. This latter image indicates
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Fig. 2. (left) The evolution of number of different sized clusters, during 20 iteration
cycles. The first stage needed four iterations, while the full convergence required an
8-cycle second stage; (right) Graphical representation of the number of non-singleton
clusters vs. iteration index.

Fig. 3. (left) The first rising, then converging number of singletons; (right) The variable
inflation rate, represented vs. iteration count

Fig. 4. The varying inner parameters of the algorithm: the sparseness of the similarity
matrix (left) and the duration in time of each iteration, when the input data was
randomly chosen 40% of SCOP95 database



118 L. Medvés, L. Szilágyi, and S.M. Szilágyi

Fig. 5. The best sequence alignment found in the largest cluster of randomly chosen
40% of the SCOP95 proteins

Fig. 6. 3D representation of a given cluster during the iterations of the modified
TRIBE-MCL algorithm: (a) after 2 iterations, (b) after 5 iterations, (c) after 8 it-
erations, (d) after 10 iterations
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iteration 14 to be the one, when convergence is established. Figure 3 (left) shows
the variation of the number of detected isolated protein sequences in the input
data. Figure 3 (right) is a graphical representation of the variable inflation rate,
using the parameters proposed in the previous chapter.

Figure 4 shows the runtime parameters: on the left side we can see the sparse-
ness of the similarity matrix, when we used four decimals resolution for similarity
values. Sparseness values below 0.5% means that only one out of 200 probabilities
is non-zero during the computations, so the number of simultaneously process-
able proteins can increase 8-10 times, if we turn to sparse matrix representation
within the bounds of the the limited storage space. Figure 4 (right) indicates
the time necessary to process each iteration with a PC having Athlon64 3200+
processor and 1GB RAM.

Figure 5 shows the alignment of those two protein sequences, which were
found the most similar ones inside the largest obtained cluster.

Figure 6 presents the aspect of a given cluster at different stages of the Markov
clustering. After two iterations, the graph still consists of a weak union of two
clusters. After five iterations, the set of proteins that would finally belong to
the cluster is mostly established (only one node will leave the cluster after this
point). But the structure of the cluster still undergoes several slight changes, as
shown in the representations of later stages.

Finally, Fig. 7 shows a 2D graph representation of the largest cluster found,
produced with the proposed large graph layout algorithm.

Fig. 7. A 2D graph representation of the largest cluster, consisting of 542 proteins
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5 Conclusions

In this paper we proposed a modification in the TRIBE-MCL algorithm, in the
terms of a variable inflation rate. An exponentially decreasing value of the in-
flation rate was recommended in order to deal with the nature of the problem:
a high inflation rate at the beginning serves the quick establishment of hard
structure of clusters, while a lower inflation rate in the followings serves the
final partition quality. The proposed algorithm was found efficient in time and
accurate in forming protein families. We also proposed a similarity matrix sym-
metrization scheme, for the case when clustering intends to ignore the evolution-
ary direction. Moreover, we also presented a general formulation to the inflation
operation, giving the theoretical conditions of the inflation function that can
replace the simple power function. Future works will aim at implementing and
testing this latter proposal, and at enhancing the LGL algorithm to provide finer
representation of the obtained clusters.
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Abstract. Random Forests, Support Vector Machines and k-Nearest Neighbors 
are successful and proven classification techniques that are widely used for dif-
ferent kinds of classification problems. One of them is classification of genomic 
and proteomic data that is known as a problem with extremely high dimension-
ality and therefore demands suited classification techniques. In this domain they 
are usually combined with gene selection techniques to provide optimal classi-
fication accuracy rates. Another reason for reducing the dimensionality of such 
datasets is their interpretability. It is much easier to interpret a small set of 
ranked genes than 20 or 30 thousands of unordered genes. In this paper we pre-
sent a classification ensemble of decision trees called Rotation Forest and 
evaluate its classification performance on small subsets of ranked genes for 14 
genomic and proteomic classification problems. An important feature of Rota-
tion Forest is demonstrated – i.e. robustness and high classification accuracy us-
ing small sets of genes. 

Keywords: Gene expression analysis, machine learning, feature selection, en-
semble of classifiers. 

1   Introduction 

There are many new classification methods and variants of existing techniques for 
classification problems. One of them is Random Forests classifier that was presented 
in [1] by Breiman and Cutler. It has proven to be fast, robust and very accurate tech-
nique that can be compared with the best classifiers (e.g. Support Vector Machines [2] 
or some of the most efficient ensemble based classification techniques) [3]. Most of 
these techniques are also used in genomic and proteomic classification problems 
where classifiers need to be specialized for high dimensional problems. The other 
option is integration of feature pre-selection into classification process where initial 
feature set is reduced before the classification is done. Most of the early experiments 
using microarray gene expression datasets used simple statistical methods of gene 
ranking to reduce the initial set of attributes. Recently more advanced feature selec-
tion methods from the machine learning field are applied to pre-selection step in ge-
nomic and proteomic classification problems. Although a small number of genes is 
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preferred, we try to avoid extremely small subsets of genes, like Wang et al. [4], 
where subsets with only two or three genes were used for classification. 

This paper attempts to evaluate two widely used feature selection techniques to de-
termine the most appropriate number of features that should be retained in pre-
selection step to achieve the best classification performance. Additionally, this paper 
introduces one of the most recent classification techniques called Rotation Forest [5] 
to genomic and proteomic classification using small sets of genes.  

Section 2 of this paper presents a novel ensemble based classification model called 
Rotation Forests. The rest of the paper is organized as follows: in section 3 we review 
the feature selection and classification methods used in this paper, in section 4 we 
present results of our experiments comparing classification accuracy of Rotation For-
ests to three classification methods. Section 5 concludes the paper and gives some 
future research directions on usage of Rotation Forests in genomic and proteomic 
classification problems. 

2   Rotation Forest 

Rotation Forest is a novel classification technique that was initially presented by Rod-
riguez et al. [4] and applied to several machine learning problems. In order to obtain 
successful ensembles, the member classifiers have to be accurate and diverse. Be-
cause of sampling process in Bagging and Random Forests it is necessary to obtain 
diverse classifiers, but using a subset of the examples to train the classifiers can de-
grade the accuracy of the member classifiers. Hence, a natural question is if it is pos-
sible to obtain diverse classifiers without discarding any information in the dataset.  

Most ensemble methods can be used with any classification method, but decision 
trees are one of the most commonly used. There are ensemble methods designed spe-
cifically for decision trees, such as Random and Rotation Forests. The latter is based 
on the sensibility of decision trees to axis rotations; the classifiers obtained with  
different rotations of a dataset can be very different. This sensibility is usually consid-
ered as a disadvantage, but it can be very beneficial when the trees are used as mem-
bers of an ensemble. The trees obtained from a rotated dataset can still be accurate, 
because they use all the information available in the dataset, but simultaneously they 
can be very diverse. 

As in Bagging and Random Forests, each member of the ensemble is trained with a 
different dataset. These datasets are obtained from a random transformation of the 
original training data. In Rotation Forests, the transformation of the dataset consists of 
the following steps: 

- Features are randomly grouped in k groups. 
- For each group of features: 

• A new dataset consisting of all examples using sets of features from step 
one is created. 

• All examples of randomly selected classes are removed from this new 
dataset. 

• A subset of randomly chosen examples is eliminated from the new data-
set (by default 25% of samples are removed) 
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• PCA (Principal Component Analysis) is applied to the remaining sam-
ples in a dataset. 

• PCA components are considered as a new set of features. None of the 
components is discarded. 

- All training samples are transformed using new variables selected by PCA 
for each group. 

- A classifier is built from transformed training set. 
- Another classifier is build by returning to the first step in case final number 

of classifiers in ensemble is not reached. 
 
This transformation produces a rotation of the axis. The transformed dataset has as 
many examples as the original dataset and all the information that was in the original 
dataset remains in the transformed dataset, because none of the components is dis-
carded and all the training examples are used for training all the ensemble methods. 

The number of features in each group (or the number of groups) is a parameter of 
the method. The optimal value for this parameter depends on the dataset and it could 
be selected with an internal cross validation. Nevertheless, in this work the default 
value was used, and groups were formed using 3 features. The selection of the opti-
mal value of this parameter would increase notably the time necessary for the training 
of the classifiers and would give an advantage of Rotation Forests with respect to 
other ensemble methods that do not optimize the value of any parameters. 

The elimination of classes and examples of the dataset is done because PCA is a 
deterministic method, and it would not be difficult (especially for big ensembles) that 
some members of the ensemble had the same (or very similar) grouping of variables. 
Hence, an additional source of diversity was needed. This elimination is only done for 
the dataset used to do PCA; all the examples are used for training the classifiers in the 
ensemble. 

3   Feature Selection and Classification Techniques 

The main idea of feature selection is to choose a subset of variables that can signifi-
cantly improve the time complexity and accuracy of a classification model. This is 
even more important in microarray based classification problems where initial set of 
features consists of thousands of gene expression values. With such a large amount of 
features it is of special interest to search for a dependency between optimal number of 
selected features and accuracy of classification model. There are two groups of feature 
selection techniques – filter and wrapper based methods [5]. Filter based methods rely 
on information content of features. Different metrics like distance metrics, information 
measures, correlation and consistency metrics can be used to get useful subsets when 
filter based feature selection is used. In wrapper approach subsets of features are se-
lected based on how well those features classify training samples. The selection is done 
using the induction algorithm as a black box. Usually a search for a quality subset is 
done using the induction algorithm itself as a part of the evaluation function. 
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Symons and Nieselt [6] showed that in most microarray gene expression classifica-
tion problems, filter based approaches outperform wrapper based approaches. In our 
experiments the following filter based approaches were used: 

- ReliefF 
- Support Vector Machine Recursive Feature Elimination (SVM-RFE) 

Additional to two feature selection methods a set of four classification techniques 
was used in experiments presented in this paper: 

- Random Forests 
- Rotation Forests 
- Support Vector Machines (SVM) 
- k-Nearest Neighbors (k-NN) 

 

A machine learning software framework named Weka [7] was used for all experi-
ments described in this paper. Each of the above mentioned methods, except self-
developed Rotation Forest algorithm is already implemented in Weka.  

All above mentioned methods except Rotation Forest, that were explained earlier, 
are briefly described in the remainder of this section. 

3.1   ReliefF  

ReliefF feature selection algorithm is based on original Relief algorithm [8] that could 
only be used for classification problems with two class values. Basic idea of Relief 
algorithm is ranking of features based on their ability to distinguish between instances 
that are near to each other. Original algorithm was extended by Kononenko [9] so that 
it can deal with multi-class problems and missing values. Later it was further im-
proved by Robnik-Sikonja and Kononenko [10] so that it is suitable for noisy data and 
can also be used for regression problems. Default settings for Weka implementation 
of ReliefF that also supports feature selection for regression problems were used in 
our study. 

3.2   Support Vector Machines - Recursive Feature Elimination (SVM-RFE)  

SVM in combination with Recursive Feature Elimination (SVM-RFE) were intro-
duced to gene selection in bioinformatics by Guyon et al. [11]. SVM-RFE feature 
selection method is based on linear SVM used as the learning algorithm in recursive 
selection of nested subsets of features. In the final step of each cycle, all feature  
variables are ranked and a pre-selected number of the worst ranked features are elimi-
nated. By default a single feature is eliminated in each round, it is also possible to 
remove more than one feature per round. In our experiment a setting where 50% of 
the remaining features are removed in each step was used. 

3.3   Random Forests 

Breiman upgraded the idea of Bagging by combining it with the random feature selec-
tion for Decision Trees. This way he created Random Forests, where each member of 
the ensemble is trained on a bootstrap replicate as in bagging. Decision trees are then 
grown by selecting the feature to split on at each node from randomly selected  



 Feature Selection and Classification for Small Gene Sets 125 

number of features. Number of chosen features is set to log2(k+1) as in [12], where k 
is the total number of features.  

Random Forests is an ensemble building method that works well even with noisy 
content in the training dataset and is considered as one of the most competitive meth-
ods that can be compared to boosting [13]. 

3.4   Support Vector Machines (SVM) 

SVM are increasingly popular classifiers in many areas, including bioinformatics [2]. 
The most basic variant of SVM use linear kernel and try to find an optimal hyperplane 
that separates samples of different classes. When classes can be linearly separated, the 
hyperplane is located so that there is maximal distance between the hyperplane and the 
nearest sample of any of the classes. In cases when samples cannot be linearly sepa-
rated, there is no optimal separating hyperplane; in such cases, we try to maximize the 
margin but allow some classification errors. For all experiments in this study an  
advanced version of SVM called Sequential Minimal Optimization (SMO) proposed 
by Platt [14, 15] is used. It offers very quick and reliable learning of the decision mod-
els based on SVM. 

3.5   k-Nearest Neighbors (k-NN) 

Nearest Neighbors classifier is a typical representative of case based classifiers where 
all samples are stored for later use in the classification process [16]. It aims to classify 
samples according to similarities or distance between them. A class value is defined 
using class values of k nearest samples. Similarity to neighboring samples is calcu-
lated using distance between samples that is usually measured using Euclidean dis-
tance metric. 

Another important parameter that has to be set is number of neighbors that will be 
used for calculation of class value. The most common settings for this parameter are 
1, 3 or 5. In our experiments we always use 5 neighbors for class value estimation 
whose vote for final class is weighted according to their distance from the neighbor. 

k-NN based classifiers are most useful in cases with continuous attribute values 
that also include genomic and proteomic datasets. It is also welcome if datasets con-
tain low number of samples (e.g. gene expression datasets), because of high computa-
tional cost of k-NN classification process when number of samples rises. 

4   Experiment Settings and Results 

In our experiments two feature selection methods from section 3 were tested on 14 
publicly available genomic and proteomic datasets presented in Table 1. No modifica-
tion of original data in form of normalization or discretization was needed. All datasets 
are available at Kent Ridge Biomedical Data Set Repository [17] where additional 
information including references to original work for each of the datasets can be found. 
All tests were done using 10-fold cross-validation measuring the classification accu-
racy that can be calculated as a quotient between number of correctly classified and 
number of all samples in a testing set. To avoid feature selection bias, as discussed in 
Ambroise and McLachlan [18], a separate feature selection process was done for each 
training and test set during 10-fold cross validation. 
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Table 1. Details for genomic and proteomic datasets from Kent Ridge repository 

Dataset Original Work Genes P a t i e n t s Classes 
ALL Yeoh et al.  12558 327 7 
ALLAML Golub et al. 7129 72 2 
Breast Van’t Veer et al. 24481 97 2 
CNS Mukherjee et al. 7129 60 2 
Colon Alon et al.  2000 62 2 
DLBCL Alizadeh et al.  4026 47 2 
DLBCL-NIH Rosenwald et al. 7399 240 2 
DLBCL-Tumor Shipp et al.  6817 77 2 
Lung Gordon et al. 12533 181 2 
Lung-Harvard Bhattacharjee et al.  12600 203 5 
Lung-Michigan Beer et al.  7129 96 2 
MLL Armstrong et al. 12582 72 3 
Ovarian Petricoin et al.  15154 253 2 
Prostate Singh et al.  12600 102 2 

 

Fig. 1. Average accuracy on all datasets using four classification methods on reduced datasets 
with different number of genes (ReliefF feature selection) 

Each ensemble (Random Forests and Rotation Forest) consisted of 100 decision 
trees, while number of features used for classification ranged from 4 to 512 and was 
defined as 2i, where i = 2,…,9. 

In the first experiment a set of classification accuracy measurements was done 
based on reduced gene sets. ReliefF was used for feature selection using default set-
tings of Weka environment. Averaged classification accuracy for specific feature  
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selection settings using k-top most ranked genes, where k ranges from 4 to 512, is 
presented in Figure 1. It can be observed that with number of selected features under 
16, Rotation Forest outperforms all other methods, while SVM take over for higher 
numbers of selected genes. The highest classification accuracy was obtained using 
256 most significant genes according to ReliefF, using SVM classifier (89.06%).  

To obtain a better picture of dominance between compared methods and to avoid 
unreliable averaging of results, we did a comparison using statistical test. Non-
parametric Friedman’s statistical test [19] was used to compute average ranks of 
compared methods. Figure 2 presents Friedman’s average ranks for all compared 
classifiers and different feature selection settings using ReliefF. It can be seen that 
Rotation Forest strongly dominates all other methods in the first three points, while 
SVM strongly dominate Rotation Forest in the last two settings. Average ranks shown 
in Figure 2 were calculated for results from all 14 datasets using SPSS statistical 
tools. Average rank, in our case of four compared methods, can have a value from 1 
to 4. If a method hypothetically wins all comparison tests based on average accuracy 
it would be assigned an average rank of 4, while method losing all pairwise compari-
sons would score an average rank of 1. 

The same settings as in the first experiment were used for the second experiment 
where SVM-RFE was used for feature selection tasks. Figure 3 presents results of 
average accuracy levels across all 14 datasets. It can be observed that Rotation Forest 
classifier is in front all the way up to the point of the highest classification accuracy at 
128 selected genes (89,51% accuracy). Similar to the previous experiment the per-
formance of Rotation Forest deteriorates with high numbers of selected features, 
where SVM perform better again.  

 

Fig. 2. Average rank for all four classification methods on reduced datasets with different num-
ber of genes using ReliefF feature selection 
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Fig. 3. Average accuracy using SVM-RFE based feature selection 

 

Fig. 4. Average ranks using SVM-RFE based feature selection 

Friedman test shows significant differences among compared methods again. 
When Friedman test hypothesis is rejected, it is usually followed by a pairwise com-
parison of classification methods. This can be done by Wilcoxon signed-rank test [20] 
that represents non-parametric alternative to the paired Student t-test for two related 
measurements. 
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Wilcoxon test was done on all pairwise combinations in the first ReliefF based and 
the second SVM-RFE based experiments. In case of ReliefF results a significant 
dominance of Rotation Forest and SVM methods compared to Random Forests and k-
NN is shown. However there is no significant difference between Rotation Forest and 
SVM (p = 0.828). There is also no significant difference between results of Random 
Forests and k-NN (p = 0.167). Results were almost the same for SVM-RFE feature 
selection with the only exception – Rotation Forest did not manage to significantly 
outperform Random Forests (p = 0.066) although it was performing better. 

Figure 4 confirms results from Figure 3 where it can be seen that Rotation Forest 
dominates all other classification methods up to the and including a point where 128 
most significant genes were selected. 

Given the highest accuracy of 89.51% one would assume that a combination of Ro-
tation Forest and SVM-RFE based feature selection using 128 most significant genes 
is the best combination. But in many cases biologists are interested in smaller sets of 
genes that can be more descriptive and give more information than large sets of genes 
that are difficult to interpret. 

Figure 5 shows a combination of both best methods (Rotation Forest and SVM) us-
ing average accuracy levels for both feature selection techniques simultaneously. One 
should notice that although SVM-RFE achieves better average accuracy overall, it is 
evident that ReliefF should be preferred when a small number of selected genes 
should be obtained.  

 

Fig. 5. Simultaneous comparison of ReliefF and SVM-RFE feature selection techniques 

5   Conclusions 

This paper presents a novel classification method for genomic and proteomic data 
classification. The results indicate that Rotation Forests can be considered as one of 
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the most useful classification techniques on small gene sets. Another important issue 
that was researched in this paper is a problem of finding the optimal number of genes 
to get the most out of the classifier. It was shown that there is no optimal solution to 
this problem. One can get significantly different results when comparing classification 
accuracy when an extremely low number of genes is used to classification accuracy in 
higher dimensional problems using different classifiers. It is however practically  
impossible to define a fixed number of features that should be selected for optimal 
classification performance. On the other hand it was obvious that there are some clas-
sification techniques that should be used when a low number of genes is preferred 
(Rotation Forest) and some methods that demand higher number of genes (SVM) for 
optimal classification accuracy. It was shown that ReliefF should be used for ex-
tremely small sets of selected features, while SVM-RFE performs better in higher 
dimensions. It should also be noticed that SVM-RFE cannot be used for regression 
problems, where ReliefF will be the only available solution out of the two presented 
feature selection methods.  

One of the issues for the future is evaluation of Rotation Forests on even more 
datasets. Unfortunately it is not possible to directly use Rotation Forests for feature 
selection, but there are other ways of using the power of Rotation Forests. One of 
such is their ability to very accurately estimate the similarity of cases and could there-
fore be used for implementation of clustering algorithms. As we know clustering is 
also one of the most widely used methods in unsupervised analysis that is being used 
in bioinformatics and therefore opens a lot of new areas where Rotation Forests could 
be used.  
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Abstract. Studying the structure of RNA sequences is an important problem 
that helps in understanding the functional properties of RNA. Pseudoknot is one 
type of RNA structures that cannot be modeled with Context Free Grammars 
(CFG) because it exhibits crossing dependencies.  Pseudoknot structures have 
functional importance since they appear, for example, in viral genome RNAs 
and ribozyme active sites. Tree Adjoining Grammars (TAG) is one example of 
a grammatical model that is more expressive than CFG and has the capability of 
dealing with crossing dependencies. In this paper, we describe a new inference 
algorithm for TAGRNA, a sub-model of TAG. We also introduce an RNA struc-
ture identification framework, TAGRNAInf, within which the TAGRNA inference 
algorithm constitutes the core of the training phase. We present the results of 
using the proposed framework for identifying RNA sequences with pseudoknot 
structures. Our results outperform those reported in [14] for the same problem 
that employs a different grammatical formalism. 

1   Introduction 

In recent times there has been an observed acceleration in the RNA structure determi-
nation and analysis [11] owing to its paramount importance. This is partly due to the 
discovery of many new functional RNAs, such as miRNAs and tmRNAs [3] [16] 
[29]. Another factor that has led to the speeding up of RNA structural research is the 
rise of the RNA World Hypothesis [9] which suggests that the current DNA and pro-
tein world has evolved from an RNA based world. This Hypothesis is supported by 
the fact that RNA can carry genetic information like DNA and it is capable of catalyz-
ing reactions like proteins (rRNA). Genetic information of some existent viruses is 
carried in RNA form [15]. Since the function of bimolecular sequences depends on its 
structure, analyzing RNA structures is essential to create new drugs and understand 
genetic diseases [6] [20]. Computational methods can provide less expensive solu-
tions to structure analysis than other methods such as nuclear magnetic resonance and 
x-ray crystallography. 

In the early 90’s, David Searls studied the linguistics of biological sequences [23]. 
He suggested the use of formal grammars as a tool to model and analyze DNA, RNA, 
and proteins. The use of grammars has attracted the attention of many researchers [7] 
[26] because it can model long range interactions. In addition, grammatical models 
are concise and easy to understand representation of structures of sequence families. 
Thus, it is considered to be a natural analytical approach to fully understanding the 
structure and properties of these sequences. Results for secondary structure prediction 
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and multiple sequence alignment agree with and sometimes suggest improvements 
over traditional methods [21]. 

Pseudoknot is one type of RNA structures that cannot be modeled with Context 
Free Grammars (CFG) because it exhibits crossing dependencies. Pseudoknot struc-
tures have functional importance since they appear, for example, in viral genome 
RNAs [15], ribozyme active sites [25], and tmRNA [28]. Among the available re-
search in analyzing pseudoknot structures are the works of Akutsu [2], Dirks and 
Pierce [8], and Reeder and Giegerich [18]. These algorithms are not based on formal 
grammars. In the area of modeling molecular sequences grammatically, more than 
one model, capable of representing pseudoknots, have been presented. Cai et. al. [7] 
proposed Parallel Communicating Grammar Systems (PCGS) with an O(n6) time 
parsing algorithm. Another model which also requires O(n6) parsing time has been 
proposed by Rivas and Eddy[19]. Uemura et. al. [26] suggested the use of a sub-
model of TAG, TAGRNA. Our solution is based on the TAGRNA model.  

Recently, there has been a special focus on the use of grammatical inference in bioin-
formatics. Sakakibara has published [22] in which he discusses the general merits of us-
ing grammatical inference in bioinformatics. Brazma et. al. [5] have proposed an ap-
proach to discover simple grammars for families of biological sequences. The 
grammatical formalisms they use are subclasses of regular patterns. On the use of gram-
matical inference to analyze RNA structures with Pseudoknots, Laxminarayana et. al. 
[13] presented an inference algorithm for Terminal Distinguishable Even Linear Gram-
mars (TDELG), and they have shown how to use this algorithm in an Infer-Test model 
for the detection of a pseudoknot structure in an RNA sequence. The experimental results 
they presented [14] show 54% sensitivity when using 50% of the RNA sample for train-
ing. The sensitivity rises to 85% only when 90% of the sample is used for training. Speci-
ficity was not reported. This is the same problem as the one we address, and our results 
outperform those numbers, as it will be shown. Takakura et. al. have published [24] in 
which they give a linear time algorithm for generating probabilistic TAGRNA from align-
ment data. They use the inferred grammar to find new members of nc-RNA families, 
which is a different problem from the one we address in this paper. 

The use of grammatical inference to automate the grammar building step is essential 
in facilitating the use of grammatical formalism by biologists. Otherwise, the biologist 
will always be dependent on a grammar expert. In this work, we present a complete RNA 
structure identification framework, TAGRNAInf, capable of handling pseudoknot struc-
tures. By structure identification we mean, given an RNA sequence, we answer the ques-
tion of whther it exhibits a certain structure or not. In our approach, the structure is repre-
sented by a TAG which is inferred from a training set. We describe a new polynomial 
time inference algorithm for TAGRNA which constitutes the core of the training phase 
within the identification framework. We evaluate our solution experimentally through 
calculating the sensitivity and specificity of identification. 

2   TAG and TAGRNA 

Tree Adjoining Grammars (TAGs) were originally introduced, by Joshi et. al. [12], for 
use in the field of natural language processing. Uemura et. al. [26] defined a subclass  
of TAGs, TAGRNA, suitable to model RNA pseudoknot structures. They developed  
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an O(n5) time parsing algorithm for TAGRNA. Before describing TAGRNA we will first 
give a brief introduction to the original TAG model. 

A Tree Adjoining Grammar (TAG) is defined to be a 5-tuple (T ∪ {ε}, N , I, A, S), 
where T is a set of terminal symbols, N is a set of non-terminal symbols, ε is the 
empty string symbol, and S is the starting symbol. I and A are defined as follows: 

 

I (initial trees): A finite set of finite trees with the internal nodes’ labels belong-
ing to N ∪ {S} , the leaves’ labels belonging to T ∪ {ε}, and the root is la-
beled with S. 

A (auxiliary trees): A finite set of finite trees with the internal nodes’ labels be-
longing to N ∪ {S}, and the leaves’ labels belonging to T ∪ {ε} except 
one leaf node which has the same label as the root. This special leaf node 
is called a foot node. 

Trees belonging to I ∪ A are called elementary trees. A tree derived by composing 
two other trees is called a derived tree. Trees can be composed together using the ad-
joining operation. The adjoining operation composes an auxiliary tree α with a foot 
node labeled X with any other tree β that has some internal node with the same label 
X. The operation works as follows: we start with the tree β and we extract the sub-tree 
rooted at the internal node labeled with X (let that sub-tree be γ), and replace it with 
the α. Then at the foot node of α, we reinsert γ. The adjoining operation is illustrated 
in Fig. 1.  Let T  = { t : ∃ i∈ I s.t. t can be derived from i}, then L(TAG) consists of 
the yield of all the trees in T. 

 

Fig. 1. The Adjoining Operation 

In [26], Extended Simple Linear TAG (ESLTAG) is defined to be a subclass of 
TAG with adjoining constraints [27]. In ESLTAG, the adjoining operation can occur 
only at internal nodes tagged with the symbol *, and the number of these nodes is re-
stricted. TAGRNA is a sub-class of ESLTAG where only five types of elementary trees 
are allowed (Fig. 2)1. Each type of tree is responsible for a specific kind of branching 
or structural form that an RNA sequence can have.  

3   The Structure Identification Framework 

We introduce a complete RNA structure identification framework, TAGRNAInf, which 
is capable of handling pseudoknot structures. Within this framework, we present a 
new inference algorithm for TAGRNA which constitutes the core of the training phase. 
 

                                                           
1 Tree types of TAGRNA will be explained further in section 3.1.2. 
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Fig. 2. TAGRNA 

Fig. 3 depicts the proposed framework. In the training phase, the inference algorithm 
is fed with a positive training set with structural information. The algorithm will gen-
erate a grammar for the provided sample. Then, the same sample along with a nega-
tive sample and the grammar generated by the inference algorithm will go through a 
TAG parser. For each input sequence the TAG parser will output a score. These 
 

 

Fig. 3. TAGRNAInf : RNA Structure Identification Framework 



136 S.A. Seesi, S. Rajasekaran, and R. Ammar 

scores will be the input to a threshold function inference module. The inferred thresh-
old function will be used in the identification phase.  

Several scoring functions can be used. For example, it can be either the number of 
base pairs or the minimum free energy (mfe) of the RNA sequence structure. Also, a 
probabilistic function can be used to generate the scores. Currently, we use the num-
ber of base pairs as the scoring function. We intend to investigate other alternatives. 
The inferred grammar and the scoring threshold function will be used by a TAG 
parser in the identification phase. Given an RNA sequence, the identification module 
will be able to check if this sequence has a certain structure such as a pseudoknot.  

3.1   The Inference Algorithm 

The grammar inference adopted here is a three step process. The input is a set of se-
quence data that includes the structure of each sequence, and the output is a grammar 
that models the input sample. If the input sample includes at least one sequence repre-
senting each RNA structure in the population being modeled, the output grammar will 
be a correct model for the RNA population from which the sample was drawn.  For a 
population S, a grammar G is considered to be a correct model of S iff S ⊆ L(G). For 
the purpose of evaluating the inferred grammar within the proposed framework, how-
ever, we calculate the sensitivity and specificity of identification. 

The three steps of the inference process are: the pattern generation, the single pat-
tern grammar generation, and the final grammar composition. 

3.1.1   Pattern Generation 

Definition: Let ( x , x r ) and ( y ,yr ) be two substring pairs in a pattern p, we call the 
two pairs ( x , x r ) and ( y , yr ) a crossing dependency if i < k < j < l where i, j, k, and l 
are the positions of x , x r , y , and yr , respectively, in p. 

The inputs to this phase are: the sequence size, the number of stems in the input 
sequence (n),  the starting and ending indices of each stem in the sequence repre-
sented as a 4-tuple (li1,li2,mi1,mi2), where if xi  , xi

r  are the two strands of a stem in 
the sequence, li1 and li2 are the starting and ending positions of xi, respectively, and mi1 
and mi2 are the starting and ending positions of xi

r , respectively. 
The pattern generation is based on sorting the pairs (li1, li2) and (mi1,mi2) for all val-

ues of i ≤ n resulting in a sorted list P of 2n pairs (pi1, pi2). We maintain a link from 
each pair of numbers to its corresponding substring symbol xi ’s or xi

r ’s. Thus, once 
the number pairs are sorted, the x ’s are consequently sorted. Because any two inter-
vals (pi1,pi2), (pj1,pj2) are non-overlapping we can perform the sort on the first value in 
the pairs, and because we are dealing with integers we can use radix sort. This will 
require linear time in the number of stems n. The generated pattern consists of the 
sorted x ’s and  x r ’s with w’s inserted, to represent loops in the RNA structure, wher-
ever there is a gap between the numbers pi2 and p(i+1)1. The number of w’s in a pattern 
must be less than or equal 2n + 1. The insertion can be done by copying the sorted xi’s 
and xi

r ’s sequentially in an array of size 4n + 1. During the sequential copying proc-
ess, we check for gaps and insert w’s as necessary. This also requires linear time in n. 
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After the pattern is generated and before any grammar inference can be performed, 
we must insert the empty string symbol, ε, in the pattern. The empty string appears in 
TYPE 1 and TYPE 5 trees of TAGRNA (see Fig. 2). Currently, we support patterns that 
have exactly one ε symbol. Considering all the crossing dependencies ((x, x r ), 
( y , yr ,)), ε is inserted at i + 1 where i is the index of the rightmost x r  in the pattern. 

An Example 
The pseudoknot structure at the gag-pol translational readthrough site of spleen necro-
sis virus [4] has the following pattern 

w1x1w2 x2 w3x3x2
r w4 x1

r w5 x3
r  

This pattern has two crossing dependencies, ((x1, x1
r) ,(x3, x3

r)) and ((x2, x2
r) , 

(x3, x3
r)). Because x1

r  comes to the right of x2
r , the ε is inserted after  x1

r
. 

The ε location identification is facilitated by generating a list, links, in which for 
each pair of dependent substrings ( xi , xi

r ), links[i] = (j, k) where j and k are the po-
sitions of xi and xi

r  in the pattern, respectively. The list links is simply constructed 
by scanning the pattern once and filling the corresponding entries for each xi  and xi

r  
in links as they are scanned in the pattern. Thus, the time required for generating 
links is O(n), where n is the number of stems in the pattern. A simple search on 
links is performed to determine the position of ε which satisfies the above condition.  
This also requires linear time in the length of the pattern and consequently linear in 
the number of stems n. Thus, the total time required for this phase of the algorithm is 
O(n).  

3.1.2   Generating Grammar for a Single Pattern 
The general idea of the grammar generation for a pattern is to choose the correct types 
of trees, from the TAGRNA model, that can model dependencies between pairs of sub-
string symbols in the pattern, or simply model independent substrings. The choice is 
dependent on the relative positions of the substrings being modeled and the position 
of ε. If we look at the types of trees in TAGRNA, illustrated in Fig. 2, we notice the fol-
lowing. First, there is only one type of initial tree which is of TYPE 1. Thus the gen-
erated grammar will always have one of those trees. TYPE 2 trees can be used to 
model dependent pairs of substrings ( x , x r ) that appear on opposite sides of ε. TYPE 
3 trees can be used to model dependent pairs of substrings ( x , x r ) that appear on the 
same side of ε. Finally, TYPE 4 trees can be used to model independent substrings 
(loops in the RNA structure) that are represented by w symbols in the generated pat-
tern. As we mentioned above, we currently support patterns that have exactly one ε 
symbol. TYPE 5 trees can be used to model more complex structures with branching. 
At the moment, we do not make use of TYPE 5 Trees. 

To generate the grammar for one pattern, the pattern is parsed one symbol at a time. 
For each independent substring symbol w or dependent pair of symbols ( x , x r ), two aux-
iliary trees are generated. The first tree has the same non-terminal label for the root, foot 
node and the adjoining node. This tree can be used recursively to generate terminals  
{c, g, u, a} in the RNA sequence corresponding to the currently parsed pattern  
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substring symbol(s). The second tree is the same as the first one except that it has a dif-
ferent non-terminal label for the adjoining node. This tree allows transitioning to another 
substring or pair of substrings in the pattern.  Generating a grammar for a single pattern 
requires linear time in the length of the pattern and, consequently, the number of stems is 
O(n). Algorithmic details and complexity analysis can be found in [1]. 

3.1.3   Final Grammar Composition 
When the whole sample is processed, we will have a set of grammars, each represent-
ing the pattern of a single input example. To generate one grammar, which is repre-
sentative of the whole input sample, we need to combine these grammars. The TAG 
union operator, defined in [27] can be used for this purpose. The union of two TAGs 
consists of the union of the elementary trees of both grammars. 

If the input sample includes at least one sequence representing each RNA structure 
in the population being modeled, then the output grammar is a correct model for that 
population. For an input sample of size m RNA examples, the total time required by 
the algorithm is O(mn) where n is the maximum number of stems in an RNA exam-
ple. Thus the algorithm is linear in the size of the input. 

In order to reduce the size of the final grammar, the grammar composition step can 
be adjusted to check for input examples that have the same pattern. To accomplish 
that, any generated pattern must be saved. When a new example is encountered, a pat-
tern is generated for it. Then, the set of saved patterns is searched. If the same pattern 
was generated before, we move to the next input example. If not, a grammar is in-
ferred for the new pattern. The search process requires O(mn) time for one pattern. 
Thus, this modification increases the complexity to O(m2n). Even though this is more 
than linear time, this algorithm is practical.  

In practice, however, we prefer to keep the generated grammars separate. In later 
stages of the training phase and in the identification phase, the TAG parser will parse 
the input sequence against each of the generated grammars separately which is 
equivalent to parsing it against the union grammar. This will not increase the parsing 
complexity. On the contrary, it will help in optimizing it through eliminating the least 
effective grammars, as explained in section 3.3. 

An Example 
The input in this example is the following set of 4-tuples representing stems’ positions 
for the delta ribozyme structure of the hepatitis delta virus (Italy variant) as it appears 
in the Pseudobase website [4]. 

(1,7,33,39), (16,19,81,84), (20,22,30,32), (43,49,68,74), (54,57,62,65) 

First the corresponding pattern is generated: 

x1w1x2x3w2x 3
r x1

r fw3x4w4x5w5x5
r w6x 4

r w7 x2
r w8  

Table 1 shows the output trees generated for each substring or pair of substrings in 
the above pattern. The substrings appear in the order in which they are processed by 
the algorithm.  
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Table 1. Output Trees for delta ribozyme structure of the hepatitas delta virus 

Substring/Substring Pair Generated Auxiliary Trees 

(x1, x1
r)  T3L[S,S] & T3L[S,A] 

w1 T4Ld[A,A] & T4Ld[A,B] 

w8 T4Rd[B,B] & T4Rd[B,C] 

(x2, x2
r)  T2d[C,C] & T2d[C,D] 

(x3, x3
r)  T3L[D,D] & T3L[D,E] 

w2 T4Ld[E,E] & T4Ld[E,F] 

w3 T4Ru[F,F] & T4Ld[F,G] 

w7 T4Rd[G,G] & T4Rd[G,H] 

(x4, x4
r)  T3R[H,H] & T3R[H,I] 

w4 T4Ru[I,I] & T4Ru[I,J] 

w6 T4Rd[J,J] & T4Rd[J,K] 

(x5, x5
r)  T3R[K,K] & T3R[K,L] 

w5 T4Ru[L,L] & T4Ru[L,M] 

3.2   The TAG Parser and the Scoring Function 

We use a TAG parser in the training phase and the identification phase. In the training 
phase, the parser is used to generate a set of scores for the positive and negative train-
ing sequences. The generated scores are then input to a threshold function inference 
module. The scoring function used is a simple one that counts the number of base 
pairs for the sequence structure under a certain grammar. If there is more than one 
possible structure, due to the nondeterministic nature of the grammar, the parser will 
output the maximum score. As mentioned in section 3.2.3, a separate grammar for 
each pattern resulting from the positive training will be generated. The score for a cer-
tain sequence under the union of a set of grammars will, again, be the maximum of 
the scores generated from all grammars in the set. 

The parser we used is an implementation of Rajasekaran’s [17] and Vijay-
Shankar and Joshi’s [27] algorithms with some minor modifications. In our imple-
mentation of the TAG parser, in addition to n4 matrix, A, maintained by the parser, we 
associate a list of 4-tuples with every node in the grammar. For a node α, a tuple 
(i,j,k,l) ∈ List(α) iff  α ∈ A(i,j,k,l). This idea, borrowed from [17], does not improve 
the worst time complexity of the parser which is O(n6); however, it improves the av-
erage run time in practice due to sparsity of the matrix A. Another modification is the 
fact that the parser generates a score for each sequence instead of a yes/no output. 

3.3   The Threshold Function Inference Module 

This module infers a score threshold function Th(l) = p. A sequence s of size l is con-
sidered to have the RNA structure represented by a grammar G iff the TAG parser ac-
cepts s under G, with score ps ≥ p. Th(l) is a step function defined as follows: 

Th(l) = p,  i  ≤ l <  j  (1) 
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 Since both sensitivity and specificity are important criteria we infer a function 
Th(l) that maximizes the sum of sensitivity and specificity. This is achieved through 
calculating a function S for all possible paths of Th from l = 0 to l = n, where S is the 
maximum gain in specificity - loss in sensitivity resulting from each step the function 
Th makes  and n is the maximum sequence size. Then Th is constructed by tracing 
back the path resulting in maximum S. Calculating maximum S can be done in 
O(n3m2) time and O(n2m2) memory using dynamic programming, where m is maxi-
mum reported score for the input sample.  

Assume, with out loss of generality, that the number of sequences in the positive 
sample and the negative sample are equal. Let S(i,j,p,q) be maximum gain in specific-
ity – loss in sensitivity possible for a threshold function segment that starts at Th(i) = 
p, and ends at Th(j) = q. Then, the dynamic programming recurrence formulae are 
given below 

S(i,i,p,q) = S(i,i,q,q) = ( the number of negative samples of length i with 
score < q  –  the number of positive samples of length i with score 
< q) / the sample size. 

(2) 

and 

S(i,j,p,q)  = S(i,i,p,p) + S(j,j,q,q) , j =  i+1 
 = Max p ≤ l ≤ m ≤ q ( S(i+1,j-1,l,m) + S(i,i,p,p) + S(j,j,q,q) )  , j ≥  i+2 

(3) 

3.4   Selecting the Best Grammar Combination 

As mentioned earlier, the scores resulting from each grammar for the patterns gener-
ated by the training sequences are reported separately. Instead of inferring the thresh-
old function from the maximum score calculated over all the generated grammars, we 
try all possible combinations out of these grammars and pick the combination that gen-
erates the maximum sensitivity + specificity for the training set.  This approach has 
two advantages. First, it eliminates the least informative and/or nearly redundant 
grammars. Meanwhile it enhances the time performance for the identification phase by 
reducing the number of grammars, or in other words, the size of the overall grammar. 

This idea can further be used to restrict the number of grammars used to preset a 
maximum; thus choosing the best combination out of three or four grammars, for ex-
ample. Even though trying out all possible combinations requires exponential time in 
the number of grammars, the number of grammars is usually small, resulting in the 
feasibility of this solution.  

4   Experimental Results 

To evaluate the effectiveness of the inferred grammars within TAGRNAInf, we calcu-
late the sensitivity and specificity of identification. 

Sensitivity = TP + FN
TP  and  Specificity = TN + FP

TN  (4) 

where TP, TN, FP, and FN are the number of true positives, the number of true nega-
tives, the number of false positives and the number of false negatives respectively. 
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We used the grammar inference algorithm to infer a grammar for H-type pseudok-
not from a positive training set with structural information. Then we used positive and 
negative training sets to infer the threshold function. The inferred grammar and score 
threshold function were applied to a test set of RNA sequences and the sensitivity and 
specificity were calculated. 

For this experiment, we used these data sources: 
 

- The positive data population of H-type pseudoknot sequences was collected from 
Pseudobase [4], the tmRNA database [28], and pseudoknot familes in the Rfam data-
base [10]. We arbitrarily selected sequences from tmRNA and extracted PK1, PK2, 
and PK4 from them. 

- The negative data population was driven from the Rfam database [10]. We se-
lected non-pseudoknot families taking into consideration that the lengths of these se-
quences would be in the same range as the positive population.  

 

The size of each population was 500 sequences. We randomly divided each of the data 
populations to three equal subsets: Training set, test set 1 and test set 2. Table 2 lists the 
sensitivity and specificity for each subset and for the whole population. Table 3 lists the 
sensitivity and specificity of TAGRNAINF, TAGRNA [26] and PknotsRG (mfe) [18] when 
applied to Test set 1. For TAGRNA, and PknotsRG (mfe), we count TP to be the number 
of sequences belonging to the positive population with predicted structures exhibiting a 
pseudoknot. On the other hand, TN is the number of sequences belonging to the negative 
population with predicted structures not exhibiting a pseudoknot. 

Results in table 2 indicate that our approach is solid and can result in very accurate 
predictions. The same problem has been addressed in [14] using a different grammati-
cal formalism. However, the sensitivity we achieve is superior to that reported in [14]. 
For instance when the size of the training set is 50% of the available sample, they can 
achieve a sensitivity of only 54%. To achieve a sensitivity of 85%, they have to em-
ploy a training set of size 90% of the sample. They do not report specificity results. 
Results in table 3 indicate that our approach achieve a good balance between sensitiv-
ity and specificity. 

Table 2. Experimental Results for TAGRNAINF 

Data Subset Sensitivity Specificity 
Training set 87.4% 84.4% 
Test set 1 78.4% 80.8% 
Test set 2 79.6% 88% 
Whole Population 81.8% 84.4% 

 

Table 3. Comparative Results for Test set 1 

 Sensitivity Specificity 
TAGRNAINF 78.4% 80.8% 
TAGRNA 100% 71.3% 
PknotsRG (mfe) 41.6% 81.4% 
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5   Conclusion 

In this paper we have presented a grammatical inference algorithm for TAGRNA,. We 
used the inference algorithm as a module within a complete RNA structure identifica-
tion framework, TAGRNAInf, capable of identifying pseudoknot structures. The TAG 
parser used within TAGRNAInf utilizes a scoring function along with the inferred 
grammar. The scoring function currently used is the number of base pairs of the RNA 
structure detected by the parser. For a training set and a test set of equal size, our ex-
perimental results outperforms those reported in [14] for the same problem. They use 
a different grammatical model.  
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Abstract. T-score between classes and gene expressions is widely used
for gene ranking in microarray gene expression data analysis. We propose
to use only support vector points for computation of t-scores for gene
ranking. The proposed method uses backward elimination of features,
similar to Support Vector Machine Recursive Feature Elimination (SVM-
RFE) formulation, but achieves better results than SVM-RFE and t-
score based feature selection on three benchmark cancer datasets.

1 Introduction

Simultaneous measurement of thousands of genes has become possible due to
recent advances in DNA microarray technology. Unfortunately, due to high cost
of experiments, sample sizes are still very small compared to the number of
genes measured. Because of this bottleneck, curse of dimensionality and compu-
tational instabilities occur in microarray data analysis, which make it difficult
to efficiently extract useful information. To overcome such problems, selection
of relevant genes has became extremely important in microarray data analysis.

Various gene selection approaches have been recently proposed by different re-
search groups [1,2,3,4,5,6,7,8,9,10,11]. Gene selection methologies can be broadly
classified into two methods: filter methods and wrapper methods [2]. Filter meth-
ods evaluate gene subsets by looking at intrinsic characteristics of datawith respect
to class labels [1]. T-score, P-score, mutual information, euclidean distance, and
correlation coefficients are some of the widely used filter criterions [2]. In wrapper
approach, the goodness of gene subset is evaluated by estimating the accuracy and
the selection is embedded in the specific learning method. Wrapper methods are
better in principle but more complex and computationaly expensive. Various al-
gorithms have been developed for gene ranking based on SVM [9,10,12]. Support
vector machine - recursive feature elimination (SVM-RFE) is one of the widely
used wrappermethod [12]. SVM-RFE is amultivariate gene rankingmethod which
uses SVM classifier for ranking. SVM-RFE has also been applied to peak selection
of mass spectrometry data for cancer classification [13]. Recently, we proposed a
linear combination of SVM-RFE with minimum redundancy maximum relevancy
based filter criteria to minimize between gene redundancy without affecting clas-
sification performance [11].
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In filter approach, the standard practice is to consider all the sample points
into gene ranking. But, the success of SVM in classification with its excellent
generalization capability has proved that only boundary points are important
for classification with an optimal margin. We propose a novel method for gene
ranking by incorporating t-score in SVM-RFE based ranking to analyze support
vector points. In this paper, we investigate the effect of t-score based rank-
ing on classification performance while considering only support vector points.
Proposed t-score gene ranking method is formulated in a backward elimination
manner as removal of genes from dataset changes support vector points. As
seen later, the proposed method showed better performance compared to t-score
based or SVM-RFE method on benchmark datasets.

This manuscript is organized as follows: In section 2, we describe the SVM-
RFE method and a detailed description of proposed method. Numerical ex-
perimental procedures and results are discussed in section 3. Finally, section 4
includes the discussion and conclusion.

2 Method

Let D = {xij : i = 1, 2, ..., n; j = 1, 2, ...m} denotes the microarray gene expres-
sion dataset where xij is the expression measurement of ith gene in jth sample,
n represents the total number of measured genes and m denotes the total num-
ber of samples. Let xj = (x1j , x2j , . . . , xnj) be the gene expressions measured in
the jth sample. In this paper, we address two class classification of tissue sam-
ples in to cancer or benign samples. Let the target class label of jth sample be
yj ∈ {+1,−1} taking values +1 and -1 for being benign and cancerous tissues,
respectively.

2.1 Support Vector Machine Recursive Feature Elimination(SVM-
RFE)

The objective function for the Support Vector Machines maximize the margin
of separation between two classes [14]. The soft-margin SVM is obtained by,

maxα W (α) =
m
∑

k=1

αk − 1
2

m
∑

k=1

m
∑

l=1

αkαlykylK(xk, xl) (1)

subject to 0 ≤ αk ≤ ζ, for all k = 1, . . . , m (2)

and
m
∑

k=1

αkyk = 0 (3)

where {(xk, yk) : k = 1, 2, . . . , m} denotes the training examples. Here, ζ is SVM
sensitivity parameter, K (., .) the Kernel function, and αk is a parameter ob-
tained by training SVM. SVM formulation only depends on the support vectors
to define boundaries as parameters αk is non-zero only for support vector points.
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SVM-RFE technique was developed to rank genes for cancer classification [12].
In SVM-RFE, starting with all genes in the subset, iteratively one can remove
gene with least importance for sample classification, given by the weights. This
SVM weight vector w is computed using αk corresponding to support vector
points as follows:

w =
m
∑

k=1

αkykxk (4)

Support vectors denote data points on the boundaries of and within the sepa-
rating margins. It can be shown that αk are zero for non-support vector points.
If wi represents the corresponding component of above weight vector after nor-
malization, the ith gene with smallest ranking score, wi

2, is removed from the
gene subset. For the computational efficiency, more than one feature can be re-
moved at each step [12] though it may have negative effect on performance of
feature selection method if a large portion of features are removed at a time.

2.2 T-Score Based Support Vector Backward Feature Elimination
(SV-RFE)

Support vector points represent samples with 0 < αk ≤ ζ, i.e., points either lie
on the decision boundary or on the wrong side of the margin. In our method, we
only concentrate on these points to compute the t-score. The non-support vector
points need not be considered for gene ranking. This idea is based on SVM-RFE
method where points only with αk > 0 are used for gene ranking.

Let M+ and M− subscripts represent set of support vector points correspond-
ing to positive and negative samples. The ranking score for the proposed method
is given by [2],

ri =

∣
∣µi,M+ − µi,M−

∣
∣

2

√

mM+σ2
i,M+

+mM−σ2
i,M−

mM++mM−

(5)

where µi and σ2
i represent mean and variance of expression values of gene i

in respective support vector groups, (M+ or M−), mM+ and mM− denote the
number of positive and negative support vector points respectively.

T-statistics compare means of two sets of samples assuming equal variances for
both sets. Gene which has higher t-score between the desired and undesired class
labels is assumed to have higher class separability. The filter methods utilizing
t-statistics have been proven successful in gene selection [1,2]. In standard t-test,
all the sample points are considered for score computation. Refering to Eq. (5),
instead of taking only M+ and M− points (which are support vector points), the
previous t-statistics based methods use all points in positive and negative class
to compute standard t-score [2].

The psuedocode for t-score based Support Vector Backward Feature Elimina-
tion (SV-RFE) is described in Algorithm 1.
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Algorithm 1. T-score based Support Vector Backward Feature Elimination
Begin : Ranked gene set R = [ ], and gene subset S = [1, 2, . . . , n]
repeat

Train linear SVM with gene set S in input variable
Obtain the support vector points and compute the ranking score ri

Select the gene with smallest ranking score e = arg min(ri)
Update R = [e, R] ; S = S − [e]

until all genes are ranked
end : output R

Looking from different point of view, the proposed method has some resemb-
lence to original SVM-RFE with certain assumptions. From Eq. (2), it is clear
that αk ≤ ζ. After normalizing α vector, this constraint becomes αk ≤ 1. As-
suming all support vector points have αk = 1 and substituting it in Eq. (4),
SVM-RFE weight becomes a simple summation of each gene’s expression val-
ues. Instead of simple summation, we propose to use statistically more correct
t-score based ranking. In a way, proposed method does not use α parameter
obtained from SVM learning and in each iteration, model is trained to obtain
optimum support vector points. Due to this, our method differs from SVM-RFE
significantly. This algorithm is computationally expensive than standard t-score.

3 Experiments and Results

3.1 Data

To evaluate the performance of proposed t-score based SV-RFE method, we
performed extensive experiments on three microarray gene expression datasets,
namely, Colon [15], Leukemia [1], and Prostate [16] cancer dataset. These are
widely used benchmark datasets to evaluate gene ranking methods. In Colon
cancer, no separate testing set is available. Hence we divided the original dataset
into separate training set and testing set. The number of samples and genes are
given in Table 1.

3.2 Preprocessing

To obtain the support vector points, we normalized the training dataset to zero
mean and unit variance based on gene expression of a particular gene. These
continuous datasets were directly used in SVM-RFE after normalization.

Table 1. Sample Sizes of Three Gene-Expression Datasets

Dataset # Training # Testing # Total Genes

Colon 40 22 2000
Leukemia 38 34 7129
Prostate 102 34 12600
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For t-score computation, we use mean centered gene expression dataset (with-
out shifting by unit variance). For t-score based method, we obtain support
vector points using zero mean unit variance training data while t-score in each
iteration was computed using corresponding sample points in mean centered
original gene expression training set.

3.3 Parameter Estimation

Obtaining optimal support vector points is one of the key steps in the proposed
method. This depends on sensitivity parameter η in case of linear SVMs. η values
were chosen from finite set

{

2−20, . . . , 20, . . . , 215
}

using 10-fold cross-validation
(CV). This set was also used for SVM-RFE and test performance evaluation.

CV error is generally employed by either, k -fold CV or Leave-One-Out. In
present work, we use Matthew’s Correlation Coefficient (MCC1) with 10-fold
cross-validation for training performance evaluation and parameter tuning. MCC
was choosen as the error measure because sample size was small and imbalanced
in lables in most datasets.

To increase the speed of the numerical simulations with both SVM-RFE and
proposed method, we employ following heuristic strategy:

Number of genes removed =

⎧

⎨

⎩

100 if n′ ≥ 10000
10 if 1000 ≤ n′ < 10000
1 n′ < 1000

(6)

where n′ is the number of genes in the gene set.

3.4 Performance Evaluation

Ranking of genes in each dataset was obtained using simple t-score, SVM-RFE,
and proposed method. Only training data was used to rank the genes using a
linear SVM. Using the gene ranking list, we tested gene subsets starting from top
ranked gene and then successively adding one gene at a time in testing subset
till total number of genes in subset equals 100.

Small sample size in gene expression datasets present a peculiar problem while
dividing into training and testing sets. It will not give correct performance eval-
uation if only one set of testing set is used. This is known as ”unfortunate”
partitioning of training and testing sets. To solve this ”unfortunate” partition-
ing problem, we merge the training and testing datasets before testing. After
that, we employ stratified sampling to partition the total samples into separate
training and testing sets by maintaing number of samples in each set as before.
Then, the classifier is trained on the training set and tested on the correspond-
ing testing set. This process is followed for 100 times and performance measure
such as, test accuracy, sensitivity and specificity were computed for these 100
trials. Finally, total number of genes required for best classification accuracy
corresponds to subset with the least average test error.
1 MCC = TP×TN−F P×F N√

(TP+F P )(TP+F N)(TN+F P )(TN+F N)
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Table 2. Performance of t-score, SVM-RFE and Proposed method on Various Cancer
Datasets

Dataset Measurement T-score SVM-RFE Proposed Method

Colon # Genes 95 90 83
Accuracy 88.18 ± 5.29 91.00 ± 5.17 91.14 ± 5.22
Sensitivity 82.50 ± 11.92 86.75 ± 10.18 87.12 ± 11.16
Specificity 91.43 ± 6.09 93.43 ± 5.53 93.43 ± 5.71

Leukemia # Genes 88 47 64
Accuracy 96.88 ± 3.44 97.88 ± 2.07 98.41 ± 1.79
Sensitivity 92.64 ± 8.40 95.00 ± 5.13 96.21 ± 4.24
Specificity 99.85 ± 1.11 99.90 ± 0.70 99.95 ± 0.50

Prostate # Genes 85 85 21
Accuracy 93.41 ± 3.79 96.24 ± 3.37 97.18 ± 2.89
Sensitivity 92.84 ± 4.93 95.88 ± 4.08 96.88 ± 3.49
Specificity 95.00 ± 7.80 97.22 ± 5.56 98.00 ± 4.57

Table 3. Comparison of accuracies with the published results

Method/Dataset Colon Leukemia Prostate
Accuracy # of

Genes
Accuracy # of

Genes
Accuracy # of

Genes

Bayes + KNN [8] 90.32 6 100.00 3 94.12 11
Bayes + SVM [8] 87.10 20 100.00 2 96.08 13
t-test + Fisher Classifier [19] 88.30 . . . 88.00 . . . 92.00 . . .
MMC-RFE + NMC [20] 88.80 100 99.20 100 90.10 10
Proposed Method + SVM 91.14 83 98.41 64 97.18 21

We also compared the results with SVM-RFE method. This method was per-
formed in exactly the same way as that of proposed method except ranking
criteria. In all gene selection methods and testing the classifier, we used LIB-
SVM - 2.84 software [17].

3.5 Results

The proposed method has remarakably good performance than t-score method in
all three gene expression dataset. Both sensitivity and specificity are improved
in all datasets. Figures 1,2, and 3 represent the average test misclassification
error rate in each of the three datasets. Also, except Prostate Cancer dataset,
our method needed less number of genes for classification compared to t-score
method. The proposed method also have comparable performance with SVM-
RFE method.

Table 3 shows a comparison of classification accuracy with other methods
available in the literature. As seen in the table, our method performed reasonably
well in all three datasets. Classification performance is much better in Prostate
cancer dataset. In Leukemia dataset, out method is inferior to Leave one out
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Fig. 1. Average misclassification error rate for all three methods on Colon Cancer
Dataset against the number of genes

Fig. 2. Average misclassification error rate for all three methods on Prostate Cancer
Dataset against the number of genes

(LOO) method but better than both 10-fold and 100-split testing. As compared
and discussed in [18], LOO gives optimistic accuracy estimations compared to
both k-fold cross validation and bootstrap method.
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Fig. 3. Average misclassification error rate for all three methods on Leukemia Cancer
Dataset against the number of genes

4 Discussion

We propose a support vector based t-score method for gene ranking. We eval-
uated performance of the proposed method on three benchmark datasets and
showed remarkable improvement in accuracy compare to standard t-score. Per-
formance results are quite comparable to SVM-RFE.

In practice, standard t-score based approach considers all the data points in
the training set. But as shown in SVM based classification, only the data points
which lie on the boundary are important for decision making. Based on success
of such strategy, our approach only considers data points obtained from SVM
model. Because of only considering support vector points, statistically we lose
some degree of freedoms. But as shown in the results, only concentrating on
support points improves the classification performance.

Removal of one gene can change support vector points, and hence t-score will
change. To incorporate such effect, we use backward elimination based SVM-
RFE approach with t-score criteria in gene ranking. This approach is different
from standard t-score method where all the genes are ranked in one iteration.

We would like to reemphasize that the proposed method does not use α pa-
rameter obtained from SVM models. As discussed in the methods section, if α
value is assumed to be 1 for all support vector points, SVM-RFE weight criteria
is simple summation of gene expression values. In the proposed method, we use
statistical t-score, which ranks genes based on mean and variance of gene expres-
sion values in cancerous and benign tissue samples. This results improved the
classification performance. Only similarity with SVM-RFE is that, in each iter-
ation, specified numbers of genes were removed and new t-score was calculated
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for new SVM model. As number of support vector points change in each itera-
tion, and hence mean and variance of gene, our method formulation indirectly
changes univariate t-score into multivariate system. It would be interesting to
see if same hypothesis of using only support vectors can be applied with other
filter criteria.

In conclusion, we proposed a novel support vector based t-score computa-
tion in SVM-RFE formulation. Extensive testing on three benchmark cancer
classification gene-expression dataset revealed that proposed method perfoms
significantly better than standard t-score appraoch and results are comparable
with SVM-RFE.
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Abstract. Understanding the mechanisms of protein-DNA interaction is of 
critical importance in biology. Transcription factor (TF) binding to a specific 
DNA sequence depends on at least two factors: A protein-level DNA-binding 
domain and a nucleotide-level specific sequence serving as a TF binding site. 
TFs have been classified into families based on these factors. TFs within each 
family bind to specific nucleotide sequences in a very similar fashion. Identifi-
cation of the TF family that might bind at a particular nucleotide sequence re-
quires a machine learning approach. Here we considered two sets of features 
based on DNA sequences and their physicochemical properties and applied a 
one-versus-all SVM (OVA-SVM) with class-wise optimized features to identify 
TF family-specific features in DNA sequences. Using this approach, a mean 
prediction accuracy of ~80% was achieved, which represents an improvement 
of ~7% over previous approaches on the same data. 

Keywords: Transcription factor family prediction, multi-class classification. 

1   Introduction 

Protein-DNA interactions play a central role in many cellular processes including 
transcription and translation. A key aspect of transcriptional regulation requires the 
binding of a class of proteins (called transcription factors (TFs)) to cis-acting DNA 
regulatory sequences (known as transcription factor binding sites (TFBS)). Under-
standing the mechanisms of these interactions and identifying associations between 
each TF and DNA regulatory elements are key challenges for experimental and com-
putational biology. 

TFBS are usually very short (≤12 base pairs) [1] and some proteins are capable of 
binding to many TFBSs. Binding of a TF to the appropriate TFBS depends on two 
factors: A three-dimensional protein structure of the TF that presents an appropriate 
DNA-binding domain and the specific sequence of nucleotides recognized by TF. 
Though variability in TFBSs does exist, TFBSs share enough similarity such that they 
can be easily recognized in the nucleus by TF proteins. TFs can be classified into 
families based on these protein and DNA-binding characteristics and catalogs of 
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TFBS and TF proteins can be found including JASPAR [2], Transfac [3]. Transfac 
uses the sequence similarities in TFBS as a basis of classification of TFs, whereas 
JASPAR uses the binding profiles (discussed below) to classify TFs into families. 

Several approaches to identify TFBS and associate them with the binding TF exist. 
These include phylogenetic footprinting [4], position-specific scoring matrix (PSSM)-
based approaches [5], Gibbs sampling [6], and expectation-maximization [7]. Phy-
logenetic footprinting has been applied to genomic sequences to identify novel TFBSs 
[8]. Clustering the results of phylogenetic footprint analysis on sets of co-regulated 
genes can result in novel TFBS as well as the identification and annotation of previ-
ously identified TFBSs [9]. Approaches based on comparative genomics or phyloge-
netic footprinting require genomic sequences from several species and as a result are 
computationally intensive. In some cases there may not simply exists sufficient repre-
sentation over the phylogenetic history to generate meaningful comparisons at the 
species level. 

A PSSM or position-weight matrix (PWM) is used commonly as probabilistic rep-
resentation of a TFBS. These matrices store frequencies of each nucleotide at each 
position of the binding site. Such models generally assume independence between 
nucleotides over all positions must use a fixed-length (typically arbitrary) TFBS, are 
unable to represent sequence properties such as sequence-dependent physicochemical 
properties [10]. 

These methods are used generally to identify TFBS in newly sequenced data and 
do not attempt to predict a putative TF for each identified binding site. 

Recently, several approaches have been proposed to handle this problem. Narlikar 
and Hartemink [11] used sparse multinomial logistic regression (SMLR) [12], to 
predict TF family given a set of TFBSs. For a given set of DNA sequences, a set of 
nucleic-acid based sequence features were generated. These features were used to 
generate the model and predict the TF family. 

Sandelin and Wasserman [2] used binding sites profiles to classify well-
characterized TFs into “familial binding profiles.” The database JASPAR was gener-
ated using such “familial binding profiles” with corresponding TFs and associated 
binding sites. First a collection of PSSM models for a TF were assembled and simi-
larities between models were calculated. Finally, an assembly algorithm was used to 
compile all models into a single familial binding profile. Using this approach, TF 
binding sites were classified into 11 families. A brief description of the families ex-
amined in this study is given in the Materials and Methods section below. Prediction 
of TF-family for a given set of DNA binding sites can be accomplished using “famil-
ial profiles.” 

Tan et al. [13] utilized the information of comparative genomics to connect TFs 
with their corresponding TFBSs. Three mutually independent information methods 
were used to connect a DNA binding motif to a given TF. Comparative analysis of 
multiple genomes was used to generate two of these sources of information and the 
third was derived from similarities of TFBS interactions. For a given TF and DNA 
motif, the three types of information were combined to obtain the probability that 
such a pair was a true pair. 

Narlikar and Hartemink [11] showed that the nucleic-acid based features of TFBS 
can be used to predict the families of corresponding binding TF. They demonstrated 
that the selected features are family-specific. Motivated by these results, we used 
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sequence-based conformational and physicochemical features [10, 14] in addition to 
the features proposed by Narlikar and Hartemink [11] to develop models with an 
SVM-based classifier [15]. 

The results of this approach were compared directly to SMLR [11]. The addition of 
physicochemical features to the nucleic-acid based features led to significant im-
provement in predictive accuracy. The SVM-based classifier outperformed SMLR 
when only the nucleic-acid based features were used. Both SVM-based classifier and 
SMLR resulted in competitive predictive accuracies using additional set of physico-
chemical features. 

2   Materials and Methods 

2.1   Datasets 

JASPAR is the largest, curated, and open-access collection of eukaryotic TFBS pro-
file matrices [16]. TFBSs are classified in JASPAR into the 11 structural families 
shown in Table 1. As part of our experimental design, we only made use of those 
TFBS classes with 4 or more samples (see below). Given this requirement, two 
TFBS-families (bZIP-cEBP and TRP (MYB)) were removed (Table 1). The remain-
ing 55 TFs from 9 TFBS-families were used for modelling. These families are briefly 
described below. 

ETS Family: TFs belonging to this family contains a region of 85-90 AAs known as 
the erythroblast transformation specific (ETS) domain. This domain is quite rich in 
positively-charged and aromatic residues. The ETS domain binds to purine-rich seg-
ments of DNA [17]. 

bZIP-CREB Family: cAMP responsive element binding proteins (bZIP/CREB) are 
conserved, nuclear, bZIP-domain, dimeric transcription factors. TFs of this family  
 

Table 1. TF families of JASPAR database. Abbreviations for some families are provided in 
square brackets. 

TF Family Number of Samples Considered in this 
Study 

ETS 7 Yes 
bZIP-CREB 4 Yes 
REL 5 Yes 
Nuclear Receptor [NR] 8 Yes 
Forkhead [Fkh] 4 Yes 
bZIP-cEBP 3 No 
bHLH (zip) 9 Yes 
MADS 5 Yes 
TRP (MYB) 3 No 
Homeobox [Hbox] 7 Yes 
HMG 6 Yes 

Total Samples 61 55 
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contact the DNA through a basic region generally found in the amino-terminus of the 
TF. They contain leucine zipper segments consisting of leucine or similar hydropho-
bic AA spaced roughly every 7 or 8 residues. 

REL Family: The Rel homology domain is found mainly in eukaryotic TFs. TFs 
containing the domain do not use well-defined secondary structure for DNA-binding 
[18]. The domain is composed of two immunoglobulin-like beta barrel sub-domains 
which grips the DNA in major groove. 

Nuclear Receptor: The DNA-binding domain of nuclear receptors is composed of 
two zinc finger motifs that differ in size, composition, and function. Each finger con-
tains four cysteine residues coordinating one zinc ion. The zinc coordinating motif is 
characterized by two anti-parallel alpha-helices capped by loops at their amino-
terminal ends. Normally TFs of this class function as homo- or heterodimers. Each 
monomer typically consists of ligand-binding, DNA-binding, and transcription regu-
latory domains. 

Fork head: The fork head domain contains neither homeodomains nor zinc-finger 
characteristics of other TFs. It contains a distinct type of DNA binding region of 
around 100 AAs and binds B-DNA as monomer. 

bHLH (zip): TFs of this family contain a tripartite DNA binding domain consisting 
of a basic region, a helix-loop-helix (HLH), and a leucine zipper. The domain medi-
ates dimerization as a prerequisite for DNA-binding. The basic region dictates DNA-
binding specificity. The leucine zipper consists of repeated leucine residues at every 
seventh position. 

MADS: The MADS box is a highly conserved sequence motif found in a family of 
TFs. The conserved domain was recognized after the first four members of the family, 
MCM1, AGAMOUS, DEFICIENS, and serum response factor (SRF) and named after 
them by taking their initials. TFs belonging to this class function as dimers. The pri-
mary DNA-binding element is an anti-parallel coiled coil of two amphipathic α-
helices, one from each subunit. The MADS domain is a 56-residue motif consisting of 
a pair of anti-parallel coiled coil α-helices packed against an anti-parallel, double-
stranded, β-sheet. 

Homeobox: The homeodomain binds through a helix-turn-helix (HTH) structure. 
HTH motifs are characterized by two α-helices, joined by a short turn. Protein-DNA 
contacts are conserved, especially those made by positions R3, R5, I47, Q50, N51 and 
M54 [19]. This domain binds to DNA both as monomer and dimer. Some proteins are 
capable of both. 

HMG: Proteins of this class comprise a region of homology with HMG proteins such 
as HMG1. Generally HMG domains bind DNA to non-sequence-specific manner. The 
domain exhibits an L-shaped configuration by 3 alpha helices. The 1st and 2nd helices 
contact DNA and the 3rd helix is exposed to solvents. 

2.2   Feature Formulation 

Nucleic acid-based sequence features were used to represent each TF. Two main sets 
of features were defined: DNA features and DNA-Physico features (described in  
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greater detail below). Features corresponding to DNA were calculated using only 
known binding sites or DNA motifs obtained from the JASPAR database. Flanking 
sequences were avoided given there is no general consensus on the notion of an 
“ideal” length for such flanking sequences in model development. Only the DNA-
binding domain of TFs was used for feature calculation. For each TF, a list of binding 
DNA motifs or sites was obtained from the JASPAR database. Features correspond-
ing to each DNA motif were calculated and average was taken to get single feature 
vector representing each TF. All features and their combinations are described in 
greater detail below. 

1. DNA Features: We used the same set of features as discussed in [11]. These 
features included: 

A) The frequency of subsequence features representing the counts of all 
subsequences of length 1 to 5 in each TFBS. Only the four nucleotides 
A, T, G, C were considered. The full 15-letter code was not considered 
as no consensus sequences in any form were taken as binding sites. 
1,364 features were generated in this manner. 

B) Ungapped palindrome features: Binary variables representing the 
presence or absence of palindrome subsequence of half-length 3, 4, 5 or 
6 spanning entire site and that of palindrome subsequence not spanning 
the whole length. Thus there were total 8 such binary features. It is 
important to mention here this set of features will be sparse. For 
example, the presence of subsequence of half-length 3 spanning entire 
site will make the rest 7 binary variables 0. 

C) Gapped palindrome features: The same as the above with one difference 
of possibility of gaps. Here gap indicates the insertion of some non-
palindrome nucleotides exactly in the middle of two palindrome halves. 
Similar to the previous case, total count of such features was 8. 

D) Special features: Narlikar and Hartemink [11] identified 7 special 
sequence features from literature which are found to be over-represented 
in the binding sites of certain TF families. These seven features were G . 
. G, G . . G . . G, [GC] . . [GC] . . [GC], AGGTCA | TGACCT, CA . . 
TG, TGA . * TCA, and TAAT | ATTA. Here ‘.’ means presence of any 
single nucleotide, ‘.*’ means presence of at least one nucleotide, [XY] 
means presence of one of the letters X or Y, and ‘XYZ | ABC’ means 
presence of one of the strings ‘XYZ’ or ‘ABC’. The presence or absence 
of each of these features was used as additional features. 

 

When concatenated, features 1A-D above resulted in a single feature vector of length 
1,387. The classifier model using solely this feature vector was referred to as the 
“DNA-model”. 

2. DNA-Physico Features: Conformational and physicochemical properties 
have been shown to affect the activity of cis-regulatory DNA elements [10, 
14]. The mean values of 38 conformational and physicochemical properties 
of di-nucleotides were downloaded from the Property subdirectory of the 
Activity database [20]. For a given DNA site 'S = s1,s2,...,si,..sL' of length L a 
value representing each of the 38 features was calculated as follows: 
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where Pq is the qth property of dinucleotides (sj, sj+1). There are only 38 such proper-
ties and when these were combined with the DNA feature set above, a total of 1,425 
features resulted. The classifier model based on this feature set was referred to as the 
“DNA-Physico model.” 

2.3   Model Description 

Background of SVM, OVA-SVM and SVM-RFE (OVA-RFE). Support vector 
machines (SVMs) [21] belong to the family of margin-based classifiers and can often 
achieve superior classification performance when compared to other classification 
algorithms across many domains. SVMs were originally designed to solve binary 
classification problems. Several algorithms have extended binary SVMs for 
application in multi-class problems [22-26]. One-versus-all (OVA) is one such simple 
and early extension of SVM for multi-class problems [27]. 

SVM-recursive feature selection (SVM-RFE) [28] was originally proposed for bi-
nary classification problems. The method of SVM-RFE begins with the set of all 
features and selectively eliminates one feature at a time. Features are scored and 
ranked on squared coefficients wj

2 (j=1,2,....,p) of weight vector w. The feature with 
smallest wj

2 is eliminated in each iterative step. The procedure is repeated until a pre-
determined number of features remain. This procedure can also be generalized to 
remove more than one feature per step [28]. SVM-RFE is also extended in OVA fash-
ion by many researchers [29-31]. This extension is generally known as OVA-RFE. 

Feature selection was performed in OVA-RFE fashion. Selected features were then 
used with corresponding OVA-SVM classifiers. Final class-prediction was made using 
probabilities scores obtained from OVA-SVMs. We have shown [15] that conversion 
of decision function values into probability scores increases predictive performance. 
Among the three methods of converting decision function values into probability 
scores that were evaluated previously [15]; Platt's approach [32] was determined to 
provide better or equivalent predictive accuracy over several data sets. Thus for the 
purpose of the current investigation, we used Platt's approach to convert the decision 
function values into probability scores. 

2.4   Experimental Design  

During pre-processing, for each feature type, redundant features with identical values 
over all samples were removed. The remaining features were normalized to [-1, 1]. 
Table 2 lists number of features before and after pre-processing step. 

Table 2. Feature Statistics 

Feature Type Number of Features # Features After Pre-processing 
DNA 1387 1305 
DNA-Physico 1425 1343 
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The performance of all models was assessed using k-fold external cross-validation 
(CV) following Ambroise and McLachlan [33] to provide an unbiased estimate of 
generalization error. CVs were performed 100 times to provide more reliable esti-
mates of prediction accuracy. A linear kernel was used for the SVM and hence only 
one SVM parameter (C) required tuning. For each model, a range of C was evaluated 
{10-5, 10-4, 10-3, 10-2, 10-1, 1}. The model and C setting with best average CV (4-fold 
CV) accuracy over all 100 runs was selected as the most appropriate setting of C. For 
``this purpose, all features were used and no feature selection was performed. 

For feature selection, ¾ of the data were considered were used for the feature se-
lection process and the best features were re-evaluated on the remaining ¼ of the data 
for performance. Average 4-fold accuracy was calculated. This procedure was re-
peated for 100 different stratified (i.e., the class-wise proportion in training set was 
kept the same as was in the whole set) partitions of 4-fold. Average CV accuracies 
over 100 runs were calculated to estimate the prediction accuracy of models. We 
started with all features and successively eliminated 1% of remaining features in each 
iteration of OVA-RFE until a minimum of 10 features were left. 

For fair comparison to SMLR [11], we used the same normalized data as was used 
in OVA-experiments. Different values of the parameter λ were tried and the one giv-
ing best average 4-fold CV accuracy over 100 runs was reported. We used SMLR 
software [12] available from the http://www.cs.duke.edu/~amink/software/smlr/. 

3   Results and Discussion 

3.1   Comparison between SMLR and Class-Wise Optimized OVA-SVM 

Table 3 lists prediction accuracies obtained by models using different feature-types. 
OVA-SVM approach performed significantly better than SMLR using only DNA 
features (t-test p-value = 1.65 × 10-43), however there was no significant difference 
found between the two approaches when DNA-Physico features was used. The mean 
predictive accuracy of SMLR approach improved significantly (from 74.05% ± 3.34% 
to 81.91% ± 2.69%; t-test p-value = 1.68×10-44) with use of DNA-Physico features. 

Table 3. Performance comparison of SMLR and Class-wise optimized OVA-SVM 

Type of Features OVA-SVM  
(All-Feats) 

OVA-SVM  
(Feat-Selection) 

SMLR 

DNA 81.44±3.04 81.86±2.77 (773) 
80.88±2.98 (200) 
80.06±3.07 (35) 

74.05±3.34 
(λ=0.001) 

DNA-Physico 81.99±3.07 82.56±2.82 (471) 
81.73±2.64 (60) 
80.09 ±2.88 (30) 

81.91±2.69 
(λ= 1.0E-5) 
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3.2   DNA-Model and DNA-Physico-Model Features 

The addition of physicochemical properties improved mean prediction accuracy, 
though not significantly for the OVA-SVM approach (t-test p-value = 0.20). Figure 1 
compares the average error obtained by models using different number of DNA and 
DNA-Physico features. Feature selection did not lead to any significant improvement 
in mean predictive accuracy however; more parsimonious models could be obtained 
using far fewer features with similar mean accuracy. For example, using only 35 
DNA features, a mean prediction accuracy of 80.06% ± 3.07% was generated. Simi-
larly, using 30 DNA-Physico features generated a mean prediction accuracy of 
80.09% ± 2.88%. To compare the best predictive accuracy obtained by the two mod-
els irrespective of the number of features used, the model using DNA features only 
obtained best accuracy of 81.86 (±2.77) by using 773 features per class and the best 
accuracy of 82.56 (±2.82) was obtained by the model using DNA-Physico features 
with 471 features per class (Table 3). 

 

Fig. 1. Comparison between DNA and DNA-Physico Models 

These results show that the model using DNA-Physico features was always able to 
provide slightly improved predictive accuracies than model using DNA features only. 
This suggests that the conformational and physicochemical features might influence the 
prediction of some of the TF families. We reviewed only the features which were se-
lected more than 50% of the time by DNA-Physico models when using 30 features per 
TF family and separated these into conformational or physicochemical features (Table 
4) to check our hypothesis. DNA-Physico features appeared to be important for the 
bHLH-ZIP family. We compared the prediction accuracy obtained by the two models 
for bHLH-ZIP family. The DNA-Physico model obtained an accuracy of 95.78% ± 
6.27% whereas the DNA model obtained an accuracy of 90.56% ± 6.58%. The statisti-
cal significance of this difference was evaluated using a proportion test but no statistical 
significance was observed (p-value = 0.49) but reviewing the results as number of cor-
rect predictions made in each partitions shows a significant difference between the two 
models. The DNA-model predicts all 9 samples from the bHLH-ZIP family correctly 
only 26 times out of the 100 runs whereas the DNA-Physico model corrects all 9 sam-
ples of this family 66 times, for a difference of 40 out of 100 runs (Table 5). 
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Table 4. Class-wise statistics of different feature types: Features with frequency more than 200 
were considered only. This statistics is obtained from the model using DNA-Physico Features 
with 30 features per class. 

TF-
Family 

ETS bZIP-
CREB 

REL NR Fkh bHLH 
(zip) 

MADS Hbox HMG 

#DNA 
Features 

28 22 31 26 27 19 27 23 19 

#Physico 
Features 

2 0 0 0 0 5 0 2 0 

Table 5. Number of true classifications for bHLH-ZIP family by the two models in 100 
partitions. Total number of samples in bHLH-ZIP was 9. Numbers in bracket in the first 
column indicates number of features used by OVA-SVM classifier. 

# True Classifications 7 8 9 

DNA-model (35) 11 63 26 

DNA-Physico-model (30) 4 30 66 

4   Conclusion 

In this paper, features based on the TFBS sequences and their physico-chemical prop-
erties were used to build an OVA-SVM based multi-class classifier to predict the 
family of an associated binding TF protein. A detailed study was conducted to inves-
tigate the importance of different feature types for this decision. The performance of 
OVA-SVM based multi-class classifier and SMLR were compared and a significant 
improvement was found in the performance of SMLR when additional physico-
chemical features were added to the nucleic-acid based features. While OVA-SVM 
outperformed SMLR based on only DNA-features, performance of the methods were 
competitive when DNA-Physico features were used. 
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Abstract. Classifying protein sequences has important applications in
areas such as disease diagnosis, treatment development and drug de-
sign. In this paper we present a highly accurate classifier called the g-
MARS (gapped Markov Chain with Support Vector Machine) protein
classifier. It models the structure of a protein sequence by measuring the
transition probabilities between pairs of amino acids. This results in a
Markov chain style model for each protein sequence. Then, to capture the
similarity among non-exactly matching protein sequences, we show that
this model can be generalized to incorporate gaps in the Markov chain.
We perform a thorough experimental study and compare g-MARS to
several other state-of-the-art protein classifiers. Overall, we demonstrate
that g-MARS has superior accuracy and operates efficiently on a diverse
range of protein families.

1 Introduction

With the development of genome sequencing techniques, biologists have accu-
mulated huge numbers of protein sequences and new ones are being discovered
daily. Predicting the class or the main function of a new protein sequence can
assist experts in understanding its nature. It is a difficult problem, however, and
it is not easy to advance the state of the art. Successful protein classifiers must
be able to compare sequences efficiently, detect important features and also show
good predictive capability.

A number of algorithms have been developed for classifying proteins into
families or into clusters of functions or localizations. The basic assumption
mostly used is the first fact of biological sequence analysis: ”In biomolecular se-
quences (DNA, RNA or amino acid sequences), high sequence similarity usually
implies significant functional or structural similarity.”[7]. So, to create highly-
accurate classifiers, we need a way to compare the similarity of a large number
of diverse sequences precisely and efficiently.

Our contribution. In this paper, we describe a new protein classifier called
the g-MARS (gapped Markov Chain with Support Vector Machine) classifier.
The g-MARS approach has two main stages. Firstly, each protein sequence is

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 165–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



166 X. Ji, J. Bailey, and K. Ramamohanarao

individually modeled using what we call a “gapped markov chain”, to capture
its statistically important features. Next, a new dataset is derived from the
collection of all gapped markov chains and it is passed to a support vector
machine for decision making. The prime advantage of g-MARS is its superior
accuracy compared to several existing protein classification methods. This is a
claim validated in our experimental study, which considers a diverse range of
protein families with different characteristics. The technique also scales well for
large datasets. We first begin with a review of related work in the area.

Related work. Amino acid composition-based algorithms measure the similar-
ity of proteins from the compositions of their amino acids. For each protein in the
training dataset, the algorithm[6] calculates the frequency of each of its amino
acids. For a new protein to be classified, its amino acid frequency histogram
is calculated and compared with the compositions of the proteins in each class
of training data. The protein is then classified to the class containing the pro-
tein with the smallest composition difference. The shortcomings of this approach
are the loss of the ordering relationship among amino acids and the simplistic
comparison in the composition difference. These compositions may be biased for
small training datasets.

Amino acid composition with gaps [8] is an improvement of the pure amino
acid composition algorithm [6]. The first improvement is that it considers pairs of
the amino acids rather than individual ones. The second improvement is that it
uses a support vector machine to make decisions, which is useful to alleviate the
potential bias introduced by the limited information from the training datasets.
The limitation is that the measurement is still based on the percentages of the
pairs of amino acids among the whole protein sequence. When two proteins have
different lengths, although they share some similar sections, certain amino acid
pairs may have composition differences.

The spectrum kernel [11] is a support vector machine algorithm that calcu-
lates the similarity of two sequences by their common k-mers. In practice, the
spectrum kernel works quite well [11]. However, there are limitations: it is far
more computationally expensive than the amino acid composition algorithm.
Secondly the choice of k in practice must be small, since the number of k-mers
increase exponentially with k (so k = 3 is generally used). Thirdly, since k-mers
must be contiguous, there can be less tolerance when proteins contain errors or
mutations. In the mismatch kernel[10], the sharing of the similar k-mers, along
with the identical ones, is used to measure the similarity.

Previous work by Wang et al [14] presents an interesting, but very general
framework (GMM) for using markov models to classify proteins using amino
acid feature combinations which may include gaps. Our g-MARS algorithm can
roughly fit into this framework, but with a number of key differences: i) GMM
requires the configuration of between six and ten different parameters and does
not provide any general strategy for choosing them, a difficult challenge for a
user . Thus it is better described as a large space of possible algorithms, rather
than a single algorithm (and so it is not feasible to try to experimentally bench-
mark against), ii) Different combinations of features are used. Only the prior and
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posterior pair with the highest order is used for classifying a protein by GMM. In
g-MARS, however, we consider variable gaps and use all resulting prior-posterior
pairs for the classification decision, iii) The GMM classification/decision model
is essentially a set of prior-posterior pairs which work as rules and classifica-
tion relies on aggregating scores of these rules. In contrast, g-MARS learns a
classification model based on training a support vector machine.

The Fisher kernel [9] combines the support vector machine and the hidden
markov model. Our g-MARS approach is different from the Fisher kernel. Firstly,
we do not use a hidden markov model generated from the whole training dataset.
Instead, we use the gapped markov chain generated from each individual train-
ing protein. Secondly, the ”distance” between two proteins in the SVM is not
calculated directly by the kernel function[9]. It is instead calculated by a classic
relational kernel such as the RBF kernel.

Work[13,15] has been done on building a series of classifiers which make use
of frequent substring patterns and the support vector machine. The algorithms
firstly mine the frequent substrings from the training proteins that are frequent
and discriminative for their own class (each pattern is mined with high con-
fidence). Then they reform each sequence (training and testing sequences) by
verifying which patterns are contained in it. An SVM is used for decision mak-
ing on the reformatted dataset.

Preliminaries. A sequence p = a1a2a3...an is a length n sequence. Each charac-
ter ak in p is chosen from an alphabet set A and referred to as p(k). Throughout
this paper, we consider protein primary structure (amino acid sequences), but our
technique is easily adapted to classification of other types of sequences as well.

In protein classification problems, a training dataset TrDB contains proteins
whose classes are known to the classifier. The class label for each protein p
is denoted as p.c. A testing dataset TeDB contains proteins whose classes are
unknown to the classifier. The task is to predict the class label of each unknown
protein sequence according to the training dataset. The predicted class label for
each such protein p is denoted as p.pc. Given a testing protein p, if the predicted
class label is the same as its real class label, that is, p.pc = p.c, we say it is
correctly classified by the classifier, otherwise it is misclassified.

If the dataset only contains proteins from two classes, it is a binary-class
classification problem. For the multi-class classification problem, where the test-
ing dataset contains proteins belonging to more than two classes, we choose
proteins from one class and merge the rest of the proteins into another class.
In this way the multi-class classification problem can be reduced to a binary-
class classification problem. The task is then to predict whether a testing pro-
tein belongs to the chosen class or not. The chosen class is called the positive
class (or the target class) and can be denoted as T . The merged set of in-
stances (named the negative class) containing all other proteins is denoted as
¬T . TrDBT = {p ∈ TrDB | p.c = T } is called the training positive set and
TrDB¬T = {p ∈ TrDB | p.c �= T } is called the training negative set. Corre-
sponding definitions exist for sets of testing instances TeDBT and TeDB¬T .
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2 g-MARS Methodology

Training the g-MARS classifier has two main phases. Firstly, g-MARS builds for
each p ∈ TrDB, a gapped markov chain. Secondly, g-MARS passes the vectorial
expressions of the gapped markov chains to a support vector machine (SVM) for
decision making.

Markov chains are a well known method for modeling sequences. The system
consists of a set of states, where each is labelled by a character a ∈ A and a set
of transitions which are associated with some probabilities. From one position to
the next one of the sequence, the system undergoes a change of state (possibly
a self-loop to the same state), according to the transition probability between
the states. An important special case is the first order markov chain, where the
transition probability depends only on the current and the predecessor position,
i.e., Pr[p(i) = ak | p(i−1) = aj , p(i−2) = am, ...] = Pr[p(i) = ak | p(i−1) = aj ].

Furthermore, the markov chains we will consider are independent of the se-
quence positions. In other words, the probabilities of a transition from item am

to an do not depend on the position in the sequence where transition occurs.
A markov chain modeling a sequence p consists of two kinds of components.

One is the set of the states {Si} representing each character from A and the other
is the set of transition probabilities {tij} between states. The formal definition
of transition probability tij leading from state Si to Sj is: tij = Pr[p(k) = aj |
p(k − 1) = ai].

In order to build a markov chain of the sequence p, we have to decide the
probability of each pair of the states. A maximum likelihood estimation pro-
cedure is applied to calculate these probabilities: tij = cijP

k cik
, where cij is the

number of times amino acid j follows amino acid i in p and
∑

k cik is the number
of times the amino acid i is followed by any other amino acid.
Example 1. Consider the sequence p = ABACCAB. The markov chain for p
has three states and we have tAA = 0, tAB = 2

3 , tAC = 1
3 , tBA = 1, tBB = 0,

tBC = 0, tCA = 1
2 , tCB = 0 and tCC = 1

2 .

The purpose of building the markov chain for each protein is that similar global
or local structures of two proteins can be captured by their markov chains. E.g.,
the probability for amino acid X followed by amino acid Y can be discriminative
for proteins from two different classes. This is true if the proteins from the same
class share a lot of common sections and those common sections are different
between different classes. One issue is that it is rare for many proteins from the
same class to share long common sections. The common parts may be similar,
but not exactly the same. An example to further illustrate is:

Example 2. Consider two sequences p1 = ABC and p2 = ADC. The first
order markov chains of them are quite different. For p1, the non-zero probability
transitions are tAB = 1 and tBC = 1. For p2, the non-zero probability transitions
are tAD = 1 and tDC = 1. There is no common non-zero transition probability
between the markov chains of p1 and p2. However p1 and p2 share two out of
three characters, which may indicate some similarity.
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2.1 Introduction to Gapped Markov Chains

To overcome the limitation of traditional markov chains which only model suc-
cessive state transitions, we modify the traditional markov chain in two ways.
The first is to model the ending of the sequence and the second is to add the
concept of gaps.

Modelling the ending of the sequence. In Example 1, the transition proba-
bility tBA is 1, meaning that in sequence p, if B is followed by any amino acid, it
must be A. This does not consider the last character p(7), which has no character
following. A more complete model should illustrate that in p, the probability for
B to be followed by A is 0.5 and the probability for B to be followed by nothing
is 0.5. This can be reflected by changing the transition probability definition to
tij = cij

ci
, where cij is the number of times amino acid j follows amino acid i in

p and ci is the number of times the amino acid i appears in p.
Although we consider the ending of the sequence, our markov chain won’t

contain the null (end of sequence) state and state transitions from other states
to the null state (null transitions). There are two reasons: Firstly, when the
transitions from one state to another non-null state are determined, its null
transitions are also implicitly determined. Including the the null transition is
redundant. Secondly, by removing the null transitions, we reduce the model size,
which benefits for the classification process used later. In practice, the exclusion
of these transitions does not impair classification accuracy.

Since we remove the null state and the null transitions, the sum of all the
out-going transition probabilities in our markov chain model won’t necessarily
be 1. This is different from the markov chain introduced in the last section. From
another point of view, the ”rest” of the probability of a state goes to the null
state which is ”hidden”.

The concept of gaps. In a g-gapped markov chain, we determine the proba-
bilities of amino acid transitions, where there may be gaps between the amino
acid pairs being considered. In particular, we allow contiguous (with no gap),
jumping of one amino acid (with the gap as 1), jumping of two amino acids (with
the gap as 2) and so on up to the g-th gap. The state transition probabilities

are redefined as tkij = ck
ij

ci
, 0 ≤ k ≤ g, where tkij is the probability of a transition

from amino acid i to amino acid j with gap as k in p; ck
ij is the number of times

amino acid i has gap k to amino to amino acid j in p. ci is the number of times
amino acid i appears in p.

Suppose we allowed a character ∅ called ”The-Character-Don’t-Care”. Our
gapped markov chain can be used to directly model sequences containing ∅. An
example is given in Example 3.

Example 3. Given a sequence p = AB∅BC, the probability for it to be produced
by a gapped markov chain can be calculated as Pr(p) = t0AB ∗ t1BB ∗ t0BC . The
probability of p can be directly reflected by the gapped markov chain. Note that the
probability of p could also be calculated by the traditional markov chain indirectly:
Pr(p) = tAB ∗ (

∑

i (tBi ∗ tiB)) ∗ tBC .
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The purpose of being able to model sequences containing ∅ is to capture the
approximate similarity between protein sequences.

Example 4. Consider two sequences p1 = ABC and p2 = ADC. Comparing
contiguous amino acid pairs gives no similarity between their transition probabil-
ities (c.f. Example 2). If we ignore their second characters, the sequences become
p′1 = A∅C and p′2 = A∅C, which are the same. This commonality is reflected
when we compare p1 and p2 allowing gaps in the markov chain: for gap equal to
1, we have the non-zero transition probabilities of p1 as t0AB = 1, t0BC = 1 and
t1AC = 1. The non-zero transition probabilities of p2 are t0AD = 1, t0DC = 1 and
t1AC = 1. We can see p1 and p2 now share one common transition probability.

Given that we can generate a g-gapped markov chain for a sequence, how do we
compare two markov chains to obtain the similarity between two sequences? A
direct way would be, for each pair of states, compare their transition probabilities
and count the number which are identical to get a score of the similarity of the
two sequences. E.g., considering p1 = ABC and p2 = ADC from the previous
example, the number of transitions having the same non-zero probability under
a 0-gapped markov chain model is 0, so the similarity of p1 and p2 under gap 0
would be 0. The similarity score for a 1-gapped markov chain model would be
1, because they share exactly one common transition, namely t1AC .

In practice, we should not expect two similar proteins to share many such
common transition probabilities. Instead, we would expect transition probabil-
ities of proteins from the same class to have smaller variance and transition
probabilities of proteins from different classes to have larger variance. SVMs are
good at detecting such differences and so we use them for deriving a decision
hyperplane that can separate gapped markov chain features of proteins from
different classes.

Support vector machines using classic kernel functions require the input for-
mat to be vectors. We must therefore be able to represent gapped markov chains
as vectors. This is straightforward: simply form a vector where each dimension
corresponds to a transition and the value for that dimension is the probability
of the transition. Transitions are annotated with gaps, so t0AA is considered to
be a different dimension to t1AA. The ordering of the transitions does not matter
as long as it is consistent for all the sequences in TrDB as well as TeDB.

Differences between gapped markov chains and traditional markov
chains. As we can see, there are two main differences between our gapped
markov chain and traditional markov chains. First of all, the summation of
all out-going transition probabilities of a state is not necessarily to be 1 in our
gapped markov chain, but it is a property of traditional markov chains. Secondly,
the traditional markov chains describe successive states of a system. Our gapped
markov chain can do that because any gapped markov chain contains the 0-th
transition matrix, which is the traditional markov chain. But it can also model
sequences containing ∅. As we discussed earlier, these two changes enhance their
suitability for protein classification.
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Differences between sequence modeling by gapped markov chains and
by amino acid compositions. Recall the amino acid pair composition technique
[8] we discussed earlier. There are several differences between that technique and
our gappedmarkov chain technique. In the former case, the discriminative informa-
tion is measured by the frequencies of the amino acid pairs. If the amino acid pairs
are treated as patterns, these algorithms model each protein by their length-2 pat-
tern frequencies. The model can be interpreted as: given an ordered pair of amino
acids, how likely is it that this pair occurs in the protein? In our case, the discrim-
inative information is measured by the probabilities of the amino acid transitions.
The gapped markov chain models each protein by these pairwise amino acid tran-
sition probabilities. The model can be interpreted as: given a specific amino acid
m, how likely is it that another amino acid n follows it? An important advantage is
that the probability model is much less likely to be affected by the protein lengths.

2.2 The g-MARS Algorithm

g-MARS takes a set of training data TrDB and a gap parameter g as the input.
For each protein in TrDB, g-MARS builds a g-gap markov chain. The associated
vector for this chain has (g + 1) ∗ 20 ∗ 20 dimensions (unlike the k20 dimensions
for the Spectrum kernel[11]). This is because there are 20 ∗ 20 possible amino
acid pairs and we need to consider transitions with gap up to g for for each
pair. In practice, we can easily set g to be as large as 10 and not incur dimen-
sionality overload in classification. The markov chains for proteins from TrDBT

and TrDB¬T are passed as input to an SVM and it builds a classification model
using these inputs. Any kernels available for the traditional SVM can be used,
such as linear and RBF kernels. Building a g-gap markov chain for a set of n
proteins requires O(n∗g∗ l) time, where l is the average length of the n proteins.
The training time for g-MARS is the markov chain building time plus the SVM
training time. Given a testing protein, the same g-gap markov chain is computed
and passed to the SVM and it makes the classification decision is made by the
SVM. The testing time for a length l protein in g-MARS is the markov chain
building time(O(g ∗ l)) plus the SVM prediction time.

Although the discussion above is for the binary-class classification problem, g-
MARS can be easily generalized to handle the multi-class classification problem.
We turn the m-class classification problem into m reduced binary-class classifi-
cation problems. Each time we pick one class out from the m classes as T and
merge all the rest of the proteins as ¬T . In this way, way we build m SVMs, one
for each target class. Given a testing protein, if there is an SVM classifying it to
its target class, we classify it to that class. If more than one SVM classifies it to
their target class, we classify it to the class with the highest score.

3 Experimental Results

Datasets. In order to test the general performance of g-MARS, we choose sev-
eral different benchmark datasets, which cover a diverse range of characteristics.
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The first set of data is chosen from PSORTb [4]. It contains proteins from dif-
ferent localizations of the bacteria. We pick out the proteins from the outer
membrane of the Gram negative as the positive class and merge the proteins
from the inner membrane, cytoplasmic and extra-cellular of the Gram negative
as the negative class. Part of this data was used to evaluate the classifiers built
on frequent substring patterns [13,15]. The positive class contains 352 proteins
and the negative class contains 1013 proteins. The second set of data is proteins
from different subcellular localizations from the Proteome Analyst Project [12].
We choose the proteins from the extracellular localization (127 proteins) as the
positive class and the proteins from the intracellular localization as the negative
class (3166 proteins). The third set of data is the outer membrane proteins ver-
sus the globular proteins which was used to evaluate the classifier built on amino
acid compositions [6]. It contains 377 proteins from bacterial outer membrane
and 674 Globular proteins.

The fourth set of data uses the G Protein-Coupled Receptor (GPCR) [2], the
biggest known protein family. The GPCR database contains five level-0 GPCR
classes (level-0 subfamilies). The largest subfamily is the Class A Rhodopsin like
subfamily. It can be further divided into 16 level 1 subfamilies and more level 2
subfamilies. Classifiers have been developed to classify GPCR proteins from non-
GPCR ones, the GPCR proteins from level 1 subfamilies, as well as the GPCR
proteins from level 2 subfamilies [2]. We perform two experiments on this data.
For the first experiment, we try to classify proteins from the level-0 subfamilies.
Besides the five GPCR level-0 subfamilies, we add a non-GPCR family in order
to test the ability for g-MARS to separate the GPCR proteins from non-GPCR
ones. All six families can be obtained from http://www.gpcr.org [5]. For the sec-
ond experiment, we try to classify proteins from the level 2 subfamilies. We
select 4 level-2 subfamilies belonging to the Amine subfamily under level-0 sub-
family Class A Rhodopsin like, namely, acetylcholine, adrenoceptors, dopamine
and serotonin. These two experiments are multi-class classification problems.
The specification of all the five experiments is listed in Tables 1 and 2.

Algorithms. We compare the accuracy of g-MARS against several algorithms:
i) the spectrum kernel [11](Spectrum for short), which has been claimed to be
better than Fisher kernel [11], ii) an amino acid composition classifier [6](AAC
for short), iii) an amino acid pair composition with gap constraints classifier
[8](AAPC for short), iv) simple markov chain classifier [3](MC for short), v) Fre-
quent Substring Pattern based SVM [15](FS for short), vi) Generalised markov
model (GMM [14]). The reasons for choosing these algorithms are: 1.g-MARS,
AAPC and FS are all SVM-based hybrid algorithms. The difference between
them is the way they ”translate” sequences into vectors. 2.Spectrum is a famous
protein classifier which makes use of the SVM and self-defined kernel function.
3.The AAC, GMM and MC methods are not based on support vector machines.
They simply sum up the scores computed in each way up to make decisions.
They are simple, well-known methods. We implemented all algorithms in Java
using JDK version 1.4. All the experiments were conducted on a UNIX system
with a 3.0GHz CPU and 1.5GB memory. We used the LIBSVM [1] Java package.
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Table 1. G Protein-Coupled Receptor dataset list

Subfamily #protein % of Dataset
Class A Rhodopsin like 1884 69.4%

Amine
Acetylcholine 66 15%
Adrenoceptors 120 27.3%
Dopamine 94 21.4%
Serotonin 159 36.2%

Class B Secretin like 309 11.4%
Class C Metabotropic glutamate/

pheromone 206 7.6%
Class D Fungal pheromone 65 2.4%
Class E cAMP receptors 10 0.4%
Class F Frizzled/Smoothened

family 130 4.8%
Class Z Archaeal/bacterial/

fungal opsins(Non-GPCR) 110 4.1%
Total 2714 100%

Table 2. Binary-class classification dataset list

Dataset Description # Protein % of Dataset
D ¬D D ¬D D ¬D

Outer Membrane
Proteins (OMP)∗

Inner Membrane, Extra-
cellular, Cytoplasm

352 1013 25.8% 74.2%

Extracellular pro-
teins

Intracellular proteins 127 3166 3.9% 96.1%

Outer Membrane
Proteins (OMP)∗

Globular proteins 377 674 35.9% 64.1%

MC required no parameter settings. For the Spectrum kernel, we used k = 3.
For g-MARS, AAC and AAPC, for each dataset we used the gap that gave the
best average performance (according to f-measure, see below), using 5-fold cross
validation with a verification dataset (a subset of the training data whose class
labels are known to the classifiers, but which is not used in training). For the
FS algorithm we mined the frequent substring patterns from the target class
having minimum length as 3, minimum support as either 0.1% or 3 (whichever
is greater) and minimum confidence of 90% [15]. For g-MARS, FS and AAPC,
we used the RBF kernel. The gamma and cost parameters for this kernel were
chosen using the tool in the LIBSVM package [1]. For g-MARS, one can use
gamma as 0.0078125 and cost as 32.0 or 2048.0 to expect generally good per-
formance. For GMM, we tested the three configurations provided by the authors.
The first of these (standard single item 6th order Markov model) produced the
best results in all datasets and we list its performance in the tables.
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Table 3. Results of the three binary-class experiments

OMP vs. Inn+Ext+Cyt Extra vs. Intra OMP vs. Globular
Alg. A%∗ P% R% F% A% P% R% F% A% P% R% F%
g-MARS 95.16 94.97 85.8 90.15 98.66 93.68 70.08 80.18 96.76 95.98 94.96 95.47
Spectrum 94.36 92.83 84.66 88.56 98.15 92.31 56.69 70.24 95.62 95.59 92.04 93.78
FS 90.04 79.35 82.95 81.11 98 95.52 50.39 65.98 91.53 82.88 96.29 89.08
AAC 78.38 51.49 78.69 62.25 88.59 18.64 58.27 28.24 80.02 67.88 84.08 75.12
AAPC 95.6 94.24 88.35 91.2 98.45 93.18 64.57 76.28 92.86 85.78 96.02 90.61
MC 82.49 61.06 88.64 72.31 94.02 36.74 76.38 49.62 86.77 76.44 91.25 83.19
GMM 34.10 42.74 100 59.89 97.40 65.20 39.40 36.25 90.00 88.55 77.34 82.27
∗ A: accuracy, P: precision, R: recall, F: f-measure.

Evaluation. In order to give a comprehensive analysis of how good the classi-
fiers are, we use 4 metrics accuracy (a), precision (p), recall (r) and f-measure (f )
as:
a = |{t⊆TeDB|t.pc=t.c}|

|TeDB| ; p = |{t⊆TeDBT |t.pc=T}|
|{t⊆TeDB|t.pc=T}| ;

r = |{t⊆TeDBT |t.pc=T}|
|{t⊆TeDBT }| ; f = 2∗p∗r

(p+r) .

For multi-class classification, a different overall accuracy measurement is used:

a =
∑

Ti

|{t⊆TeDBTi
|t.pc=t.c}|

|TeDB| . The accuracy for each target class Ti is calculated

as: ai = |{t⊆TeDBTi
|t.pc=t.c}|

|TeDBTi
| . The accuracy measurement tells how many pro-

teins are classified correctly overall. For the rare-class classification case, preci-
sion and recall are more meaningful. When comparing algorithms, the f measure
is a standard way of combining precision and recall to get a single measure. We
used stratified 5-fold cross validation for testing.

Performance on binary-class data. The accuracies of the five algorithms
on the 3 binary-class classification problems are listed in Table 3. g-MARS per-
forms strongly for the first set of data, the outer membrane proteins vs. the inner
membrane, extracellular and the cytoplasm proteins. In this set the amino acid
pair composition algorithm works quite well. g-MARS gives generally good per-
formances on all the datasets, because the discriminative information of markov
chains in g-MARS does not rely on any particular property of proteins being in
specific domains. The MC classifier given in the last row uses the log odd ratio
score to classify the proteins [3]. The performance tells that simply adding up
the score ratios from different classes does not give good answers. This partly
shows the superiority of using the SVM to make the decisions.

Performance on GPCR subfamilies. The classification results for the GPCR
level-2 and level-0 subfamilies are given in Tables 4 and 5, respectively. The
diversities of subfamilies are greater for level-0 proteins than for level-2 proteins.
That is the reason why generally we gain better results for level-2 proteins.
There are certain subfamilies in level-0 that are easily separated from other
subfamilies such as Class E cAMP receptors. Most of the classifiers do not make
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Table 4. The accuracy (%) of the GPCR level 2 subfamilies prediction

Level-2 Subfam-
ily

g-MARS Spectrum FS AAC AAPC MC GMM

Acetylcholine 100 95.45 95.45 87.88 93.93 95.45 85.52
Adrenoceptors 100 100 100 62.5 100 95.83 83.67
Dopamine 98.93 95.74 94.68 76.6 85.11 85.11 80.21
Serotonin 98.11 100 97.48 77.99 94.97 94.34 75.48

Table 5. The accuracy (%) of the GPCR level 0 subfamilies prediction.

Level-0 Subfamily g-MARS Spectrum FS AAC AAPC MC GMM

Class A Rhodopsin like 99.84 99.52 98.57 78.66 99.73 91.77 77.93
Class B Secretin like 99.38 98.06 95.47 60.2 95.46 96.12 94.00
Class C Metabotropic gluta-
mate/pheromone

98.06 95.15 91.26 76.21 97.09 93.69 82.70

Class D Fungal pheromone 89.23 86.15 81.54 89.23 83.07 95.38 76.20
Class E cAMP receptors 100 100 100 90 90 100 83.00
Class F Frizzled/Smoothen-
ed family

98.46 97.69 96.15 93.85 92.31 90.77 85.53

Class Z Archaeal/bacterial
/fungal opsins (non-GPCR)

96.36 94.55 86.36 92.73 92.73 95.45 90.12

mistakes for proteins from this family. By looking at this family we know that the
structures of the proteins within this family are quite different from proteins of
other families. Some proteins contain long contiguous asparagine and histidine.
The performances for most classifiers are quite good for identifying which protein
belongs to Class A Rhodopsin like subfamily (Hight percentages in the first row of
Table 5). This is due to the abundant proteins of this family. So as an observation
about Table 5, we can say that for the classifiers tested here, having more testing
data means a more accurate the model can be built. The more distinctive the
data is, the easier it is for the model to make correct decision. This is generally
true for most feature-based classifiers. From both the tables we can also see that
g-MARS performs generally better than all the other classifiers.

T-test. We conducted t-tests with a 95% confidence on the results. g-MARS
wins 16 times, draws 9 times and loses 0 times. The Spectrum ranks the second
best with 11 wins, 14 draws and 1 loses. The third best algorithm is the AAPC
and the performance is 8 times winning, 14 times drawing and 3 times losing.
From a statistical point of view, g-MARS wins the most which means it performs
generally the best. Comparing directly against the Spectrum, g-MARS wins on
1 dataset and on the rest draws. It’s running time is generally at least 10% faster
than the Spectrum, even for high gaps.

How to choose the proper gap. The gap can be chosen by performing cross
validation on the training dataset. Set aside a portion of training data as test
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Fig. 1. g-MARS performance for varying gap on OMP vs. Inner, Extra, Cytoplasm
dataset

data, try different gaps and choose the one which yields best accuracy. We can
also make some general remarks about gap behaviour. Figure 1 shows the change
in accuracy for g-MARS with various gaps. For gap 0, which is the case in the
traditional markov chain, the performance is poor. With the increase of the gap,
overall performance becomes stable. The f-measure achieves its peak value when
the gap is set to 11. So instead of using cross validation, one could also begin
by using the gap as 7 and then increase and decrease the gap from this value,
finishing when the result remains stable (changes are smaller than a certain θ).

Running time. For classifiers working on large volumes of data, time efficiency is
an important factor. We discussed the time complexity of g-MARS in Section 2.2.
We also measured the running time for g-MARS on the OMP vs. Inner, Extra and
Cytoplasm dataset with various gaps. The time includes the time 5-fold cross val-
idation. and increases roughly linearly with the increment of the gap. For gap as
0, the executable time is less than 25 seconds and for the largest gap it only takes
slightly more than 350 seconds, which is quite acceptable.

4 Conclusion and Future Work

In this paper we have extended the traditional markov chain to the gapped
markov chain. We proposed the g-MARS classifier, which uses gapped markov
chains and support vector machines to classify proteins. Compared to other
work, it has the following merits: It is computationally efficient and can han-
dle large volumes of proteins. It does not need prior knowledge to achieve good
performance and can be generalized to any sequence classification problem. The
growth of the gap length increases the dimension of the vectors linearly rather
than exponentially like the Spectrum kernel, so it is realistic to use large gaps.
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Experimental results show it has generally superior accuracy for a range of pro-
tein datasets with diverse characteristics. Overall, g-MARS is a very practical
algorithm to handle protein classification.
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Abstract. Theprotein-protein interactions (PPIs) are generally assumed
to be mediated by domain-domain interactions (DDIs). Many computa-
tional methods have been proposed based on this assumption to predict
DDIs from available data of PPIs. However, most of the existing methods
are generative methods that consider only PPI datawithout taking into ac-
count non-PPIs. In this paper, we propose a novel discriminative method
for predictingDDIs from bothPPIs and non-PPIs, which improves the pre-
diction reliability. In particular, the DDI identification is formalized as a
feature selection problem, which is equivalent to the parsimonious prin-
ciple and is able to predict both DDIs and PPIs in a systematic and ac-
curate manner. The numerical results on benchmark dataset demonstrate
that formulating DDI prediction as a feature selection problem can predict
DDIs from PPIs in a reliable way, which in turn is able to verify and further
predict PPIs based on inferred DDIs.

Keywords: Discriminative approach, domain-domain interaction, fea-
ture selection, protein-protein interaction.

1 Introduction

Proteins exert their functions by interactingwith each other [1].Generally, one pro-
tein interacts with its partner by binding one of its domains to the domain(s) in its
target protein. In other words, proteins interact with each other through domain-
domain interactions (DDIs) [2] [3]. Recently, many computational methods have
been proposed to identify domain interactions from protein interactions. For ex-
ample, Sprinzak and Margalit [4] proposed the Association method for predicting
domain interactions based on the frequency of observed protein interactions that
contain the pair of domains. Deng et al. [5] presented a maximum likelihood esti-
mation (MLE) method as well as an Expectation-Maximization (EM) algorithm
to infer underlying domain interactions from protein interactions. Liu et al. [6]
combined protein interactions from multiple species to identify interacting domain
pairs. Riley et al. [7] developed a new method, namely Domain Pair Exclusion
Analysis (DPEA), to predict domain interactions based on all of the protein in-
teractions from Database of Interacting Proteins (DIP) [8], where a new score,
i.e. E-value, is developed to assess the contribution of each possible domain pair
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to the likelihood of a set of observed protein interactions. It is shown that the
DPEA method outperforms both MLE [5] and Association method [4]. Recently,
Guimaräes et al. [9] developed a linear programming model, namely Parsimonious
Explanation (PE), to predict domain interactions based on the parsimonious prin-
ciple with the assumption that a given set of protein-protein interactions are ac-
complished through the minimal set of domain interactions. The PE method is
shown to outperform DPEA [7], Association [4] and MLE [5] based on numeri-
cal simulations. Moreover, Lee et al. [10] developed a Bayesian approach to pre-
dict high confidence domain interactions based on the integration of multiple data
sources from multiple species, where the integration of multiple data sources sig-
nificantly improves the prediction accuracy comparedwith single data source anal-
ysis.

The methods described above assume that protein interactions are mediated
by domain-domain interactions, and they try to identify the DDIs underlying the
PPIs. Despite the success on specific datasets, most of the existing computational
methods are generative methods, where a model is constructed based on the
protein-protein interaction data with the assumption that proteins interact with
each other through domain-domain interactions. However, the existing methods
use only available data of PPIs without the consideration of the non-PPIs, which
may result in imbalance problem of information [11] [12]. Since the proteins are
assumed to interact through domain interactions, domain pairs occurring in the
non-PPIs are more likely false DDIs [7]. Therefore, the non-PPI data can provide
insight into the domain interaction.

In this paper, we proposed a novel discriminative approach, namely domain
interaction prediction in a discriminative way (DIDD), to predict domain in-
teractions based on protein interactions. Different from the existing methods,
both PPIs and non-PPIs are considered in DIDD, thereby not only alleviating
the imbalance problem of information but also improving prediction accuracy.
In particular, DDI prediction is formulated as a feature selection problem in ma-
chine learning, which is in consistent with parsimonious principle that protein
interactions are accomplished through the minimum set of domain interactions.
In feature selection, the possible domain pairs are assessed according to their
contributions to the discrimination between PPIs and non-PPIs. The proposed
method is able to predict DDIs based on PPIs, which in turn can predict and
verify PPIs based on the inferred DDIs, i.e. selected features in this case. The
numerical results on benchmark datasets demonstrate the effectiveness and effi-
ciency of the proposed method.

The rest of the paper is organized as follows: Section 2 describes the meth-
ods that are proposed for identifying DDIs from PPIs; Section 3 presents the
numerical results on benchmark dataset; The conclusions are drawn finally.

2 Methods

The idea behind DDI identification in PPIs is that PPIs are mediated by DDIs.
Therefore, the domain pairs that best discriminate PPIs and non-PPIs are more
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likely the true DDIs. The PE [9] method assumes that the given protein interac-
tions can be approximately accomplished by the minimum set of domain-domain
interactions, which is in consistent with the idea behind feature selection that
tries to find out as few informative features (e.g. DDIs) as possible for classifica-
tion (e.g. discrimination between PPIs and non-PPIs). However, feature selection
works in a discriminative way that take into account non-PPIs. Therefore, higher
prediction accuracy is expected.

2.1 Feature Vector Construction

The discrimination between PPIs and non-PPIs is actually a binary classification
problem. To utilize the discriminative methods, the positive samples (i.e. PPIs)
and negative samples (i.e. non-PPIs) should be represented as feature vectors. In
this work, each sample is a protein pair (either interacting pair or non-interacting
pair) and is represented as a vector. The positive samples are PPIs from protein
interaction database, whereas the negative samples are protein pairs that are ran-
domly generated except the known PPIs. The rationality behind the method gen-
erating negative samples is that only one out of six hundred randomly generated
protein pairs is possibly the true PPI, and this method has also been employed
widely in the literature [13] [14]. For the PPIs, all the possible combinations of
two domains are found and kept in order, where each domain pair exists in at
least one interacting protein pair. After getting all the domain pairs, each sample
is represented as a feature vector, where the feature value is 1 if the corresponding
domain pair occurs in the sample and otherwise 0.

2.2 Classifier

After constructing the feature vectors, we need to design classifier to discrimi-
nate the PPIs from non-PPIs. It can be seen that the vectors generated above
have following properties: 1) sparse content, i.e. most of the feature values are
0; 2) high dimension due to the large number of possible combinations among
domains; 3) few positive samples but large number of negative smaples. There-
fore, the conventional classifiers such as Support Vector Machines and Nearest
neighbor classifier cannot be used here.

In this paper, we designed a simple classifier to discriminate PPIs from non-
PPIs based on the specific data structure and the assumption that DDIs mediate
PPIs. For a given protein pair vector xi, the class label yi corresponding to it
can be defined as:

yi =

{

1, if
∑

j xij ≥ 1,

−1, otherwise,
(1)

where xij is the value of the jth feature in the ith sample. The idea behind the
classifier is that if the domain combination corresponding to xij is the true DDI
and the protein pair xi contains the domain combination (i.e. xij = 1 in this
case), then the protein pair xi is an interacting pair and yi = 1 accordingly.
Since the classifier does not involve any model training procedure, there is not
any problem of overfitting.
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2.3 Feature Selection

Given a set of PPIs and non-PPIs, we want to find out which domain combina-
tions mediate the PPIs, i.e. the putative DDIs. With the constructed vectors and
the assumption that PPIs are mediated by DDIs, we can formulate DDI predic-
tion as a feature selection problem. In feature selection, the purpose is to find
out as few informative features as possible to build a reliable and accurate learn-
ing model. In this case, feature selection aims to find out the domain pairs that
discriminate PPIs from non-PPIs. It can be seen that the idea behind feature
selection is equivelant to the parsimonious principle that the domain-domain
interactions are well approximated by the minimum set of DDIs mediating the
given set of PPIs [9]. However, non-PPIs are also taken into account in this work.
The domain pairs kept in feature selection are assumed to be the putative DDIs.

Considering the specific data structure and imbalance between positive and
negative samples, the unbalanced correlation score proposed in [15] is utilized to
rank the features, which is defined as:

sj =
∑

yi=1

xij − λ
∑

yi=−1

xij (2)

where sj is the score for the jth feature, yi is the label for sample xi, xij is the
value for the jth feature in vector xi, and λ is a penalty parameter to punish the
occurrance of the feature in negative samples. Generally, a large value is adopted
for λ, e.g. λ = 5 in this work. The higher the score sj is, the higher feature j
is ranked. The idea behind the method is that the more frequently the feature
occurs in positive samples and less in negative samples, the more informative it
is, thereby more likely true DDIs.

2.4 Performance Evaluation

To see the performance of the classifier, the following measures are adopted in
this work, including precision, recall, F1-measure:

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1 =
2 ∗ precision ∗ recall

precision + recall
(5)

where TP means the number of positive samples that are predicted correctly, FN
means the number of positive samples that are predicted as negative samples,
FP means the number of negative samples that are predicted as positive samples,
and FP means the number of negative samples that are predicted correctly.
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3 Results and Discussion

To test the performance of the proposed method, the DIDD method was applied
to predict DDIs based on a set of protein-protein interactions from 69 organisms,
which was constructed by Riley and colleagues [7]. This dataset is denoted as
“Riley test set” here, and was also used by the PE method [9]. The Riley test set
contains all the protein interactions from DIP database [8], and domains were
assigned to proteins by employing the Pfam hidden markov model profiles [16].
Note that only Pfam-A domains were assigned to the proteins here. Table 1 lists
the datasets used in this work, where PPI denotes protein-protein interactions,
DDI denotes domain-domain interactions, proteins are proteins involved in PPIs,
and number represents the number of PPIs, non-PPIs, proteins and potential
DDIs used in this work.

Table 1. The datasets used in this work

PPIs non-PPIs Proteins Potential DDIs

Number 26,032 11,651,400 11,403 27,617

The DIDD method was first applied to predict the DIP protein interactions
by selecting informative features (i.e. domain pairs), where the unbalanced cor-
relation score [15] was employed in feature selection. This procedure continues
until the prediction accuracy does not improve any more. Consequently, the do-
main pairs corresponding to the selected features were seen as putative DDIs.
With the iPfam dataset as the gold standard, we compared DIDD with previous
methods, i.e. DPEA and PE methods, with respect to precision and recall, where
the results by PE are those predicted with PPI reliability of 50% and pw-score
≤ 0.01, and the top 3005 predictions by DPEA are seen as its predictions. For
fair comparison, only the predictions by PE and DPEA that involve Pfam-A
domains are considered. In particular, we investigated the number of difficult
predictions by different methods as described in [9] and [7], where the necessity
of assessing predictions with respect to the difficulty has been justified in [7]. In
this work, the definition of difficult prediction described in [9] was adopted to
validate the proposed method, and a DDI is assumed to be difficult to predict if
the domain pair is not contained in any single-domain interacting protein pair.
Table 2 summarizes the prediction results by different methods on this dataset.
From the results, we can see that the DIDD method outperforms the other two
methods. Especially, DIDD can predict more difficult tasks compared with other
two methods. The results clearly demonstrate the prediction power of the pro-
posed method especially on difficult gold standard pairs, and thereby is a good
complement to existing methods. Furthermore, the results also demonstrate that
the non-PPIs can really help to improve the prediction accuracy.

In addition, to test the performance of DIDD, the datasets from DOMINE [17]
database were employed to test how much of our predictions can be validated by
at least one other existing computational method. DOMINE is a database that
contains known and predicted domain interactions, including DDIs from 3DID
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Table 2. Comparison of different methods on DDI prediction based on Riley test set

method precision recall difficult predictions

DPEA 10.21% 23.63% 5
PE 12.21% 29.63% 75
DIDD 20.80% 29.76% 157

Table 3. Comparison of various methods on Riley test set, where percentage means the
percentage of predictions that can be validated by at least one other existing method.

Methods DIDD DPEA+PE RCDP Bayesian

Percentage 50.71% 23.80% 39.60% 41.50%

Table 4. Performance of various methods in predicting PPIs based on inferred DDIs
for the Riley test set

Methods precision recall F1

DIDD 100.00% 6.07% 11.44%
DPEA 3.30% 16.24% 5.48%
PE 3.68% 19.19% 6.17%

[18], iPfam [19] and those predicted by different computational approaches. In
this example, the DIDD method was compared against DPEA [7], PE [9], RCDP
[20] and Bayesian approach [10]. Table 3 shows the comparison of various meth-
ods on how much of their prediction can be validated by at least one other
existing computational method, where the statistics of the other methods are
from the DOMINE database [17]. From the results, we can see that most of our
predictions have been validated by at least one other computational method and
has higher prediction accuracy compared with other methods, which confirms
the efficiency and effectiveness of DIDD. In the DOMINE [17] database, each
predicted or known DDI is associated with a confidence score. To see the perfor-
mance of DIDD, we further investigated how much of the our predictions have
high confidence scores. Figure 1 shows the distribution of confidence scores for
the predictions by DIDD, where we can see that a relatively small number of our
predictions have low confidence scores, which clearly demonstrate the prediction
power of DIDD.

In addition, to validate the predicted DDIs by the proposed method, we pre-
dicted PPIs based on the inferred DDIs. In addition, DIDD was compared against
PE and DPEA in predicting PPIs based on the inferred DDIs to test the predicted
DDIs. In this work, the classifier and samples (i.e PPIs and non-PPIs) used by
DIDD were employed to test the predicted DDIs by PE [9] and DPEA [7], where
the inferred DDIs were treated as the selected features as described in Methods.
Table 4 shows the comparison of performance of various methods in predicting
PPIs based on inferred DDIs. From Table 4, it can be seen that the proposed DIDD
method outperforms other existing methods in discriminating the PPIs and non-
PPIs based on inferred DDIs. The DIDD method got high precision means that
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Low Confidence

Prediction results validated in DOMINE

Fig. 1. Distribution of confidence scores for the predictions by DIDD on Riley test set

most of its predictions are true DDIs, while a low recall means that DIDD only pre-
dict a small number of domain pairs as domain interactions. The results demon-
strate that the DDIs predicted by DIDD are more possibly the true DDIs that
mediate PPIs compared against other existing methods, which confirms the effec-
tiveness and efficiency of DIDD in predicting DDIs from PPIs. Furthermore, the
DIDD can also validate and predict PPIs based on the inferred DDIs.

4 Conclusions

Understanding PPIs at domain level can provide insight into protein function
and evolutionary history of PPIs. In this paper, a novel method, namely domain
interaction prediction in a discriminative way (DIDD), is presented for predicting
DDIs from data of available PPIs. Unlike existing methods, DIDD considers both
PPIs and non-PPIs. Since PPIs are typically assumed to be mediated by DDIs,
the domain combinations occurring in the non-PPIs are more possibly false DDIs.
Therefore, higher prediction accuracy is expected for DIDD by taking non-PPIs
into account. In particular, in this work, DDI prediction is formalized as feature
selection, which is in consistent with parsimonious principle that DDIs can be
approximated by the minimum set of DDIs that mediate the given PPIs [9].
By selecting the informative features, DIDD can predict those DDIs that really
mediate the given PPIs, and in turn help to verify and predict PPIs based on
the inferred DDIs. The results on benchmark data prove the predictive power
of our method. In addition, the overlap between the predictions by DIDD and
published results demonstrate the effectiveness and efficiency of the proposed
method.
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Abstract. The increasing growth of data on protein-protein interaction
(PPI) networks has boosted research on their comparative analysis. In
particular, recent studies proposed models and algorithms for perform-
ing network alignment, the comparison of networks across species for
discovering conserved modules. Common approaches for this task con-
struct a merged representation of the considered networks, called align-
ment graph, and search the alignment graph for conserved networks of
interest using greedy techniques. In this paper we propose a modular ap-
proach to this task. First, each network to be compared is divided into
small subnets which are likely to contain conserved modules. To this
aim, we develop an algorithm for dividing PPI networks that combines
a graph theoretical property(articulation) with a biological one (orthol-
ogy). Next, network alignment is performed on pairs of resulting subnets
from different species. We tackle this task by means of a state-of-the-art
alignment graph model for constructing alignment graphs, and an exact
algorithm for searching in the alignment graph. Results of experiments
show the ability of this approach to discover accurate conserved mod-
ules, and substantiate the importance of the notions of orthology and
articulation for performing comparative network analysis in a modular
fashion.

Keywords: Protein network dividing, modular network alignment.

1 Introduction

With the exponential increase of data on protein interactions obtained from
advanced technologies, data on thousands of interactions in human and most
model species have become available (e.g. [1,2]). PPI networks offer a powerful
representation for better understanding modular organization of cells, for pre-
dicting biological functions and for providing insight into a variety of biochemical
processes.

Recent studies consider a comparative approach for the analysis of PPI net-
works from different species in order to discover common protein groups which
are likely to be related to shared relevant functional modules [3,4,5].
� Corresponding author.
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This problem is also known as pairwise network alignment. Algorithms for
this task typically construct a merged graph representation of the networks to
be compared, called alignment (or orthology) graph, and model the problem as
an optimization problem on such graph. Due to the computational intractability
of such optimization problem, greedy algorithms are commonly used [6,7,8,9,10].

1.1 Problem Statement

Conserved modules, discovered by computational techniques such as [6], have
in general small size compared to the size of the PPI network they belong to.
Moreover, PPI networks are known to have a scale-free topology where most
proteins participate in a small number of interaction while a few proteins, called
hubs, contains a high number of interaction. As indicated by recent studies,
hubs whose removal disconnects the PPI network (articulation hubs) are likely
to appear in conserved interaction patterns [11,12]. These observations motivate
the focus of this paper on the problem of performing modular network alignment.
Specifically, we propose a two phases approach for this task: divide and align.
The divide phase transforms each PPI network into a set of small subnets which
are expected to cover conserved complexes. The align phase uses an existing
evolution-based alignment graph model to merge suitable pairs of subnets from
each species, and an exact search technique for extracting conserved modules
from each alignment graph.

1.2 Contributions

We introduce an heuristic algorithm for dividing a PPI network into subnets,
which combines biological (orthology) and graph theoretical (articulation) infor-
mation. The algorithm starts by identifying groups of orthologous articulations,
called centers, which are expanded into subsets consisting of orthologous nodes.

The algorithm automatically determines the number of subsets and has the
property of being parameterless.

We use this algorithm for performing network alignment, by merging pairs
of resulting subnets from different species, and applying exact optimization for
searching conserved modules across species. We introduce a new notion, modu-
lar alignment, because we align only particular PPI subnets achieving conserved
modules inside of them while current methods of global or local network align-
ment try to align whole PPI networks.

In order to test the performance of this approach, we consider an instance of
the method that uses a state-of-the-art evolution-based alignment graph model
[6]. Results of experiments show effectiveness of the proposed approach, which is
capable of detecting accurate conserved complexes. Furthermore, we show that
improved performance can be achieved by merging modules detected with our
algorithm with those identified by Koyuturk et al. algorithm [6]. In general,
these results substantiate the important role of the notions of orthology and
articulation in modular comparative PPI network analysis.
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1.3 Related Work

Recent overviews of approaches and issues in comparative biological networks
analysis are presented in [4,5]. Based on the general formulation of network
alignment proposed in [3], a number of techniques for (local and global) network
alignment have been introduced [6,7,8,9,10,13].

Techniques for local network alignment commonly construct an orthology
graph, which provides a merged representation of the given PPI networks, and
search for conserved subnets using greedy techniques [6,7,8,9,10].

While the above algorithms focus on alignment of whole global networks, we
focus on ’modular’ network alignment. Modular network alignment is an align-
ment of particular subnets of given networks to be compared. To the best of our
knowledge, we propose the first algorithm which directly tackles the modularity
issue in network alignment in the meaning that dividing step achieves conserved
modules inside of particular subnets and therefore one can perform only modular
alignment for local network alignment problem.

Many papers have investigated the importance of hubs in PPI networks and
functional groups [12,14,15,16,17,18]. In particular, it has been shown that hubs
with a central role in the network architecture are three times more likely to
be essential than proteins with only a small number of links to other proteins
[16]. Moreover, if we take functional groups in PPI networks, then, amongst
all functional groups, cellular organization proteins have the largest presence
in hubs whose removal disconnects the network [12]. Computational techniques
for identifying functional modules in PPI networks generally search for clusters
of proteins forming dense components [19,20]. The scale-free topology of PPI
networks makes difficult to isolate modules hidden inside the central core [21].
In [22] several multi-level graph partitioning algorithms are described addressing
the difficulty of partitioning scale-free graphs.

The approach we propose differs from the above mentioned works because
it does not address (directly) the problem of identifying functional modules in
a PPI network, but uses homology information and articulations for dividing
PPI networks into subnets in order to perform network alignment in a modular
fashion.

2 Graph Theoretic Background

Given a graph G = (U, E), nodes joined by an edge are called adjacent. A
neighbor of a node u is a node adjacent to u. The degree of u is the number of
elements in E containing the vertex u.

Let G(U, E) be a connected undirected graph. A vertex u ∈ U is called artic-
ulation if the graph resulting by removing this vertex from G and all its edges,
is not connected.

A tree is a connected graph not containing any circle. A tree is called rooted
tree if one vertex of the tree has been designated as the root. Given a rooted tree
T (V, F ), the depth of a vertex v ∈ V is the number of edges from the root to
v without repetition of edges. Leaves of the tree T are vertices which have only
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Fig. 1. Examples of spanning and centered tree in the same graph. The dark grey
node in the left figure represents a root. Dark grey nodes in the right figure represent a
center. Numbers indicate depths of nodes in trees. Solid edges are edges of a spanning
tree. Dash edges are other edges of the graph.

one neighbor. The depth of a tree is the highest depth of its leaves. A spanning
tree T (V, F ) of a connected undirected graph G(U, E) is a tree where V = U
and F ⊆ E.

Given an edge-weighted (or node-weighted) graph G(U, E) with a scoring
function w : e ∈ E → � (or w : u ∈ U → �). Total weight w(G) of G is the sum
of weights of all edges (or nodes) in the graph:

w(G) =
∑

∀e∈E

w(e) (or w(G) =
∑

∀u∈U

w(u) ).

Suppose a connected undirected graph G(U, E) and a vertex u ∈ U are given.
Let N(u) a set of all neighbors of u and N ′(u) ⊆ N(u) be. A center of u is the
set C(u) ≡ N ′(u) ∪ {u}.

Observe that a center can be expanded to a spanning tree of G(U, E). More-
over, the center as an initial set of expansion can be consider as a root if we
merge all vertices of center to one node. Such spanning tree created from a cen-
ter, called centered tree, has zero depth all vertices of center and the vertices of
i- depth are new nodes added in ith iteration of expansion to the spanning tree.
Therefore a centered tree , can be generated as follows:

– The 0-depth of the centered tree is the center
– The i-th depth of the centred tree consists of all neighbors of (i−1)-th depth

which are not yet in any lower depth of the centered tree yet.

Examples of a spanning and centered tree are on Figure 1.
A PPI network is represented by an undirected graph G(U, E). U denotes the

set of proteins and E denotes set of edges, where an edge uu′ ∈ E represents
the interaction between u ∈ U and u′ ∈ U . Given PPI networks G(U, E) and
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H(V, F ). A vertex u ∈ U is orthologous if there exists at least one vertex v ∈ V
such that uv is an orthologous pair. Orthologous articulation is an orthologous
vertex which is an articulation. An orthology path is a path containing only
orthologous vertices.

3 From Orthologous Articulations through Centers to
Trees

Given a PPI network G(U, E) and the set of vertices O ⊆ U , which are orthol-
ogous w.r.t. the vertices of the other PPI network to be compared with G. Let
n = |O|. We generate centers from orthologous articulations, and expand them
into centered subtrees containing only orthologous proteins. The resulting algo-
rithm, called Divide, is sketched in pseudo-code in Algorithm 1, and described
in more detail below.

Computing Articulations (Line 1). Computation of articulations can be per-
formed in linear time by using, e.g., Tarjan’s algorithm described in [23] or [24].

Greedy Construction of Centers (Lines 3-10). The degree (in G) of all or-
thologous articulations is then used for selecting seeds for the construction of
centers. Networks with scale-free topology appear to have edges between hubs
systematically suppressed, while those between a hub and a low-connected pro-
tein seem favored [25]. Guided by this observation, we greedily construct centers
by joining one orthologous articulation hub with its orthologous articulation
neighbors, which will more likely have low degree.

Specifically, let A be the set of orthologous articulations of G. The first cen-
ter consists of the element of A with highest degree and all its neighbors in A.
The other centers are generated iteratively by considering, at each iteration, the
element of A with highest degree among those which do not occur in any of
the centers constructed so far, together with all its neighbors in A which do not
already occur in any other center. The process terminates when all elements of A
are in at least one center. Then an unambiguous label is assigned to each center.

Initial Expansion (Lines 11-16). By construction, centers cover all orthologous
articulations. Articulation hubs are often present in conserved subnets detected
by means of comparative methods such as [6]. Therefore, assuming that the
majority of the remaining nodes belonging to conserved modules are neighbors
of articulation hubs, we add to each center all its neighboring ortholog proteins,
regardless whether they are or not articulations. We perform this step for all
centers in parallel.

We mark these new added proteins with the label of the centers to which they
have been added. These new added proteins form the first depth centered trees.

Observe that there may be a non-empty overlap between first depth centered
trees (as illustrated in the right part of Figure 2).
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Fig. 2. Examples of centers of centered trees (left figure) and of their initial expansion
(right figure). Seeds of centers are solid nodes. Dark grey nodes are the rest of centers
connected to a seed by solid edges. Light grey nodes are orthologous proteins which are
not articulations. Empty nodes are non-orthologous proteins. Dot edges are the rest
of edges in the graph. In the second (right) graph dash edges indicate the expansion
and connect nodes of centers (zero depth centered trees) with nodes of the first depth
centered trees. Nodes on the grey background indicate the overlap among centered
trees.

Parallel Expanding of Trees (Lines 17-27). Successive depths of trees are
generated by expanding all nodes with only one label which occur in the last
depth of each (actual) centered tree. We add to the corresponding trees all
orthologous neighbors of these nodes which are not yet labelled. Then we assign
to the newly added nodes the labels of the centered trees they belong to. This
process is repeated until it is impossible to add unlabeled orthologous proteins
to at least one centered tree.

Observe that each iteration yields to possible overlap between newly created
depths (see the left part of Figure 3).

Assigning Remaining Nodes to Trees (Lines 28-42). The remaining or-
thologous nodes, that is, those not yet labelled, are processed as follows. First,
unlabeled nodes which are neighbors of multi-labelled nodes are added to the
corresponding centered trees. Then the newly added nodes are marked with
these labels. This process is iterated until there are no unlabeled neighbors of
multi-labelled nodes.

Nodes which are not neighbors of any labelled protein are still unlabeled.
We assume that they may possibly be part of conserved complexes which do
not contain articulations. Hence we create new subtrees by joining together all
unlabeled orthologous neighbor proteins.

An example of these final steps is shown on the right part of Figure 3.

Complexity. The algorithm divides only orthologs of a given PPI network where
the number of all orthologs is n = |O|. It performs a parallel breadth-first search
(BFS). It general, BFS has O(|V | + |E|) complexity, where V and E denote
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Fig. 3. Examples of parallel expansion of trees (left figure) and of the final assigning
remaining nodes (right figure). Seeds of centers are solid nodes. Dark grey nodes are
the rest of centers connected to a seed by solid edges. Light grey nodes are orthologous
proteins which are not articulations. Empty nodes are non-orthologous proteins. Dash
edges indicate the process of expansion. Dot edges are the rest of edges in the graph.
Nodes on the grey background create the overlap. Numbers are labels of trees assigned
to nodes during expansion.

the number of nodes and edges, respectively. However, Divide constructs trees
considering only orthologous nodes, so the number of edges, which are traversed,
is |O′| − 1, where |O′| is the number of orthologs vertices of the constructed
subtree. The possible overlap between trees can increase the number of traversed
edges and visited vertices. In the worse case all orthologous vertices are visited
by each center (all nodes are in the overlap). So, if the number of centers is k,
the complexity of Divide is O(kn).

4 Divide and Align Algorithm

The Divide algorithm divides orthologous proteins of the PPI network into over-
lapping subtrees. We separately apply this algorithm to each of the two PPI
networks from the distinct species to be compared. Nodes of each constructed
subtree induce a PPI subnetwork. Pairs of such induced subnetworks from dif-
ferent species are merged into small orthology graphs if at least two orthologous
pairs exist between proteins of those subnetworks.

To this aim we use a common approach, based on the construction of a
weighted metagraph between two PPI networks of different species. In this meta-
graph each node corresponds to an homologous pair of proteins, one from each
of the two PPI networks. The metagraph is called alignment or orthology graph.
Weights are assigned either to edges, like in [6], or to nodes, like in [7], of the
alignment graph using a scoring function. The function transforms conservation
and eventually also evolution information to one real value for each edge or node.

In our experiments we use the evolution-based alignment graph model intro-
duced in [6]. In that model, a weighted alignment graph is constructed from a
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Algorithm 1 Divide algorithm
Input: G: PPI network, O: orthologous nodes of G
Output: S: list of subsets of O
1: A = { orthologous articulations of G}
2: S =<>
3: repeat {Construction of centers}
4: root = element of A with highest degree not already occurring in S
5: s = {root} ∪ { neighbors of root in A not already occurring in S}
6: S =< s, S >
7: until all members of A occur in S
8: d = 0
9: Assign depth d to all elements of S

10: Assign label ls to each s in S and to all its elements
11: for s in S do
12: s = s ∪ { all neighbors of s in O}
13: Assign label ls to all neighbors of s in O
14: end for
15: d = 1
16: Assign depth d to all elements of S having yet no depth assigned
17: repeat {Expand one depth centered trees from nodes with one label}
18: N = { unlabeled neighbors in O of elements in s of depth d having only one label }
19: for n in N do
20: Assign to n all labels of its neighbors of depth d having only one label
21: for ls ∈ n do
22: s = s ∪ {n}
23: end for
24: end for
25: d = d + 1
26: Assign depth d to all elements of S having yet no depth assigned
27: until S does not change
28: repeat {Expand centered trees from nodes multiple labels}
29: R = { unlabeled proteins in O with at least one multi-labelled protein as neighbor }
30: for r in R do
31: Assign to r all labels of its neighbors
32: for ls ∈ r do
33: s = s ∪ {r}
34: end for
35: end for
36: until S does not change
37: repeat
38: choose an unlabeled element u of O
39: t = {u} ∪ {all elements of O which can be reached alongside an orthology path from u}
40: Assign label lt to t and to all its elements
41: S =< t, S >
42: until O does not contain any unlabeled node

pair of PPI networks and a similarity score S, which quantifies the likelihood
that two proteins are orthologous. A node in the alignment graph is a pair of
ortholog proteins. Each edge in the alignment graph is assigned a weight that is
the sum of three scoring terms: for protein duplication, mismatches for possible
divergence in function, and match of a conserved pair of orthologous interactions.
We refer to [6] for a detailed description of these terms. Induced subgraphs of
the resulting weighted alignment graph with total weight greater than a given
threshold are considered as relevant alignments. This problem is reduced to the
optimization problem of finding a maximal induced subgraph. In [6], an approx-
imation greedy algorithm based on local search is used because the maximum
induced subgraph problem is NP-complete. This greedy algorithm selects at first
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one seed which can likely contribute at most to the overall weight of a poten-
tial subgraph. Such seed is expanded by adding (removing) nodes to (from) the
subgraph while the actual subgraph weight increases.

In this study, after the diving step and aligning possible pairs of PPI subnet-
works a set of small alignment graphs is produced. We use exact optimization
[26] for searching in those graphs. We call the resulting algorithm DivA (Divide
and Align).

Finally, redundant alignments are filtered out as done, e.g., in [6]. A subgraph
G1 is said to be redundant if there exists another subgraph G2 which contains r%
of its nodes, where r is a threshold value that determines the extent of allowed
overlap between discovered protein complexes. In such a case we say that G1 is
redundant for G2.

5 Experimental Results

In order to assess the performance of our approach, we use the state-of-the-art
framework for comparative network analysis proposed in [6], called MaWish. The
two following PPI networks, already compared in [6], are considered: Saccha-
romyces cerevisiae and Caenorhabditis elegans, which were obtained from BIND
[1] and DIP [2] molecular interaction databases. The corresponding networks
consist of 5157 proteins and 18192 interactions, and 3345 proteins and 5988 in-
teractions, respectively. All these data are available at the webpage of MaWish1.
Moreover, the data already contain the list of potential orthologous and paralo-
gous pairs, which are derived using BLAST E-values (for more details see [11]).
2746 potential orthologous pairs created by 792 proteins in S. cerevisiae and 633
proteins in C. elegans are identified.

5.1 Divide Phase

Results of application of the Divide algorithm to these networks are summarized
as follows.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, and
83 centers are identified. Expansion of these centers into centered trees results
in 639 covered orthologs. The algorithm assigns the remaining 153 orthologous
proteins to 152 new subtrees.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, are com-
puted, and 112 centers are constructed from them. Expansion of these centers
into centered trees results in 339 covered orthologs. The algorithm assigns the
remaining orthologous 294 proteins to 288 new subtrees.

We observe that the last remaining orthologs assigned to subtrees are ’isolated’
nodes, in the sense that they are rather distant from each other and not reachable
from ortholog paths stemming from centers.

The divide part of algorithm run only less than half of a second on a desktop
machine (AMD Athlon 64 Processor 3500+, 2 GB RAM) in practical.
1 www.cs.purdue.edu/homes/koyuturk/mawish/.
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5.2 Alignment Phase

We obtain 235 subtrees for Saccharomyces cerevisiae and 400 subtrees of Caenor-
habditis elegans. Nodes of each such tree induce a PPI subnetwork.By constructing
alignment graphs between each two PPI subnetworks containing more than one
ortholog pair, we obtain 884 alignment graphs, where the biggest one consists of
only 31 nodes. For each of such alignment graphs, the maximum weighted induced
subgraph is computed by exact optimization. Zero weight threshold is used for
considering an induced subgraph a legal alignment. Redundant graphs are filtered
using r = 80% as the threshold for redundancy. In this way DivA discovers 72
alignments.

The computation of induced subgraphs by an exact search took a few minutes
compared to around a second in MaWish on a desktop machine (AMD Athlon
64 Processor 3500+, 2 GB RAM).
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Fig. 4. Left figure: Distribution of pairs of weights of paired redundant alignments,
one obtained from MaWish and one from DivA. Weights of alignments found by DivA

are on the x-axis, those found by MaWish on the y-axis. Right figure: Interval weight
distributions of non-redundant alignments discovered by MaWish (solid bars) and DivA

(empty bars). The x-axis show weight intervals, the y-axis the number of alignments
in each interval.

5.3 Comparison between DivA and MaWish

We performed network alignment with MaWish using parameter values as re-
ported in [11]. The algorithm discovered 83 conserved subnets.

A paired redundant alignment is a pair (G1, G2) of alignments, with G1 dis-
covered by DivA and G2 discovered by MaWish, such that either G1 is redundant
for G2 or vice versa. For a paired redundant alignment (G1, G2) we say that G1

refines G2 if the total weight of G1 is bigger than the total weight of G2.
DivA finds 14 new alignments not detected by MaWish. Figure 5 shows the

best new alignment found by DivA (left) and the alignment of DivA which best
refines an alignment of MaWish.
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Fig. 5. Left: The best new alignment. Dash lines mark orthologous pairs. Solid line
is protein-protein interaction. Right: The refined alignment with the greatest weight.
Dash lines mark orthologous pairs. Solid line is protein-protein interaction. A loop on
a protein means duplication.

There are 58 paired redundant alignments, whose total weights are plotted
in the left part of Figure 4. Among these, 40 (55.6%) are equal (crosses in the
diagonal), and 18 (25%) different. 5 (6.9%) (diamonds below the diagonal) with
better DivA alignment weight, and 12 (16.7%) (circles above the diagonal) with
better MaWish alignment weight (for 1 pair it is undecidable because of rounding
errors during computation).

The right plot of Figure 4 shows the binned distribution of total weights of
the 14 (19.4%) found by DivA but not MaWish, and 28 found by MaWish and
not by DivA. The overall weight average of the DivA ones (1.197) is greater than
the overall average of the MaWish ones (0.7501), indicating the ability of DivA
to find high score subnets, possibly due to the exact search strategy used.

Of the 14 new alignments detected by DivA, 8 of them have a intersection
with a true MIPS complex (cf. Table 1). Three of these alignments (6., 12. and
14.) have equal (sub)module in their true S. cerevisiae complex.

Table 1. HG= hypergeometric, Size = number of alignment nodes of an alignment, N
= number of proteins of alignment nodes which are annotated in the best (according
to hypergeometric score) true S. cerevisiae’s MIPS complex of the alignment. M =
number of proteins of alignment nodes in S. cerevisiae. Intersection = |N |/|M |.

Align. Score Size |M | MIPS category Intersection −log(HG)

1. 4.28 8 4 20S proteasome 100(%) 7.25
4. 1.65 5 2 19/22S regulator 100(%) 3.45
6. 1.41 5 2 19/22S regulator 50(%) 1.71
7. 0.62 2 2 20S proteasome 100(%) 3.56
8. 0.61 2 2 Replication fork complexes 100(%) 3.22
9. 0.53 2 2 19/22S regulator 100(%) 3.45
12. 0.43 2 2 19/22S regulator 50(%) 1.71
14. 0.39 2 2 19/22S regulator 50(%) 1.71
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Table 2. True complexes associated to MaWish refined alignments

Align. Score Size |M | MIPS category Intersection −log(HG)

1. 4.46 10 10 Cdc28p complexes 10(%) 1.47
2. 0.62 2 2 Casein kinase II 100(%) 4.81
3. 0.38 2 2 SNF1 complex 50(%) 2.16

Table 3. True complexes associated to DivA refined alignments

Align. Score Size |M | MIPS category Intersection −log(HG)

1. 6.35 15 11 Cdc28p complexes 9(%) 1.47
2. 1.26 4 4 Casein kinase II 100(%) 10.39
3. 0.81 3 2 SNF1 complex 50(%) 2.16

From the refined alignments, three of them have intersection with a true MIPS
complex.

Note that alignments 1. and 3. in both Table 2 and 3 have equal hypergeo-
metric score, showing that the coverage, that is, number of proteins of an align-
ment contained in its best true MIPS module, does not change. Alignment 2. in
Table 2 covers 50% of the true complex, while its refinement in Table 3 covers
the entire true complex (Casein kinase II, consisting of 4 proteins).

Three of these alignments have equal (sub)module in their true S. cerevisiae
complex.

By considering the union of all alignments of MaWish and DivA and by filtering
out the redundant ones, 97 alignments are obtained, from which 26% consist of
new or refined DivA ones. In particular, conserved modules of three new true
MIPS classes are detected: replication fork complexes, mRNA splicing, SCF-
MET30 complex. Moreover, the alignment by MaWish which covers 50% of the
true complex Casein kinase II (this complex consists of 4 proteins) is refined by
DivA in such a way that the entire true complex is covered (all four proteins).

In this experiment we searched for the best solution in each orthology graph
only. A full-search, where all possible solutions are found for each orthology
graph, has been used in [27]. This yielded to a considerable increase of the
number of results. Statistical evaluation of those results indicated their biological
relevance. In general, the results show that DivA can be successfully applied to
’refine’ state-of-the-art algorithms for network alignment.

6 Conclusion

The comparative experimental analysis with MaWish indicates that DivA is able
to discover new alignments which seem to be on average more conserved because
of higher weight than those discovered by MaWish but not by DivA. Improved
performance is shown to be achieved by combining results of MaWish and DivA,
yielding new and refined alignments.
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The selection of centers is biased on the orthology information but it can
be changed for another property. Hence the divide algorithm can be applied to
perform modular network alignment of other type of networks.

Finally, we considered here an instance of our approach based on the evolution-
based alignment graph model by Koyuturk et al. [11]. We intend to analyze
instances of our approach based on other methods, such as [7].

Acknowledgments

We would like to thank Mehmet Koyuturk for discussion on the MaWish code.

References

1. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue,
C.W.V.: Bind–the biomolecular interaction network database. Nucleic Acids
Res. 29(1), 242–245 (2001)
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Abstract. Due to various complexities, as well as noise and high dimensionality, 
reconstructing a gene regulatory network (GRN) from a high-throughput microar-
ray data becomes computationally intensive. In our earlier work on causal model 
approach for GRN reconstruction, we had shown the superiority of Markov blanket 
(MB) algorithm compared to the algorithm using the existing Y and V causal mod-
els. In this paper, we show the MB algorithm can be enhanced further by applica-
tion of the proposed constraint logic minimization (CLM) technique. We describe a 
framework for minimizing the constraint logic involved (condition independent 
tests) by exploiting the Markov blanket learning methods developed for a Bayesian 
network (BN). The constraint relationships are represented in the form of logic us-
ing K-map and with the aid of CLM increase the algorithm efficiency and the accu-
racy. We show improved results by investigations on both the synthetic as well as 
the real life yeast cell cycle data sets. 

Keywords: Causal model, Markov blanket, Constraint minimization, Gene 
regulatory network.  

1   Introduction 

Gene regulatory networks (GRNs) represent gene-gene regulatory interactions in a 
genome to display relationships between various gene activities. Amongst different 
approaches available, these networks can also be modeled accurately by Markov blan-
ket (MB) graph a powerful versatile method for modeling any dynamic physical sys-
tem. This technique was first proposed by Sprites et al [1] who stated  that MB can 
adequately represent all connections and interactions in a network. Since then, the 
work on MB has been rapidly expanding with a  focus on the study of causality which 
plays an important role in modeling, analysis and design of GRNs. Learning any 
Markov blanket Bayesian network structure and inferring gene networks [2, 3] in-
volves application of constraints. Although these constraints are typically conditional-
independence statements, the non-independence based constraints may also be entailed 
by the structure where latent variables exist [3]. The conditional independence tests 
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used in practice are statistical tests such as partial correlation, mutual information, and 
conditional probabilities etc. that indicate a causal influence. In order to use the condi-
tional independence tests to reconstruct the structure, several assumptions have to be 
made,  e.g. causal sufficiency, causal Markov and faithfulness [2]. With these as-
sumptions, we can ascertain the existence of an edge, its direction and whether it is 
positive or negative. The Sprites-Glymour-Scheines (SGS) algorithm [1], used for 
obtaining a causal DAG from a dataset, assumes that graphs are acyclical. It is formu-
lated using the concept of d-separation [2] in which all possible combinations are tried 
before determining the existence of an edge between every pair of variables in the 
dataset. However, the SGS algorithm fails to always assign directions to each of the 
edges. This limitation of SGS algorithm is  overcome by the inductive causation (IC) 
algorithm [3], which is capable of assigning directions. Some algorithms do not make 
use of independence tests but take into account d-separation in order to discover struc-
ture from data [2]. For example, Cheng et al [4], applied mutual information instead 
of conditional independence tests. All these  algorithms are referred as  constraint-
based algorithms [1, 4]. Constraint-based algorithms have certain limitations such as 
poor robustness or computation time which increases exponentially with the number 
of constraints. These limitations make these approaches impractical for large datasets 
of tens or even hundreds of variables. 

In our recently proposed causal model [5, 6] approach for  constructing GRN , the 
network was inferred by applying the following three sequential steps to identify the  
sub-structures of a larger network: i) Perform conditional independence (CI) tests for 
each node’s Markov blanket ii) Assign direction to the edges and iii) Assign sign of 
regulation to the edges. However, due to the huge size of network search space and 
the limited amount of microarray data, it was impractical to test each and every con-
straint. Moreover, with the increase in the condition set needed for causal discovery, 
more and more CI tests had to be performed, resulting eventually in lower accuracy. 

By simplifying the complex logic involved with the constraints in the Markov 
blanket algorithm, the computational efficiency of the MB algorithm [6] can be en-
hanced thereby resulting in improved accuracy for network reconstruction.  In this 
paper, we propose a technique for minimizing the constraints and hence the condition 
set needed for testing the structure with respect to data. The statistical tests following 
the logic is translated into a Boolean function after which a logic gate minimization 
technique such as K-map [7] is applied and the minimized logic is translated back to 
the constraints and used on the data. We have achieved this by a novel independence-
based algorithm which we refer here as the Markov blanket-Constraint Logic Minimi-
sation (MB-CLM) algorithm. The MB-CLM algorithm heuristically uses Markov 
Blanket neighborhood of a node and makes model evaluation simple. In order to 
evaluate and validate a Markov Blanket, there is invariably a need for checking a set 
of conditions. However, from the available set of alternatives, it is possible to have a 
potentially smaller set of conditions that can establish the desired conclusion for the 
given network but with a faster computation speed and increased reliability. This is 
because a conditioning set S splits the data set into 2S partitions. With a smaller condi-
tioning set, the data set is split into larger partitions thereby making dependence tests 
more reliable. This smaller or minimal set will fulfill the necessary and sufficient 
conditions required for GRN reconstruction. 
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The rest of the paper is organized as follows. Section 2 provides a background on 
causal model and also explains the fundamentals of the technique of logic minimiza-
tion. Section 3 describes the methodology. Section 4 gives the results of the experi-
ments from the synthetic and real datasets. Finally, Section 5 provides conclusion and 
the future work. 

2   Background 

In this section, we briefly present the causal model approach for GRN reconstruction 
and also the notion of Markov blanket both of which are important for understanding 
the MB-CLM algorithm. 

2.1   Causal Model Approach 

A causal GRN structure is represented by a directed graph whose nodes represent the 
genes and the directed edges between nodes indicate the causal relationships. Pearl  
et al and Sprites et al [1, 2] proposed algorithms to infer a causal structure from ex-
perimental data by using partial correlations, if the underlying causal structure is a 
directed acyclic graph (DAG). Recently, we reported a technique for causal modeling 
by means of a novel scoring function [5]. In this work, the central step of determining 
the fitness of the data given a  whole network, is decomposed into a task of determin-
ing a set of scores of the local models that includes: i) Fitness of structure ii) Direc-
tion of causality and iii) Sign (positive/ negative) of regulation. The task of network 
reconstruction is cast into a search for candidate gene networks with high scores. This 
highly computationally expensive search is usually carried out stochastically by using, 
for example a genetic algorithm (GA). The search creates and evolves different net-
works and eventually obtains a network that best fits the microarray data. Due to the 
stochastic nature of the GA, the GA is repeated several times and the resulting net-
work structures are combined in a predefined manner to reconstruct the final gene 
network. While evaluating the fitness, the putative network is actually decomposed 
into MB and conditional independence tests are applied in order to detect whether or 
not connections are direct or indirect. The direction and sign of regulation are recov-
ered by estimating the time delay and correlation between expression profiles of pairs 
of genes. The entire methodology has already been validated by using a synthetic 
dataset reported in our earlier work [6] and Saccharomyces cerevisiae (yeast) [8] mi-
croarray dataset. The results of validation are found to be in agreement with the 
known biological findings. 

2.2   Markov Blanket 

A Markov blanket [2], central to the concept of causal modeling, includes the node X 
under consideration and also its parents and children.  It is denoted as MB(X) and is a 
minimal set of variables such that every other variable is independent of X given 
MB(X), i.e.  

1{ ,..., } \{ ( ), },nY X X MB X X X∀ ∈  |  ( )Y MB X  
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X X

 

Fig. 1. Markov Blanket of X  

An example of MB is shown in Fig. 1. Several studies [9-11] have sought to iden-
tify the MB of a target node (X in Fig. 1) by filtering nodes using statistical decisions 
from conditional independence tests. In Fig.1, the shaded nodes (black) are Markov 
blanket neighbours since there is either an edge or a child in common between target 
node and shaded node. The non-shaded nodes (white) are independent of the target 
node, X. A MB DAG can be constructed by combining the MB’s of all the nodes in 
the dataset.  

A MB for a node X in a GRN dataset has two important features. First, all the 
nodes within a MB have a similar set of dependencies and therefore exhibit a similar 
behavior. In a similar manner, genes in a cell are also organized into small groups and 
the sets of genes required for a similar biological function or response are co-
regulated by the same inputs in order to coordinate their joint activity. In other words, 
the MB neighbours (shaded nodes in Fig. 1) of a target node (gene) show the gene 
expression patterns emerging only due to a disruption of that gene. Second, they can 
also have a causal interpretation: a directed edge from one gene to another, X→Y, 
represents the claim that X is a direct cause of Y with respect to other genes in a DAG. 
Keeping other genes  fixed, if X is varied by an intervention (e.g., activation or repres-
sion), then both X and Y would co-vary [1, 2]. A MB DAG can thus provide both bio-
logical and causal insight into relations between a reduced set of predictor nodes (par-
ents, children, spouses) and the target node.  

The technique of logic gate minimisation, well known for electronic circuit mini-
misation, and on which the proposed constraint logic minimisation algorithm is based, 
is presented next. 

3   Logic Gate Minimization Technique 

The proposed CLM algorithm is uses the K-map technique applied  for logic gate 
minimisation. To illustrate the minimisation technique, let us consider an arbitrarily 
chosen four input Boolean network. Let the network be, for example, characterized by 
the following Boolean function to give an output of 1(i.e. true output): 

f(a, b, c, d) =  m (0, 3, 4, 7, 8, 11, 15) ∑        (1) 
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Fig. 2. K-Map for the function given by Eqn. (1) 

Here, f is the boolean function. a, b, c and d are the four independent inputs. The 
numbers on the RHS are minterms (i.e. decimal value equivalent of the 4 bit inputs). 
For example, the value 3 on RHS, means that the four bit input combination of 0011 
(i.e. a’b’cd or the decimal equivalent value of 3) results in 1.  m indicates that all the 
values within bracket are minterms.  

The above equation indicates that  any combination of the inputs with values of 
either 0, 3, 4, 7, 8, 11 or 15 would result in a true output. Since the default value of a 
is considered as 1, it implies that a’=0. Thus, the above function in Eqn. 1 can be 
expanded as  

f=a'b'c'd'+a'b'cd+a'bc'd'+ a'bcd+abc'd'+ab'cd+abcd   (2) 

The above equation is known as a Sum of Product (SOP) equation and the products 
are the minterms mentioned above.  

The K-map  for the above function is shown in Fig. 2. All rows and columns in the 
K-map above are unique since only one variable changes its value within its square. 
The relevant K-map elements are given a value of 1 to include all possible constraints 
with true outputs. The first row, for example has input a = 0 (i.e. a’) and input b = 0 
(i.e. b’). Similarly column 3, for example has both c = 1 and d =1. Thus, an element, 
for example in row 1, column 3 corresponds to input a’b’cd =1.  It can be noted that 
this corresponds to the second term on RHS in Eqn. (2) above. It can be further noted 
that between two adjacent columns (or rows), only one of the variables changes its 
value. For example, in Fig. 2, the input cd given as 00, 01, 11, 10 in the columns 
ensures that there is  only one input change.  

Now let us consider grouping the common terms and minimisation of the function 
using the K-map shown in Fig. 2. By grouping: 

i) Four 1 in column 3 (all rows), we get the common term cd 
ii) Two 1 in column 1 (row 1 and row 2), we get common term a'c'd' 

 

Considering the above groupings, we can rearrange the RHS terms from Eqn.(2) 
appropriately to facilitate logic minimisation. Further, noting that  

a+a’=1            (3) 
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We can simplify Eqn. 2 as follows:  

f(a,b,c,d)  = (a'b'cd+abcd+a'bcd+ab'cd)+(a'b'c'd'+a'bc'd') +ab'c'd' 

     = cd(a'b'+ab+a'b+ab')+ a'c'd' (b+b')+ ab'c'd'  

     = cd + a'c'd' + ab'c'd'           (4) 

Since the constraint when applied to the MB  scoring  for GRN reconstruction will 
also evaluate to either true or false, the principles of logic gate minimisation presented 
in this section can easily be extended and applied to GRN modeling. The variables a, 
b, c, d in Eqn. (4) above will correspond to constraints that can be either CI tests or 
tests involving delays and directions. This technique is presented next. 

4   Method  

In our GRN reconstruction method reported earlier [6, 12], the network is evaluated at 
the MB of every node with respect to data resulting in a set of constraints to be 
satisfied per MB. In general, all these constraints should always be satisfied to vali-
date a true MB with respect to data. Since the dataset under consideration is noisy and 
high dimentional, it is acceptable if all the constraints are not necessarily satisfied for 
MB validation. For example, consider a MB having say three constraints. A 
combination of say two constraints may leave the evaluation of  third constraint (don’t 
care) unnecessary. However, if the  two constraints fail, only then the need to 
evaluate the third constraint may arise. Since the Markov blanket scoring can be 
viewed as a  logic circuit minimisation, we can get a function similar to Eqn. 1 and 
the underlying logic constraints can thus be represented using K-map explained in the 
previous section for optimising the computations. In order to show how this can be 
achieved, the algorithm for learning MB is presented next. 

4.1   The Markov Blanket Network Inference Algorithm 

A static causal directed acyclic graph (CDAG) model for representing GRN consists 
of nodes representing genes and arc giving direction and sign of regulation. A matrix 
element E(a,b) of the gene expression matrix E indicates the expression ratio of gene 
a at time b. The overall inference approach (Learn_MB algorithm) is as follows:  

i) Gene Expression Matrix E:  Obtain E corresponding to the set of nodes from 
dataset D that are affected by node X. This set involves parents, children and 
spouse nodes of node X. 

ii) Causal relation R:  In the putative MB network H(X), the causal relationships 
are defined as gene a affects gene b either directly or indirectly. We thus create 
n binary causal relation R using the causal relationship.  

iii) Adjacency matrix A:  The adjacency matrix A is derived directly from the bi-
nary relation R. If there is a relation that gene a affects gene b, then the value 
of element (a, b) in the adjacency matrix A is set to 1, i.e. A(a, b) = 1. 

iv) Skeleton matrix S:  A skeleton matrix S includes direct and indirect effects ob-
served in a putative MB. The adjacency matrix A (of size n × n where n is the 
number of nodes in the MB) includes direct relationship between genes. The 
indirect effects are included as follows: The row i and column j in adjacency 
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matrix A and skeleton matrix S represent direct and indirect causal relationship 
between gene i and gene j respectively. For example, consider an indirect rela-
tionship between gene i and k (where k is any other column corresponding to 
gene k) such that A(i, j) and A(j, k) both equal 1. Then S(i,k) is set to Bi-
nary{A(i, j) AND A(j, k)} (for k = 1, . . , n). In this manner, all indirect effects 
are captured in the skeleton matrix S from the adjacency matrix A.  

v) Constraints set C:  The direct and indirect effects from adjacency matrix A and 
skeleton matrix S are converted as conditional dependence (CD) and condi-
tional independence (CI) constraints respectively. A conditioning set is needed 
for each of the constraints which will contain all the nodes in H(X) minus the 
variables involved in the constraint. For example, if there is an indirect rela-
tion, such that gene a and b are conditionally independent then the condition 
set is given as H(X)-{a,b}. The outcome of the CI and CD constraints is either 
a 1 (constraint fits the data) or a 0 otherwise. The test is done using statistical 
methods namely partial correlation. The constraints that are not CI or CD de-
termine the direction and sign of the arcs in the MB and are similar in nature to 
independence tests. In our case, the direction and sign between gene a and b is 
obtained  by the following two equations: 

( ( , ), ( , )) 0 |1H Df dir a b dir a b =    (5) 

(sgn ( , ),sgn ( , )) 0 |1H Df a b a b =   (6) 

In Eqn. (5), the function f compares the direction between the putative network 
H and the dataset D while in Eqn. (6), f compares the sign. Furthermore, there 
are additional constraints which compare estimated time delay with the actual 
time delay. All these constraints comprise the constraint set C. 

vi) Constraint set reduction: If a relation exists such that gene b and d are condi-
tionally independent (conditioned on gene a) and further gene c and d are  
conditionally independent (conditioned on gene a), then gene b and c are con-
ditionally dependent (conditioned on gene a). Such tests are therefore unneces-
sary to implement and can be eliminated from the constraint set C resulting in 
updating  the Adjacency matrix A and the Skeleton matrix S. Further, the con-
dition set for the CI and CD constraints is  also reduced such that the CI/CD 
test outcome is independent of the removal of a variable from the condition set 
and is in conformance with d-separation theory [2]. 

vii) Constraints Evaluation: Next, a table of constraint set C is created. Here, the 
combination of constraints that entail the validity of the putative Markov blan-
ket with respect to the dataset or otherwise are computed. A threshold value 
(explained in Section 4.2 below) is used when constraints are tested with re-
spect to data. 

viii)  Fitness Score: Comparison based on the value of each element in the skeleton 
matrix and the evaluation table determines the goodness of fit. This will show 
if the putative network is consistent with the experiment data D and the causal 
relation R. 
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4.2   MB Threshold Setting 

We now discuss the factors involved in determining the threshold value used in step 
vii) of the MB algorithm presented above. The p-values, commonly used in any statis-
tical analysis, are used for determining the threshold. For large p-values, the 
Learn_MB algorithm begins to rapidly increase the number of false positives without 
any corresponding increase in true positives. An appropriate value for the MB thresh-
old, producing a near optimal result, can be selected a-priori using the Bonferroni-
corrected p-value based on the number of potential network interactions. Alternatively, 
the threshold can be identified by analyzing the distribution of MB scores as a function 
of the length of the shortest path connecting each gene pair (degree of connectivity). 
The algorithm depends on the MB being enriched for directly matching interaction 
among genes and decreases rapidly with its distance from the hub. There is no unique 
choice for the threshold which can separate directly and indirectly interacting genes, 
and most methods that attempt to use a single threshold either recover many indirect 
connections or miss a substantial number of direct ones. 

4.3   Complexity Analysis and Discussion of the Plain MB Algorithm 

The order of complexity for each conditional dependence/independence test taken is 
O(nD), where D is the dataset of input to the algorithm. The computations are re-
quired for constructing the table of constraints and for each combination of the vari-
ables (genes) included in the constraint test that exists in the data set. As a worst case 
scenario, each dependence test uses O(D) space to store each variable combination of 
the conditioning constraint set that appears in the data.  

The number of constraints tested is usually reported as a measure of the perform-
ance of Bayesian net reconstruction algorithms [1, 4]. To determine the number of 
tests in this algorithm, we assume that the steps 2 and 3 go through MB variables 
(parents, children, spouses) in an unspecified but fixed order. Therefore, the order of 
the entire algorithm is O(n) in the number of independence tests. The algorithm bene-
fits by further computational optimizations from constraint minimization using the 
proposed K-map technique.  

In the next section, we present the CLM algorithm which when combined with 
learn_MB algorithm presented earlier results in an integrated MB-CLM algorithm. 

4.4   CLM Algorithm 

The Constraint minimization approach is given as follows: 
 

1. Obtain the Markov blanket H(X). Let the set of constraints be C. 
2. Get the constraint set C from step v) of Learn_MB algorithm in section 3.1 
3. Assign binary codes for constraints in constraint set C. Use the constraint 

evaluation table to generate a truth table and the logic diagram. 
4. Perform minimization with the help of K-map. 
5. Remove unnecessary constraints before performing constraint evaluation. 
6. Execute the minimized logic on the dataset D.  
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m i n

1 .  C 0
2 .  L E A R N _ M B  S t e p  F  C
3 .  C L M  p h a s e C
4 .  L E A R N _ M B  S t e p  G C

 

Fig. 3. Learn_MB and CLM integration step 

In Fig. 3, C represents the set of constraints. Initially, the constraints are obtained 
from the Learn_MB algorithm. The above mentioned CLM approach, shown as a 
CLM phase, takes the constraint set C as input and returns a minimized set Cmin back 
to the learn_MB algorithm for evaluation and validation. 

5   Experiments and Results 

For examining the effect of the minimization technique on the GRN reconstruction, 
simulations are next conducted using both, the synthetic and the real datasets. The 
synthetic datasets are realistic and are generated by systematic approach reported ear-
lier [12] for synthetic GRN modeling. The real life data set chosen for investigations 
is the widely studied yeast cell cycle data set.  

5.1   Synthetic Datasets 

Figure 4 shows an example of reconstruction of an artificially constructed synthetic 
network using MB-CLM technique. Figure 4a shows the original synthetic network.  
Amongst various network architectures possible, we chose a network type referred as 
random network. The generated network is of 3x3 dimensions with an up/down 
branching factor of 2. The branching factor refers to the number of parents, children 
and spouses connected to a node. The up branching factor specifies the number of 
parents of each node directly above it, excluding nodes in the boundary of the net-
work as they are exogenous (without parents). Figure 4b shows the logic circuit corre-
sponding to the constraints involved and Fig. 4c shows the reconstructed network 
using MB-CLM algorithm. 

In our simulations we used plain MB algorithm and MB-CLM algorithm with a 
MB threshold value of 0.90 in both cases and tested the algorithms using synthetic 
network 5 x 4 nodes and corresponding synthetic data of upto 100 samples. 

(a) Synthetic network (b) Logic circuit (c) Reconstructed Network  

Fig. 4. Synthetic network and minimized constraint logic 
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Figure Captions  

(a) Number of nodes incorrectly included and
incorrectly excluded during the Markov
blanket.

(b) Results for a 20 separate Markov blankets
with branching factor 3 (in all three (upward,
downward and sideways) directions,
corresponding blanket size 9).

(c) A 5 x 5 network which generated 100 samples
that are used for edge direction reconstruction
The branching factor has a threshold value of
0.90 

 

Fig. 5. Simulation Results 

Figure 5a shows a plot of the number of nodes of the MB incorrectly included or 
excluded for plain Learn_MB algorithm and MB-CLM algorithm, averaged over all 
nodes in the domain.  It can be observed that due to the constraint minimization,  the 
accuracy of results have increased, as a result the number of nodes incorrectly in-
cluded is less for the MB-CLM algorithm compared to  the Learn_MB algorithm. 
Hence, there is better accuracy and reliability with the MB-CLM algorithm. On the 
other hand, as can be seen from Fig.5a, the use of Learn_MB algorithm resulted in a 
slightly higher number of missing nodes. Although the nodes incorrectly included are 
very low for both Learn_MB and MB-CLM algorithm, the nodes incorrectly excluded 
fall more rapidly with increasing sample size in the case of MB-CLM algorithm com-
pared to Learn_MB algorithm. From Fig. 5b, it can be observed that MB 12 has very 
high constraints which are minimized by MB-CLM algorithm. The CLM algorithm 
thus can help with large reduction of constraints in certain circumstances. The effect 
on percentage Direction Error (DE) by increasing MB (via branching factor increase) 
is shown in Fig. 5c. DE for the MB and the MB-CLM algorithm remains close for 
lower branching factors but decreases slightly for MB-CLM algorithm with increase 
in branching factor. The decrease is due to the large number of parents for each node 
(i.e. more V structures) which provides greater opportunities to recover the direction-
ality of an edge with increased number of tests. 
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5.2   Real Datasets 

For testing MB-CLM algorithm for inferring genetic regulatory interactions using real 
life data set, studies were also carried on  the dataset from Spellman et al. (1998) [8] ob-
tained for S.cerevisiae cell cultures that were synchronized by three different methods. 

In our study, we considered a group of 20 important genes (CLB2, CLN1, SIC1, 
LB6, CLB1, SWI4, CDC34, SWI5, CDC20, CLN2, MCM1, CLB5, SWI6, LB4, 
CLN3, BP1, SKP1, CDC28, HCT1) to be involved in cell-cycle regulation of 
S.cerevisiae. The same set of genes has been used by Chen et al. (2000)[13], who 
presented a complete model of the cell-cycle events. We applied the MB-CLM to 
learn the models from the data, for each gene in the dataset, considering all other 
genes in the dataset as candidate regulators. The MB of genes is obtained by Gibbs 
variable selection procedure, and then the model evaluation is performed using the 
proposed algorithm. We investigated the effect of CLM algorithm on the correctness 
of reconstruction. For small models 1 and 2 (i.e. models with branching factor <=2), 
CLM algorithm did not make any significant impact. However, for the large model 4, 
which  has a large condition set, the incorporation of CLM algorithm helped discover 
new regulatory relations for some genes which  were undetected when only MB algo-
rithm was used. The available biological knowledge also validated the existence of 
these new regulatory interactions learned from the model. Highly accurate regulatory 
interactions were also discovered for the seven genes CLN1, CLN2, CLB1, CLB2, 
CLB5, SWI5 and SWI4. These results are observed to be consistent with the available 
biological knowledge. These inferred genetic interactions as well as the activatory 
connections amongst the genes CLN1, CLN2, CLB5 and CLB6 can be seen in Fig.6.  

CLB2 CDC2
8

CLN1 CLB6 

CLB1 
SWI5 

HCT1

MBP1

CDC3
4SKP1 

CDC2
0

CLN2

MCM
1CLB5 

SWI6 

SWI4 

CLN3

CLB4 

SIC1 
 

Fig. 6. GRN reconstruction 
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The time delay learning when CLM algorithm was used revealed the activatory in-
fluences CLN1→CLN2, CLB6→CLB5, CLN1→CLB6 and CLN3→CLB6 (CLN3 is 
also the G1-specific cyclin). These find support in the literature [14-19]. The time 
delay learning was also able to infer the inhibitory influence of SIC1 on the genes 
CLB1, CLB2 and SWI5 [18]. The plus/ minus learning using the CLM algorithm 
showed a positive relation between the genes SIC1, CDC20 and CDC34. The gene 
CDC20 is required for proteolytic degradation of G1 regulators which explains the 
negative connections discovered by CLM from gene CDC20 to SWI6 and MCM1, 
both of which are encoding transcription factors. The gene CDC20 is transcribed in 
the late S/G2 phase, whereas the genes CLN2 and CLB5 are expressed in G1 phase, 
supporting the negative connection between CDC20 and these genes.  

6   Conclusion 

In this paper, a Markov blanket (MB) based constraint minimization algorithm (MB-
CLM algorithm) for efficiently learning the GRN is presented. The CLM algorithm 
initially uses the original Learn_MB algorithm to convert a putative MB structure into 
a set of constraints which are then tested against the given data. The MB-CLM heuris-
tically minimizes this constraint set using K-map logic minimization technique to 
improve MB inference resulting in a superior GRN reconstruction. The performance 
of MB-CLM algorithm is investigated using both the synthetic data and real data 
(yeast). Experiments with synthetic data show that the number of nodes incorrectly 
included (or excluded) with only MB algorithm reduces significantly when CLM al-
gorithm is incorporated. Simulations studies with yeast data discovered new regula-
tory relations when CLM algorithm was used. Using MB-CLM algorithm, both the 
time delay learning algorithm and the plus/minus learning algorithm revealed interac-
tions which were not reconstructed with MB algorithm. These newly discovered rela-
tions were validated to be correct by the biological knowledge. Thus, in the MB-CLM 
algorithm improves the overall process of GRN reconstruction.  
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Abstract. Inference of Gene Regulatory Networks (GRN) is important
in understanding signal transduction pathways. This involves predicting
the correct sequence of interactions and identifying all interacting genes.
Using only gene expression data is insufficient, so additional sources of
data like protein-protein interaction network (PPIN) are required. In
this paper, we model time delayed interactions using a skip-chain model
which finds missing edges between non-consecutive time points based on
PPIN. Highest Viterbi approximation is used to select skip-edges. The
k-skip validation model checks for k missing genes between a predicted in-
teraction, giving us advantages of validation as well as expansion of GRN.
The method is demonstrated on a cell-division cycle data of S.cerevisiae
(yeast). Comparison of the present method, with a previous approach of
modeling PPIN by using a Gibbs prior are given.

Keywords: Dynamic Bayesian networks, Gene Regulatory networks,
Higher-order Markov chains, Protein-Protein interactions, Viterbi algo-
rithm.

1 Introduction

Most processes of signal transduction involve ordered sequences of biochemical re-
actions inside the cell, which are carried out by an ensemble of enzymes activated
by secondary messengers, resulting in signal transduction pathways. The DNA
in a cell contains genes which are converted to mRNA(expressed genes) through
transcription and then translated into proteins. Consequently, signal transduction
pathways are often interpreted in terms of gene regulatory networks (GRN) and
protein-protein interaction networks (PPIN). High throughput techniques allow
generation of both gene and protein interaction data simultaneously. Studies that
use both gene and protein expressions have been mostly devoted to a single type of
data while the other type of data is restricted to validation [1], [2], [3]. Using a sin-
gle data source of interactions has its own limitations and could create errors in the
analysis of the interactome. This is due to two main reasons: firstly, both microar-
ray and PPI data have a lot of noise due to measurement errors, varied transcrip-
tional response in the cell and inter-functional phenomena. Secondly, complex for-
mation and other critical interactions that regulate biological processes take place
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at the protein level. A protein being a product of a gene, a joint mining of gene
regulatory networks and protein interaction networks could reveal genes that are
co-expressed and their proteins also interact. Clusters and interactions found by
joint mining will be more reliable than those found by using only one type of data.
We may thereby have high confidence of finding gene clusters that are regulated
by the same mechanism and belong to the same biological process.

Fusion of GRN and PPIN has been attempted by using Naive Bayes where
genes are partitioned into different pathways [1]. Likelihood of the data becomes
higher when genes in the same pathway have similar expression profiles and are
interacting. The unified model is learned using Expectation Maximization algo-
rithm. This method however requires the user to specify the number of pathways
which is often unknown. Cross-graph mining [2] can achieve integration by look-
ing for partial cliques in both GRN and PPIN simultaneously. A weighted score
of SVM classification of gene expression and functional classification of PPI was
suggested in [3]. The weights are determined by simulated annealing. Prior mod-
eling of PPIN into Bayesian learning has been done using Gibbs distribution [4].
A Gibbs random field equivalent to a first-order Markov random field is used
to represent the prior graph. This approach is insufficient because many time-
delayed interactions are known to exist.

In this paper, we extend skip-chain sequence models [5] and use Viterbi ap-
proximation of dynamic Bayesian networks (DBN) to include time delayed inter-
action edges based on PPIN data. The method is demonstrated by using yeast
cell cycle data, where genes are differentially expressed in each phase. Genes in
one phase regulate by activation/inhibition genes in the next phase resulting in
a cycle. A comparison is done with prior modeling of PPIN using Gibbs distribu-
tion. The method almost doubles the sensitivity and is robust to the increase in
number of genes. The paper is organized as follows. Section 2 discusses Bayesian
networks (BN), dynamic Bayesian networks(DBN) and their extension to higher-
order. Section 3 explains the different models: we first discuss prediction of GRN
using skip-chain models and our extension to fuse prior knowledge of PPIN. Next
we describe the k-skip validation model of GRN based on PPIN. In section 4, we
demonstrate our approach on 5 different datasets from yeast cell cycle. A com-
parison is done with prior modeling of PPIN using Gibbs distribution. Lastly,
we make our conclusions in section 5.

2 Modeling GRN with Higher-Order Bayesian Networks

Microarray experiments simultaneously measure expression patterns of thou-
sands of genes over different experimental conditions or over time. Let us consider
a set of n such genes G = {g1, g2, ..., gn}, and time-series gene expression data
of length m for all the genes. Let the microarray data matrix X = [x1, x2...xn]T

in which row vector xi = (xi,1, xi,2, ..., xi,m) corresponds to gene expression time
series of gene gi where xi,t denotes the expression level at time t. Let the set
of parents (or genes regulating) of gene i be denoted as ai and the number of
states the nodes in ai take be qi.
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2.1 Bayesian Networks (BN)

A BN is a graphical model that can represent a joint multivariate probability
distribution by capturing the properties of conditional independencies among
the variables. It is a directed acyclic graph (DAG) having a structure S and a
set of conditional distributions. BN can appropriately model the genes as nodes
in the network and edge as causal interaction’s between them.

The Bayesian network decomposes the joint probability of genes into the prod-
uct of conditional probabilities by using the chain rule and independence of
non-descendant genes, given their parents

p(x1, x2, ...., xn) =
n
∏

i=1

p(xi|ai, θi) (1)

where p(xi|ai, θi) is the conditional probability of gene expression xi given its
parents, and θi denotes the parameters of the conditional probabilities.

The optimal structure is obtained by maximizing the posterior probability for
S. From Bayes theorem,

max
S

p(S|X) = max
S

p(S)p(X |S) (2)

where p(S) is the prior probability of the network structure. Given the set of
conditional distributions with parameters θ = {θi|i = 1, 2, . . . n}, the likelihood
can be written as

p(X |S, θ) =
∫

p(X |S, θ)p(θ|S)dθ (3)

Let us assume that gene expressions carry discrete levels of gene expression
: xi,t = k where k ∈ {1, 2, ..., d} and d denotes the maximum level of expression
of any gene. Let θijk = p(xi,t = k|ai = j) and Nijk be the number of instances
of θijk that occur in the training data. Using the property of decomposability,

p(X |S, θ) =
n
∏

i=1

qi∏

j=1

d
∏

k=1

θ
Nijk

ijk (4)

Assuming global and local parameter independence,

p(θ|S) =
n
∏

i=1

p(θi|S) =
n
∏

i=1

qi∏

j=1

p(θij |S) =
n
∏

i=1

qi∏

j=1

d
∏

k=1

p(θijk) (5)

Substituting Eq. (4) and Eq. (5) into Eq. (3) gives

p(X |S) =
n
∏

i=1

qi∏

j=1

∫ d
∏

k=1

θ
Nijk

ijk p(θijk)dθijk (6)
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We can approximate the integral by using maximum likelihood estimate known
as Bayesian Information criterion (BIC)[6]. We can estimate θijk as

θijk =
Nijk

∑di

k=1 Nijk

(7)

Taking the log-likelihood, gives us the following expression:

BIC = log p(X |S, θ) =
n
∑

i=1

qi∑

j=1

d
∑

k=1

Nijk log
Nijk

∑di

k=1 Nijk

(8)

Hence the likelihood approximation of the score needs no prior over parameters
as the posterior probability captures information of the prior. The likelihood
approximation is known to be good when using large amounts of data. However,
if the dataset is small it will over-penalize.

The acyclic condition in BN does not allow self regulation and feedback, which
are characteristic of GRN. To overcome this, dynamic Bayesian networks (DBN)
are used in which a transition network from one time point to the next charac-
terizes the GRN.

2.2 Dynamic Bayesian Networks (DBN)

A first-order dynamic Bayesian network (DBN) is defined by a pair of structures
(St, St+1) corresponding to time instances t and t + 1 and a transition network
of interactions between the two networks. The DBN structure is obtained by
unrolling the transition network over time (Figure 1). In slice t, the parents of
xi,t are those specified in the initial network St, and in slice t+1, the parents of
xi,t are those genes in slice t corresponding to parents of xi,t in St. The transition
network of interactions between time instances t and t + 1 is given by

p(xi,1, ...., xi,m) =
m
∏

t=1

p(xi,t|xi,t−1, θi) (9)

where t = 0 corresponds to the dummy initial state.
The metric for a DBN can hence be defined as

p(X |S, θ) =
m
∏

t=1

n
∏

i=1

qi∏

j=1

d
∏

k=1

θ
N

(t,t+1)
ijk

ijk ∀t (10)

where N
(t,t+1)
ijk correspond to the transition network (St, St+1). The first-order

DBN has 2n nodes.
The first-order Markov DBN can be extended to a higher-order to allow

higher-order interactions among variables. For an r-order Markov DBN, given
a node xi, its parents are chosen from the set of variables X [t − r]

⋃

X [t − r −
1]....X [t − 1], where X [t] is a column of gene expression matrix at time t. We
assume r-order stationary Markov chain. With this assumption an r-order tran-
sition network has (r + 1) × n nodes (Figure 1), where n is number of genes.
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Fig. 1. Illustration of six time points and three genes of G1-S phase of cell-cycle in
a dynamic Bayesian network. The dashed edges are linear r = 1, 2 order edges found
by linear features. The solid directed edge is an example of skip-edge over four time
points which models a long-distant dependency. The bold directed line shows a skip
path computed by Viterbi algorithm.

Now Nijk can include cases from any of the previous r time slices. As r increases
the search space becomes extremely large. In order to address this problem we
propose skip-chain sequence models.

3 Fusion of GRN and PPIN

3.1 Skip-Chain Sequence Model

A higher-order DBN is unable to accomodate long-distance dependencies because
the number of parameters increases with the order. For example, if order is r, for
binary gene expressions with a maximum q parents, there will be rq parameters
for each gene. To overcome the explosion of parameters, a skip-chain sequence
model [7] augments a linear chain with skip-features that represent long range
dependencies. It then simply factorizes the prediction probability into linear and
skip features. The number of skip-features can be implemented based on prior
knowledge as given in PPIN.

Linear-chain feature functions fu(xi, ai(t−r:t), t) represent local dependencies
that are consistent with an r-order Markov assumption of gene expressions.
These represent dependencies between nearby time points and cannot represent
higher-order dependencies like activation, inhibition or feedback, which occur
throughout the time-series of the pathway. We relax the above assumption by
using skip-chain feature functions gu′ (xi, ai, st, t) which exploit dependencies
between genes that are arbitrarily distant at time instances st and t respectively.
Such a skip-feature models variable length Markov chain upto m−1 order where
m is number of time points. The score of the structure is a weighted sum of linear
and skip-edge scores:

log p(xi|ai) ∝
U
∑

u=1

λufu(xi, ai(t−r:t), t) +
U

′
∑

u′=1

µu′ gu′ (xi, ai, st, t) (11)

where λu and µu′ are weights for corresponding features.
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Inspired by a previous application of skip-chain models to summarise group
meetings [5], we achieve fusion by designing an interaction skip feature (gi, gj ,
st, t) between genes gi and gj , having similar expressions at two different time
points st and t where st ∈ {1, 2, 3, .., t−2}. We further constrain that these genes
must be interacting as indicated by the PPIN. In the next section, we discuss
how a Viterbi approximation is used to determine the optimal skip features.

3.2 Skip-Edge Determination

In the skip-chain models, higher-order interactions are represented by skip-edges.
We used Viterbi approximation of a DBN [8] to determine the optimal skip-
features, as the maximum a posterior forward path through the trellis. This lets
us compare different time-delayed skip-features between two genes. An example
of such a path to model a fourth order interaction is shown in Figure 1. The
Viterbi algorithm first calculates log transition probabilities from the data. The
transition probability from gene gj, t − 1 to gi, t at is defined as

p(xi,t|xj,t−1) =
ni,j,t

∑n
j′=1 ni,j′ ,t

(12)

where ni,j,t denotes number of occurrences where xi,t = xj,t−1 = 1 in the dis-
cretized gene expression data.

Then, forward state transitions lt that give minimum transition probability
at each time point is chosen:

lt = arg min
j

p(xi,t|xj,t−1) (13)

And the skip-edge score is the negative of the total transition probabilities at
the last time point:

g(xi, ai, st, t) = −
t
∑

t′=st

log lt (14)

where the parent set ai has only one gene at time point st. As there can be
many time-delayed skip features between two genes, we choose the time delay
which has the highest normalized a posterior probability. Normalization is done
by dividing the total probability by length of skip-edge.

The linear feature model is obtained from the Bayesian network:

f(xi, ai(t−r:t), t) = log p(xi|ai, θi) (15)

where ai is parent set from any of previous r time points. The score of the
structure now becomes

log p(xi|ai) ∝ f(xi, ai(t−r:t), t) + µg(xi, ai, st, t) (16)
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Since we have a single parameter µ, it can be simply determined by repeated
trial.

In Figure 1 the edges of three genes in the first six time points can be viewed.
The dashed edges are linear r = 1, 2 order edges. The solid directed edge is
an example of skip-edge over three time points which models a long-distant
dependency.

3.3 k-Skip Validation

Validation of GRN is often done with the use of experimentally verified interac-
tions listed in corresponding PPIN. It is presumed that probabilistic influence
flows in the graph and genes gi and gj maybe connected if there is an unblocked
path gi → g1 → g2 → .... → gk → gj in the PPIN. Since PPI data available is
undirectional, the true structure of S is predicted by using a k-skip validation
model [9]. The k-skip validation model looks for one or more genes that are
skipped when predicting an interaction.

Consider two genes, gi and gj , interacting in the GRN, The k-skip validation
model checks for a cascade of k genes (g1, g2, ...., gk) such that any gene gc in
the cascade interacts with the next gene gc+1 where c ∈ {1, 2, .., k − 1}. Lastly
gi must interact with g1 and gj to interact with gk. Some examples are shown
in Figure 2: Interaction Cln3-Cdc28 is predicted using microarray data and is
also found in PPIN; Mbp1-Cln3 is not found in PPIN, however a 1-skip form
Mbp1-Swi4-Cln3 exists in PPIN; Similarly a 2-skip form of Exg2-Htb2 will be
Exg2-Hsp82-Spt15-Htb2.

A DBN chooses parent-child relations with the highest likelihood based on the
time-series microarray data and assumes a first-order Markov chain. However,
many time-delayed interactions are known to exist and this causes skipping of
genes. The k-skip validation could expand a predicted GRN as well as correct
using information from PPIN. It has been previously reported that 1-skip and
2-skip forms are common in predicted GRN.

Fig. 2. k-skip validation model looks for one or more genes in the PPIN that were
skipped while predicting gene interaction. Dashed lines are predicted false positives of
GRN and solid lines are PPIN.
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4 Results and Discussion

We evaluated our method on a dataset acquired in cell-cycle regulation of yeast
[10]. The microarray dataset was taken from Spellman et al. [10] which has
mRNA measurements of 6,178 genes under different experimental settings. The
expression values range from -2 to +2, which were normalized and discretized
into levels 0(under-expression) and 1(over-expression), respectively. We chose
24 time points of cdc-15 cell cycle arrest ranging from 10 to 290 min. Yeast
cell-division cycle consists of four main phases: genome duplication (S phase),
and nuclear division (M phase), separated by two gap phases (G1 and G2). The
S-G1-M-G2-S form a cycle for cell duplication. Phase specific gene expression
profiles were extracted based on the list given in [10]. The PPIN dataset for
validation was downloaded from BioGRID (Biological General Repository for
Interaction Datasets) [11]. It has over 50, 000 experimental as well as literature-
derived interactions for the genome. Phase specific prior PPIN for the pathway
was derived from the validation set. Using phase specific PPIN network and gene
expression profiles, we looked for skip-edges.

For expression data discretized into two levels 0(under-expressed) and 1(over-
expressed), we consider 7 time points (9 to 16) of peak activity for 118 genes in
G1 phase of cell-cycle. Table 1 shows that a skip feature captures the correlation
among non-consecutive time points. A chi-square test shows that consecutive
time points t and t−1 were not significantly correlated with a p-value 0.77, while
noncosecutive time points st and t where st ∈ {1, 2, 3, ..., t − 2} are correlated
with a p-value less than 0.001. It can be seen that there are 9146 skip-edges.

A genetic algorithm (GA) was implemented to find the optimal structure of
the instantaneous network of GRN [12]. A solution individual C = {cij}n×n

where cij ∈ {0, 1, ..., r} denotes the strength of the interaction between genes i
and j, and 0 means no interaction. We used highest time-delay as the order of an
interaction in PPIN and a random order for unknown interactions. Each individ-
ual in the GA allowed upto three parents for a gene. The GA chooses the network
with best combination of skip and linear edges (Eq. 16). Simulation was done at
different numbers of individuals (N) and generations (G) (N=200/300/400 and

Table 1. Contingency tables for 118 genes in G1 phase, at peak activity (time points
9 to 16) for yeast cell cycle data. Chi-square test shows that the adjacent expressions
xi,t and xj,t−1 are not correlated with p-value = 0.77, however expressions at far away
time points xi,t and xj,st where st ∈ {1, 2, 3, ..., t− 2} clearly influence each other with
a p-value ≤ 0.001.

xi,t = 0 xi,t = 1 Chi-square P-value

Linear edge
xj,t−1 = 1 518 1954 0.08 p = 0.77
xj,t−1 = 0 152 554

Skip edge 96.46 p ≤ 0.001
xj,st = 1 2848 9146
xj,st = 0 2512 10918
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Fig. 3. k-skip validation to compare Gibbs prior and skip-chain models on five datasets
in yeast cell-cycle: (a) 16 genes from G1-S phase (b) 36 genes from S phase (c) 34 genes
from G2 phase (d) 60 genes from M phase and (e) 118 genes from G1 phase. Number
of correct predictions by skip-chain is almost twice those predicted by Gibbs prior.

G=300/400/500). The GA stops when the maximum number of generations is
reached or if the score does not change for 20 consecutive generations. The best
prediction among all five runs was considered.

Previously, PPIN have been fused with GRN using Markov random field as the
prior network [4]. The interaction potential for a PPIN validated interaction is
defined by the user. The entropy P (S) then becomes a sum of interaction poten-
tials for a predicted GRN. Appropriate weights of the PPI edge in Gibbs random
field and skip-chain DBN which gave best prediction were got by repeated trial.
The appropriate weight for 16 genes with 4678 skip-edges was found to be 40,
as further increase in weight did not improve prediction. We approximately used
80 for 36 genes, 160 for 60 genes and so on.

The above procedure was carried out for five sets of genes (i) 16 genes in
G1-S phase (ii) 36 genes in S phase (iii) 34 genes in G2 phase (iv) 60 genes
in M phase and (v) 118 genes in G1 phase (Figure 3). For all five datasets
our method outperformed the previous approach of fusing PPIN as a Gibbs
prior. The sensitivity approximately doubles in all cases while the specificity
remains high (Table 2). We conclude that the method is robust to the increase
in the number of genes. Unlike Gibbs prior, the skip-chain model consider’s
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Table 2. Comparison of fusion of GRN and PPIN for Yeast cell cycle data by using a
Gibbs prior and skip-chain model

Gibbs prior Skip-chain model

Number of Genes Sensitivity Specificity Sensitivity Specificity

16 G1-S 0.35 0.73 0.65 0.93
36 S 0.59 0.86 0.74 0.88

34 G2 0.34 0.88 0.99 0.99
60 M 0.1 0.9 0.3 0.9

118 G1 0.1 0.95 0.21 0.96

Fig. 4. k-skip validation of a predicted GRN for 16 G1-S phase genes of Yeast cell cycle
(a) Increasing the order of a linear edge decreases the number of correct predictions.
(b) Increasing the number of discrete states does not show any significant change in
prediction performance.

the time delayed interaction between two genes. It is also able to distinguish
between different interactions while Gibbs prior assigns equal weights to all PPIN
interactions. We only found 1-skip or 2-skip cascades and no 3-skip cascades were
found in all the datasets. The number of 2-skip was also higher in the larger
networks (see Figure 3).

A few interactions were seen outside the prior network, suggesting missing
members of a pathway. Increasing the Markov order of the DBN causes overfit-
ting, this could be because of redundant effects of skip-chain and the higher-order
DBN(Figure 4a). Here we have considered binary states {0, 1} to represent under
expression and over expression of a gene. Increasing the number of states did
not give a significant increase in performance (Figure 4b). It might however be
useful when applied to other datasets with higher noise.

5 Conclusion

Higher-order dependencies are significant for time-series gene expression data
analysis when deriving gene regulatory networks. We propose a method for ef-
fective fusion of GRN and PPIN by introducing skip-edges found on PPIN into
GRN predicted by first-order DBN modeling. This almost doubles the sensitivity
of GRN, compared to the earlier modeling using Gibbs distribution while the
number of false positives remains same.
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Feature functions are a good way to include prior knowledge into a gene-
regulatory network. The method is found to be robust when applied to larger
networks. The approach is computationally efficient. Here, we have only con-
sidered interactions where both genes have similar expression at different time
points. Similar modeling can be done for activation, inhibition and feedback
events of causal networks of genes.
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Abstract. Network-based phylogenetic analysis typically involves representing 
metabolic networks as graphs and analyzing the characteristics of vertex sets 
using set theoretic measures. Such approaches, however, fail to take into account 
the structural characteristics of graphs. In this paper we propose a new pattern 
recognition technique, TopEVM, to help representing metabolic networks as 
weighted vectors. We assign weights according to co-occurrence patterns and 
topology patterns of enzymes, where the former are determined in a manner 
similar to the Tf-Idf approach used in document clustering, and the latter are 
determined using the degree centrality of enzymes. By comparing the weighted 
vectors of organisms, we determine the evolutionary distances and construct the 
phylogenetic trees. The resulting TopEVM trees are compared to the previous 
NCE trees with the NCBI Taxonomy trees as reference. It shows that TopEVM 
can construct trees much closer to the NCBI Taxonomy trees than the previous 
NCE methods. 

Keywords: TopEVM, phylogenetic analysis, metabolic network, co-occurrence 
pattern, document clustering, topology pattern, degree centrality, evolutionary 
distance. 

1   Introduction 

The objective of phylogenetic analysis is to reconstruct the evolutionary relationship 
among different species and to display them in a tree-structured model called a phy-
logenetic tree [1]. Applications include the design of new drugs and the reconstruction 
of the history of infectious diseases [2]. Most previous research [3] in this area has been 
based on sequence alignment but these sequence-based approaches are easily influ-
enced by horizontal gene transfer (HGT) [4, 5]. An alternative to this is network-based 
phylogenetics analysis, which compares the homogeneous biological networks of or-
ganisms. They often make use of metabolic networks and take the quantified difference 
between these networks as the evolutionary distance. 
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A metabolic network is a hierarchical, graph-represented abstract of an actual me-
tabolism. Composed of thousands of metabolites, enzymes, reactions and the rela-
tionships among them, global metabolic networks are too large and complicated to be 
compared element by element. So, for comparison purposes, the vertex sets of graphs, 
rather than the entire graph, is common to use. In such cases, the evolutionary distances 
are determined by applying set theoretic measures [6-10]. For example, Aguilar et al 
[11] treat the organisms as enzyme sets from the view of metabolism, building a binary 
vector for each organism according to the presence or absence of the enzymatic func-
tions. Using the NCE (Number of Common Enzymes) method and a normalized 
Hamming distance, they construct phylogenetic trees by creating a distance matrix for 
each metabolic class. Forst et al [8] construct ‘clean’ metabolite-reaction bipartite 
graphs to represent metabolic networks. Using the Jaccard distance as the evolutionary 
distance measure, they construct the distance matrix by taking organisms as reaction 
sets. Tohsato [7] consider metabolic networks as enzymatic reaction sets. Also using 
the Jaccard distance, she determines the evolutionary distance matrix and constructed 
phylogenetic trees. One drawback of such set-theoretic methods is that they do not 
usually take into account the edge information, and therefore they do not have enough 
topological characteristics for the network comparison, especially the topological im-
portance of vertices [9, 12, 13]. 

In this paper we propose a new pattern recognition technique, TopEVM, for use in 
phylogenetic analysis. TopEVM avoids a common drawback of set-theoretic methods in 
that it takes account of the structural characteristics of graphs by representing metabolic 
networks as weighted vectors. We assign the weights based on the co-occurrence and 
topology patterns of enzymes in organisms, where the co-occurrence patterns are de-
termined using a method similar to the Tf-Idf approach in the document clustering and 
the enzyme topology patterns are determined according to the degree of centrality of 
enzymes. By comparing the weighted vectors of organisms, we determine the evolu-
tionary distance matrices for the construction of phylogenetic trees. Comparing to the 
previous set-theoretic methods, TopEVM can produce phylogenetic trees closer to the 
taxonomy trees of NCBI. 

The remainder of this paper is organized as follows. Section 2 elaborates the 
TopEVM approach. Section 3 describes our experiments and results. Section 4 provides 
conclusion and outlines directions for the future work. 

2   TopEVM: Constructing Phylogenetic Trees by Using Enzyme  
     Co-occurrence and Topology Patterns 

In this section we describe the operation of the TopEVM approach, which proposes the 
use of a frequency weighting scheme and a topological vector. This approach proceeds 
from the observation that it is possible to regard the construction of species trees in 
phylogeny as similar to the process of distance-based clustering of organisms which 
may in turn be seen as analogous to document clustering, with an organism as a 
document and an enzyme as a term. This allows us to apply feature extraction ap-
proaches and the hierarchical clustering methods to the construction of phylogenetic 
trees. 
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Fig. 1. The TopEVM approach  

The first step in the TopEVM approach is to set up a matrix to record how frequently 
an enzyme occurs in a given collection of organisms, and extract enzyme co-occurrence 
patterns according to this matrix. By analogy with the Tf-Idf weighting scheme used in 
document clustering, we define Inverse organism frequency (Iof), a weight vector, to 
extract enzyme co-occurrence patterns. In the second step TopEVM uses a topological 
weight vector, TopW, to extract topologically important enzymes, the enzyme topology 
patterns, for use as features. This is done by representing metabolic networks as en-
zyme graphs and then counting the degree centrality, one measure of topological im-
portance, of enzymes. The next step is to normalize the enzyme co-occurrence and 
topology weighting schemes. These are then used to convert the original frequency 
matrix into a new matrix in which rows denote the final Topology-weighted Enzyme 
Vector Model (TopEVM) of organisms. Finally a distance matrix is established by 
comparing the TopEVM of organisms with Soergel Distance as the distance measure. 
The distance matrix is used to construct the phylogenetic trees by use of some dis-
tance-based clustering approach, e.g., Neighbor Joining (NJ) method. Figure 1 shows 
the flow of the entire procedure. 

2.1   Inverse Organism Frequency: Extracting Enzyme Co-occurrence Patterns 

The first step to extract the co-occurrence patterns of enzymes is to set up a matrix to 
record how frequently an enzyme occurs in a given collection of organisms. For this 
purpose, we define Enzyme Vector Space to denote the organism-enzyme frequency 
matrix and Enzyme Vector Model to denote the organisms as enzyme frequency vectors. 
It should be noted that we make two assumptions in the definitions. First, we assume that 
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enzymes are arranged in the ascending order of their EC numbers1 and the order is kept 
constant. Second, we assume that organisms in the collection are arranged in an arbi-
trary but constant order. 

Enzyme Vector Space. Let O be a collection of m organisms oi, i = 1..m. Let E be all 
the n enzymes ej, j = 1..n, of at least one organism in O. The Enzyme Vector Space Omn 
is defined through the organism-enzyme frequency matrix, EF, where efij is the 
frequency of the jth enzyme, j = 1..n, in the ith organism. 

Enzyme Vector Model. Given an enzyme vector space Omn and its organism-enzyme 
frequency matrix, EF, the enzyme frequency vector for the ith organism oi is defined as 
the ith row of EF. We call this representation of organisms as Enzyme Vector Model. 

Document clustering generally assumes that the total term frequency is not always in-
dicative of a term’s information content. To account for this disparity, the Inverse 
document frequency (Idf) weighting scheme is often applied [14]. We find a similar 
situation when we compare the enzyme frequency vectors of organisms. That is to say, 
the frequency of an enzyme appeared in all the organisms cannot be assumed to indi-
cate its information content. To deal with this, we apply a weighting scheme in this 
study, which is similar to the Idf weighting scheme. We call this the Inverse organism 
frequency (Iof) weighting scheme and define it as follows. 

Organism Frequency. Given an enzyme vector space Omn and its organism-enzyme 
frequency matrix EF, the Organism Frequency (ofj) of a given enzyme ej, j = 1..n, is 
defined as the number of organisms that contain the enzyme ej. 

Inverse Organism Frequency. Given a enzyme vector space Omn and its 
organism-enzyme frequency matrix EF, the Inverse organism frequency (Iofj) of a 
given enzyme ej, j = 1..n, is defined as the logarithm of the quotient of dividing the total 
organism number by its organism frequency (ofj). That is,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ >i ef

j
ij

I
mIof
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log  (1) 
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∑ >i efij
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 is the organism frequency of ej , namely ofj. 

Once Iofj has been assigned to enzyme ej , the original frequency of enzyme ej in 
organism oi, namely efij, can be transformed into a new weighted frequency efij’,  

ijjij efIofef ⋅='  (2) 

Since the Iof weighting scheme gives lower weights to the enzymes found in a large 
number of organisms and higher weights to those found in fewer organisms, the Iof 
weights emphasize organism-specific enzymes. 

                                                           
1 The EC (Enzyme Commission) number is a numerical classification scheme for enzymes. 
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2.2   Topology Weight: Extracting Enzyme Topology Patterns 

Some enzymes in a metabolic network will have a higher average connectivity than 
others [15]. On the assumption that this higher average connectivity represents topo-
logical important information, we define Topology Vector Space to denote the organ-
ism-enzyme topology matrix and Topology weight (TopW) weighting scheme to select 
more strongly connected enzymes. 

Topology Vector Space. Let R be a collection of m metabolic networks. ri is con-
structed for the ith organism oi, i = 1..m. Let E be the collection of all the n enzymes ej, 
j = 1..n, which are contained by at least one metabolic network in R. The Topology 
Vector Space Rmn is defined through the organism-enzyme topology matrix, T, where tij 
is the topological importance of the jth enzyme in the metabolic network of the ith or-
ganism, j = 1..n. 

In this study, the degree centrality, the number of direct neighbors of a node [16], is 
regarded as the measure of the node’s topological importance. In order to distinguish 
the absent enzymes from the present enzymes with degree as ‘0’, we assign the degree 
centrality of the absent enzymes as ‘-1’ in the topology matrix T. 

Topology Weight. Given a topology vector space Rmn and its organism-enzyme 
topology matrix T, the Topology weight (TopWj) of the given enzyme ej, j = 1..n, is 
defined as: 
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where )(⋅I is an indicator function defined as in Eq 1, and∑ >i tij
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is the total number of 

metabolic networks in R containing enzyme ej. 

The TopW weighting scheme gives higher weights to the enzymes with higher av-
erage degree, which strengthens the importance of more highly-connected enzymes. 

2.3   Normalization: Eliminating the Influence of Vector Length on Distance 

The difference of the vector length can influence the calculation of the distance be-
tween vectors. Iof and TopW weighting schemes help select the ‘important’ enzymes as 
the features of organisms, but result in the organism vectors with different lengths. 
Therefore, it is necessary to normalize the weighted organism vectors before calcu-
lating the distance between them. 

Let X denotes the weighted and normalized organism-enzyme frequency matrix, 
where the element xij, i = 1..m, j = 1..n, is given by  
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The rows in X are the final representative of organism vectors. 
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2.4   Soergel Distance: Calculating the Evolutionary Distance  

Soergel distance is one of the distance measures which are commonly used to calculate 
the evolutionary distance, a crucial measure of the similarity of organism vectors. It has 
the advantages that its range is limited to 0~1 and it obeys the triangular inequality [17]. 

Suppose XA and XB are two vectors of equal length n, the Soergel Distance between 
them is defined as: 
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The distance matrix can be established by calculating the Soergel distance between 
organism vectors pair-wisely. It can be used to construct the phylogenetic trees using a 
suitable distance-based clustering algorithm, e.g. Neighbor-joining (NJ) method. 

3   Experiments and Results 

In this study, enzyme and reaction data are obtained from the database created by Ma 
and Zeng [18]. The Ma and Zeng database consists of five tables: reaction, enzyme, 
react, connect and organism, and contains 3663 enzymes and 107 organisms (8 Eu-
karyotes, 83 Bacteria and 16 Archaea) in total. We acquire enzyme frequency infor-
mation from enzyme, and construct the enzyme graphs for each organism from enzyme 
and reaction. 

Although the TopEVM approach is capable of dealing with large collections of or-
ganisms, for the sake of concision, in this explanation we select only eight organisms: 
rno, mmu, afu, mja, nme, hin, lin and bsu. 

Table 1 lists the details of these 8 organisms: their ID in KEGG database (KEGG ID), 
their full name(Organism), the Kingdom they belong to (Kingdom)�their ID in NCBI 
Taxonomy [19] (NCBI Tax Id), and the number of enzymes they contain (NE). 

Table 1. The details of the 8 organisms 

KEGG 
ID 

Organism Kingdom 
NCBI 
Tax ID 

NE 

rno Rattus norvegicus Eukaryota 487 416 
mmu Mus musculus Eukaryota 727 470 
afu Archaeoglobus fulgidus Archaea 1423 277 
mja Methanococcus jannaschii Archaea 1642 244 
nme Neisseria meningitides ProteoBacteria 2190 369 
hin Haemophilus influenzae ProteoBacteria 2234 386 
lin Listeria innocua Bacteria Firmicute 10090 388 
bsu Bacillus subtilis Bacteria Firmicute 10116 504 
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3.1   Distribution of the Iof Weights  

According to the definitions in Section 2.1, omitting the absent enzymes in all of the 8 
organisms, we calculate the Iof weight vector of length 1063. The Iof weights values 
distribute over 8 points. Table 2 displays the value of NE along the Iof Weights. Nearly 
30% enzymes have the highest Iof weights. 2.1% enzymes will be neglected for their 
Iof importance are 0. Moreover, there are around 60% enzymes with the Iof value over 
1, and 40% between 0 and 1. Since the Iof weighting scheme gives lower weights to the 
enzymes occurring in a large number of organisms, it comes that the lower the Iof value 
is, the more organisms the enzyme spreads in. This observation also confirms the 
conclusion of Liu et al [13]. That is, most of the enzymes occur in several organisms 
they prefer, while only few enzymes occur in most of the studied organisms. 

Table 2. The statistics of the number of enzymes along the Iof weights 

Iof Weight 2.08 1.39 0.98 0.69 0.47 0.29 0.13 0 
Num Enzymes  318 310 102 118 71 85 36 23 
Percentage(%) 30 29.1 9.6 11.1 6.7 8.0 3.4 2.1 

3.2   Distribution of the TopW Weights 

In order to calculate the TopW weights, we represent the enzyme networks upon the 
following principles: vertices denote individual enzymes and arcs denote the rela-
tionships between them; if one enzyme’s product is the substrate of another enzyme, 
then there’s an arc directed from the former enzyme to the latter. The bidirectional arc 
is replaced by two individual arcs with opposite direction.  

(EC 3.4.25.1)(EC 3.2.2.20)

(EC 3.2.2.20, 82)

(EC 3.6.1.17, 115)

(EC 3.6.1.29, 80.5)

 

Fig. 2. Distribution of the TopW weights. The x-coordinates denote the ordered enzymes. The 
y-coordinates denote the corresponding TopW weight value of the enzyme. The coordinates of 
the top 3 enzymes are marked on the figure. The continuous range between two vertical dash 
lines denotes the range of enzymes whose TopW weight is 0.  
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Table 3. The enzymes with the top 8 TopW value 

Order 1 2 3 4 5 6 7 8 
Enzyme 3.6.1.17 2.7.4.10 3.6.1.29 3.6.1.15 2.7.4.6 3.6.1.3 3.6.3.1 4.6.1.1 
TopW 115 82 80.5 65 64.25 63.5 63.5 62.3 

a) b)

 

Fig. 3. Distribution of the number of enzymes along the TopW weights It contains two diagrams. 
Fig 3a) shows the distribution of enzymes all over the range of the TopW weights. Fig 3b) ex-
pands the TopW weight range of 0~20. 

We construct the TopW weight vector for the ordered enzyme array on the basis of 
the definitions in Section 2.2. Fig.2 shows the distribution of the TopW weight values. 
Most of the TopW weights are small but several are very big. For example, dinucleoside 
tetraphosphatase (EC 3.6.1.17)’s TopW weight is 115, AMP phosphotransferase (EC 
2.7.4.10)’s is 82, and bis(5'-adenosyl)-triphosphatase (EC 3.6.1.29)’s is 80.5. This 
observation indicates that as a topology pattern, the TopW weights of few enzymes are 
high, while that of most enzymes are low. We also notice that from EC 3.2.2.20 to EC 
3.4.25.1, there is a gap in which 110 enzymes have TopW values as 0. They are part of 
glycosyl hydrolases (EC 3.2.-.-), and all of the hydrolases acting on ether bonds (EC 
3.3.-.-) as well as peptide bonds (EC 3.4.-.-). It is mostly due to either the large absence 
of the enzymes or their possible isolation.  

Table 3 displays the enzymes with the top 8 TopW weights. It shows that the hy-
drolases acting on acid anhydrides (EC 3.6.-.-) have more connection, which means 
hydrolases may be more topologically important than the enzymes with other function. 

Fig 3 shows the distribution of the number of enzymes along the TopW range. It can 
be seen in Fig 3a) that more than 90% of enzymes are found within the TopW range of  
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0~20 (the first tallest bar). Fig 3b) expands the first bar of Fig 3a), and displays its 
details of the distribution. As is shown in Fig 3b), there are 436 enzymes in the TopW 
range of 0~2. The number is nearly 41% of the total number of the enzymes. It indicates 
that most of nodes have very low connectivity but a handful of nodes (hubs) have much 
higher connectivity in the constructed enzyme networks. This result is in accordance 
with the scale free property of metabolic networks, and shows that enzymes become 
topologically different during evolution [15]. 

a)

b) c)

 

Fig. 4. The comparison of a) the NCBI tree, b) the TopEVM tree, and c) the NCE tree 

3.3   Construction and Evaluation of TopEVM Phylogenetic Tree 

We calculate the distance for each organism pair by use of Soergel distance, and obtain 
the distance matrix (Table 4) for constructing the phylogenetic tree. With the help of 
the Phylip [20] package, we use NJ (Neighbor Joining) method to do the construction. 
The resulting tree is rootless, which is displayed as Fig 5b) by use of TreeView [21]. 
We also obtain the phylogenetic tree from NCBI Taxonomy (Fig 5a) as the reference, 
and construct trees using the NCE method (Fig 5c) for evaluation.  

As is shown in the TopEVM tree, the two Archaea afu and mja are grouped together 
undoubtedly, which is in line with the taxonomy from NCBI, and so do the two Eu-
karyotes rno and mmu. In the NCE tree, although rno and mmu are grouped together, 
the 4 Bacteria and 2 Archaea are mixed up.  

We use TOPD/FMTS [22] to evaluate the similarities of trees. This software is com-
plemented with a randomization analysis to test the null hypothesis that the similarity 
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Table 4. The resulting distance matrix of the 8 organisms upon TopEVM 

 mmu rno afu nme mja hin lin bsu 

mmu 0.0000 0.1079 0.7201 0.7224 0.6754 0.6905 0.7468 0.6790 
rno 0.1709 0.0000 0.7613 0.7793 0.7520 0.7613 0.8020 0.7073 
afu 0.7201 0.7613 0.0000 0.2737 0.4409 0.4911 0.6667 0.5287 
nme 0.7224 0.7793 0.2737 0.0000 0.4471 0.3951 0.6266 0.5617 
mja 0.6754 0.7520 0.4409 0.4471 0.0000 0.2395 0.5382 0.3533 
hin 0.6905 0.7613 0.4911 0.3951 0.2395 0.0000 0.4438 0.3129 
lin 0.7468 0.8020 0.6667 0.6266 0.5382 0.4438 0.0000 0.2486 
bsu 0.6790 0.7073 0.5287 0.5617 0.3533 0.3129 0.2486 0.0000 

 

############################# topd NCBI - TopEVM ##################### 
* Percentage of taxa in common:  100.0% 
* Nodal Distance (Pruned/Unpruned): 0.906327 / 0.906327
* Nodal Distance random (Pruned/Unpruned): ( 1.745 +/- 0.276) / ( 1.745 +/- 0.276 ) 

############################## topd NCBI - NCE ######################## 
* Percentage of taxa in common:  100.0% 
* Nodal Distance (Pruned/Unpruned): 1.636634 / 1.636634
* Nodal Distance random (Pruned/Unpruned): ( 1.741 +/- 0.258 ) / ( 1.741 +/- 0.258) 

 

Fig. 5. The comparison result of the TopEVM tree and the NCE tree with the NCBI tree as ref-
erence 

between two trees is not better than chance. With the NCBI tree as the reference, the 
comparison result of the TopEVM tree and the NCE tree is showed in Fig 6, which shows 
the TopEVM tree is closer to the NCBI tree with a less Nodal Distance [23] as 0.9. 

4   Conclusion and Future Work 

This paper proposes a new pattern recognition technique, TopEVM, which represents 
the metabolic networks as weighted vectors. By calculating the distances among these 
weighted vectors, evolutionary distance matrices are determined for the construction of 
phylogenetic trees. Comparing to the previous set-theoretic methods, our TopEVM 
method results a phylogenetic tree closer to the taxonomy tree of NCBI, which shows 
TopEVM can be a very useful approach for the network-based phylogenetic analysis.  

Nevertheless, our experiments so far have considered only the Tf-Idf weighting 
scheme to integrate enzyme’s frequency content. It is hard to say that there is no other 
weighting scheme which is more suitable. Besides, among the extensive topological 
indices, we only considered the degree centrality; we would also like to consider more 
topological information for improving our model further. 
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Abstract. Reconstructing GRN from microarray dataset is a very challenging 
problem as these datasets typically have large number of genes and less number 
of samples. Moreover, the reconstruction task becomes further complicated as 
there are no suitable synthetic datasets available for validation and evaluation of 
GRN reconstruction techniques. Synthetic datasets allow validating new 
techniques and approaches since the underlying mechanisms of the GRNs, 
generated from these datasets, are completely known. In this paper, we present 
an approach for synthetically generating gene networks using causal 
relationships. The synthetic networks can have varying topologies such as small 
world, random, scale free, or hierarchical topologies based on the well-defined 
GRN properties. These artificial but realistic GRN networks provide a 
simulation environment similar to a real-life laboratory microarray experiment. 
These networks also provide a mechanism for studying the robustness of 
reconstruction methods to individual and combination of parametric changes 
such as topology, noise (background and experimental noise) and time delays. 
Studies involving complicated interactions such as feedback loops, oscillations, 
bi-stability, dynamic behavior, vertex in-degree changes and number of samples 
can also be carried out by the proposed synthetic GRN networks.  

Keywords: Causal model, synthetic gene regulatory networks, microarrays. 

1   Introduction 

The reconstruction of gene regulatory networks (GRNs) using microarray datasets is 
amongst the major challenges currently being investigated in the field of molecular 
biology research. Reconstruction of GRN provides researchers an opportunity to form 
new hypotheses related to the behavior of biological systems a-priori to the 
experiments to be carried out, which in turn prevents performing expensive and 
lengthy biological experiments thereby expediting the discovery process. In domains 
other than bioinformatics, datasets studied typically have very few features and large 
number of samples. However, in case of microarray dataset, they invariably have 
large number of genes with very few samples. Consequently, traditional statistical 
approaches for analyzing these microarrays become inadequate and the need for 
applying other techniques becomes necessary.  A plethora of modeling and inference 
techniques, starting from standard multivariate statistics to machine-learning and 
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heuristics [1-5], are available to reconstruct GRN from large-scale gene expression 
data sets. While using these techniques, the validation and evaluation of methods 
using real life datasets is limited since such datasets may not always be properly 
documented. In other words, the validation is limited by the information that was 
previously established independently by other approaches. 

A synthetically reconstructed GRN, while preserving the characteristics of the 
underlying data generation system, allows different experiments to be performed to 
investigate the effect of parametric variations. A synthetic dataset permitting large 
variety of parametric variations is a possible solution which will allow more rigorous 
testing and evaluation of methods for reconstructing GRNs. Although limited, efforts 
for generating synthetic data for GRN reconstruction are available. Mendez et al [6] 
proposed a method based on differential equations for generating synthetic microarray 
data. However, the methods allows variation of only noise and topology parameters 
and does not include the flexibility of varying single or combination of parameters for 
validating individual features of the GRN methods. Eisen et al [7] generated synthetic 
dataset and applied for studying hierarchical clustering for gene expression data. As 
the method suffered from the lack of knowledge about the GRN under study, any 
conclusion vis-à-vis the underlying biology became uncertain.  Further, because the 
data sets were different in each of the studies carried out, it was not possible to make 
any comparisons amongst studies that employed this approach. Friedman et al [1] 
generated a Boolean synthetic data to validate the robustness of their Bayesian 
methods.  Although useful for generating synthetic datasets, none of these techniques 
were suitable to examine model specific features such as time-delays, feedback loops, 
dynamic behavior, etc. Furthermore, all these techniques were limited in their ability 
to generate a variety of synthetic networks at different stages of refinement of GRN 
reconstruction methods.  

In this paper, we present a novel causal modeling method for synthetically 
generating GRN which includes all GRN related features that are commonly modeled 
in reconstruction algorithms. The variation of these features, in a controlled way, 
determines the desired level of complexity of the synthetically generated gene 
expression data. The proposed synthetic generation of networks is along the lines of 
our ongoing work on causal modeling for reconstruction of real-life GRN [8-12] 
wherein we have investigated the application of causal modeling technique to  
Saccharomyces cerevisiae (yeast) [15] microarray dataset. The obtained results are in 
close agreement with known biological findings thus validating the modeling process.   
Briefly, the causal GRN reconstruction from microarray begins with the application 
of a network structure construction algorithm resulting in a large number of possible 
GRN structures. A continual evaluation and evolution of these structures results in a 
structure that best fits the microarray data results and is considered as the desired 
GRN model. The complexity of reconstruction is increased gradually at each stage of 
refinement of the model. The rest of the paper is structured as follows: Section 2, a 
brief overview of causal modeling is given. Section 3 elaborates on the system and 
methods used to realistically generate the synthetic data. Section 4 provides 
experiments and results. Finally, section 5 provides concluding remarks on the paper 
and some future work. 
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2   The Causal Modeling Approach 

A causal GRN structure is represented by a directed graph whose nodes represent the 
genes and directed edges between nodes indicate their causal relationship. Pioneering 
work in causal modeling was reported by Pearl et al, and Sprites et al [13, 14] who 
proposed algorithms to infer a causal structure from experimental data by using 
partial correlations if the underlying causal structure was a directed, acyclic graph 
(DAG). In our approach for causal GRN reconstruction, the central step of 
determining the fitness of the data given the whole network is decomposed into 
determining the set of scores of local models that includes fitness of structure, 
direction of causality and sign (positive/ negative) of regulation. The task of network 
reconstruction is cast into a search for candidate gene networks whose scores are 
high. To implement a heuristic search method, we apply a genetic algorithm (GA), 
whereby creating and evolving different networks to eventually obtain a network that 
best fits the microarray data. Due to the stochastic nature of the GA, the GA is 
repeated few times and the resulting network structures are combined in a predefined 
manner to reconstruct the final gene network. While evaluating the fitness, the 
putative network is actually decomposed into Markov Blankets (MB) and conditional 
independence tests are applied in order to detect whether or not connections are direct 
or indirect. The direction and sign of regulation are recovered by estimating the time 
delay and correlation between expression profiles of pairs of genes.  

3   Methodology for Generation of Synthetic Data   

The proposed method for generation of synthetic networks allows for various 
parametric variations, such as, network topology, varying levels of complexity of 
interaction, time delays, number of samples and amount of noise in the data.  

Figure 1 shows the flow chart of the mechanism of proposed system for synthetic 
network generation. The synthetic network generator, written in MATLAB, offers an 
option for choice of topologies that determines the structure of the network and 
specifies interactions between the genes. With this option, we can generate any 
number of networks having different topologies. In the next step, by choosing 
interactions and setting equation parameters, the full dynamics of the gene network 
(such as feedback loops, oscillations and so on) is described and can be implemented 
in specified pre-defined ways to produce a required level of complexity of gene 
interactions. Next, for generating discrete samples, the continuous responses of the 
genes in the synthetic network are sampled at different time instants to produce a 
noiseless time course data.  Next, to make the sampled data realistic, time delays are 
added to the samples in a specified manner. Following this, noise is added to the data 
according to the Gaussian or gamma distributions. Finally, gene expression ratios are 
calculated which realistically represent the real-life microarray data set. 

In the following section, the entire process of generating the network topology and 
corresponding gene interactions is described in detail. 
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Simulation setting to Sample the data at various intervals 

Parameters: N, Conditions (N)

Synthetic GRN Generator 
START 

Hand-Crafted topology Scale free topology 

Small World topology Hierarchical topology Parameters: n, e, di, do

Gene Interactions & Setting Transition Function Parameters 
Addition of loops, oscillations, dynamics behavior, positive/negative signs, Parameter: c 

Network Transmission Delay 
Parameters: dl, F 

Biological and Experimental Noise 
Parameters: B, E 

Random topology 
Choice of Network Topology 

Calculating Synthetic GRN data 

 

Fig. 1. Proposed methodology of synthetic gene expression data generation, The symbols used 
are: n - number of genes, e – number of edges, di – incoming degree distribution, do – outgoing 
degree distribution, c – percentage of complex interactions, N – number of samples, Condition 
(N) – specifies experimental conditions for each sample as in real each sample is an 
experiment, dl – delay levels, F – probability distribution of delays, B – percentage of 
biological noise in terms of hidden nodes, E – percentage of experimental noise. 

3.1   Network Topology 

As mentioned earlier, the first step of synthetic data generation is to define a network 
topology. A topology is chosen by setting following three parameters: 

i) Total number of genes in the network,  
ii) Distribution of the incoming degree of connectivity (i.e. the distribution of the 

number of parents per gene) and  
iii) Distribution of the outgoing degree of connectivity (i.e. the distribution of the 

number of children per gene).  

Based on the incoming and outgoing degree distribution parameters mentioned 
above, four different topologies are available for selection (with corresponding 
distribution provided in parenthesis):  
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• Random topology (Poisson distribution)  
• Scale Free topology (power law distribution)  
• Small World topology (power law distribution with small average 

distance between genes)   
• Hierarchical topology (power law distribution with inherent modular 

structure)  

In random topology (RND), the connectivity degree follows a Poisson distribution. 
The nodes that deviate from the average are rare and decrease exponentially and the 
clustering coefficient is independent of a node’s degree of connectivity [16]. In Scale 
Free (SF) topology [17], the connectivity degree follows a power law distribution, i.e. 
the behavior of a network system is controlled by few important nodes. Majority of 
nodes have only a few connections, while some special nodes connect with many 
other nodes forming a hub, i.e., most nodes are poorly connected, while a few are 
highly connected (Hubs). In a Small World networks (SW) [18], the mean shortest 
path is l ~ log(N) indicating that most nodes are connected by a short path. SW 
networks are characterized by large Clustering Coefficient and small Average Path 
Length. The Hierarchical network (HR) [19] integrates a scale-free topology with an 
inherent modular structure by generating a network that has a power-law degree 
distribution with degree exponent γ = 1 + ln4/ln3 = 2.26.  

In cases where the aforementioned topological types are not appropriate due to the 
uncertainty of GRN topology, we propose another topology, which we will refer 
henceforth as, ‘handcrafted topology’(HC). The choice of any of the network 
topology is user-definable and can be used for checking robustness of algorithm 
against topology. To generate a network topology close to real life GRN, network 
structures previously described in biological literature such as E. coli [20] and S. 
cerevisiae [21] were taken into account. These networks are partially random and 
partially scale free i.e. the distribution of the incoming degree of connectivity follows 
a Poisson distribution (random topology) while the distribution of the outgoing degree 
of connectivity follows a power-law (scale free topology). A single topology or 
combinations of two or more topologies to generate the gene network structure is user 
definable.  

At this stage, the network structure is without any complex interactions, such as 
self loops, oscillations and dynamic behaviour. In the next section, we present the 
inclusion of these features to the network topology. 

3.2   Gene Interactions and Transition Function Parameters 

After generating the topology, transition functions representing the regulatory 
interactions between the genes are assigned to the edges in the network as follows:    

i)  Choosing the regulatory interactions  
ii) Setting the transition function parameters 

The entire synthetic modeling of gene networks essentially considers a causal 
interaction of genetic regulation. It considers each gene to be directly affected by 
number of other genes and represents the interaction as directed edges. A transition 
function defines the relationship between gene and its parent genes. The genes are 
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represented as continuous variables rather than discrete variables, i.e. synthetic gene 
expression values are continuous rather than 0 or 1. First, while choosing the 
regulatory interactions, the genes are represented as activators or repressors. Our 
proposed method of network modeling allows for this positive or negative linear 
causal relationship between the input (i.e. parent) genes and the gene under 
consideration. Mathematically, these network models are based on set of linear causal 
equations. Each equation corresponds to gene expression which is a function of a 
positive (activation) and negative (repression) terms. When a given gene interacts 
with more than one regulator, different regulators can either act independently or in a 
more complex manner (such as complex combinational, short term co-activation, co-
repression or a combination) on the target genes resulting in different interactions 
such as feedback loops, oscillations and dynamic behavior.  

To incorporate such complexities, for each combination of a gene and its 
regulators, appropriate equation is selected, depending on the number of activators 
and repressors and on the user-defined settings that control the fraction of complex 
interactions. For genes involved in cycles, it is possible that not all inputs of their 
transition function are known during loop propagation. To model these loops, an 
approximation compatible with the steady-state transition functions is chosen. This 
approximation is represented by a parameter to represent complex interactions. It is an 
extremely useful parameter because it allows initial performance evaluation of a 
method to be done on relatively easy problems (e.g. small noiseless networks without 
complex interactions between regulators). Increasingly difficult data sets can 
subsequently be generated as the GRN inference method is improved or refined. 
Again, setting transition function parameters involves choosing appropriate 
correlation parameter settings of the transition function equations. The strength of 
correlation is an important parameter  and is chosen from a distribution that allows a 
large variation of interaction that are likely to occur in true networks (including linear 
activation functions, sigmoid functions, sinusoidal functions, etc.), while avoiding 
very steep transition functions. To explain a simple chain interaction in the network 
considers, for example, that x causes y and y causes z. That is, x → y → z 

x(t) = Asin(Bt) ; y(t) = x(t) ; z(t) = y(t)            (1) 

The expression x(t) is a sinusoid with amplitude A, time period 2π/B where B is 
angular frequency. In this case, the strength of correlation between x and y is 1, so the 
signals are equal, but varied based on parametric specification. 

3.3   Data Samples 

Using the continuous gene expression output (resulting from the equations written for 
each node of the synthetic network), data is sampled at either fixed or irregular time 
spacing between gene expressions. The number of samples and the time step for 
sampling can be chosen either randomly or it can also be user defined. The sampled 
data represents the temporal state of synthetic network under different experimental 
conditions. This is similar to real microarray experiments where each sample of the 
dataset is an experiment that is repeated at fixed or irregular intervals of time. At this 
stage, various settings needed for simulation of the network per each sample 
(simulating a real experiment setup) for N sample is complete. However, note that the 
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data representing real life conditions is not yet generated as time delay and noise 
component are yet to be added. 

3.4   Network Transmission Delays 

A delay in transmission of signals emitted by genes, being an important characteristic 
of all gene networks; it is important to realistically implement this feature in synthetic 
datasets. In the proposed modeling approach, we implement the delay levels as a user 
defined parameter which is nothing but the maximum number of samples on which 
the delay can be experienced. Further, to make the modeling more realistic, we have 
also made it possible to specify the fraction of interactions which have delays. Based 
on the choice of this parameter, a delay distribution is obtained for the links between 
the genes. Delays are implemented by simply reassigning a new simulation setting for 
a particular sample explained in section 3.2 based on the delays assigned. This 
simulates the delay in the real microarray dataset. The fraction of links involved in 
time delay is determined using a known probability density in case it is not user 
defined. Investigations involving time delay parameter variation can thus be carried 
out on the datasets by incorporating/eliminating time delays. 

3.5   Biological and Experimental Noise 

A real life microarray data contains two types of noises, namely biological and 
experimental. The biological noise corresponds to stochastic variations in gene 
expression, and this noise is unrelated to the applied experimental procedures. It is 
present due to, for example, environmental conditions such as temperature, pressure, 
etc. While experimental noise is the noise due to the technique used to extract the 
data. Both these noises also should be appropriately included in the simulated data.  

Briefly, biological noise is added by the presence of hidden background nodes 
which are either genes or conditions and experimental noise is added as Gaussian white 
noise. First, the background hidden node (for incorporating biological noise), which is 
a parameter to choose the amount of background noise, is user defined.  The equations 
of the background noise nodes are generally uncorrelated to the genes on which they 
are acting. A limited number of input nodes are selected that mimic the external 
conditions and consider the genes not linked to these input genes act as background 
nodes. These are now part of the simulation set up while the data is not generated.  

As the real microarray data also has experimental noise, three user defined choices 
for addition of experimental noise are made available: i) Lognormal  ii) Gaussian iii) 
Gamma distributions. All these distributions take a percentage of the amount of noise 
as input which is then applied to make the final output data noisy. However, this 
experimental noise is added only after the simulated microarray data is generated. 
This is explained in section 3.7.  

3.6   Synthetic Network Generator Parameters 

The entire flow chart for the generation of synthetic data is given in Fig. 1 which also 
shows the system and the parameters controlling the synthetic data generation at 
every step of the process. These parameters which are listed below can each be varied 
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independently either before or during the simulation process for conducting simulated 
experiments with synthetic data:  

1. Choice of source network. 
2. Size of the network in number of nodes. 
3. Number of background nodes. 
4. Number of available experiments and samples for each condition. 
5. Level of stochastic and experimental noise. 
6. Fraction of complex interactions. 

3.7   Calculating Synthetic GRN Data 

Using the synthetic network generator described earlier, simulations are next 
performed to generate the synthetic microarray data. The genes without regulatory 
inputs are assigned an arbitrary expression level which can be changed during an 
experiment (sample). The expression levels of the genes in the network are calculated, 
as specified by their transition functions, starting from the input genes. After these 
noise-free expression values are computed, noise is then appropriately incorporated in 
the data to reflect noise present in the real microarray data. These computed noisy 
expression values can be used for analyzing the noise which a GRN reconstruction 
method under investigation can handle. This feature of adding noise enables the 
comparison of level of noise in dataset on the reconstruction algorithms. A gene 
expression profile experiment for different time t corresponds to a vector [x1(t) … 
xn(t)]. For a set of N samples, a n x N matrix is constructed which is the final 
synthetically generated microarray dataset. This dataset can be used for investigation 
and evaluation of various GRN reconstruction algorithms. 

4   Experiments and Results 

In order to conduct tests using synthetic data set, several datasets are created by 
varying network generator parameters (one or two at a time). The group of data sets 
which have similar variations are categorized into one of the four groups A, B, C or D 
(see Table 1). Although the experiments involved significantly large number of data 
sets to test robustness of GRN methods, due to space restriction, only a limited 
number of important models have been included in the paper and shown in Table 1. 

The Group A consists of a set of synthetic network models which are used for 
investigating methods for their robustness against network topology.  With this group, 
we carry out an initial level of testing since it contains no complex interactions and 
also because the effect of the noise is kept low. Different sample sizes help determine 
accuracy of reconstruction as generally most methods require higher sample size data 
to make accurate estimations.  

The Group B networks compare two different network topologies, namely SF and 
RND. Compared to Group A, these are large sized networks of 500 genes and 500 
interactions. Fig.2 (a) shows networks that follow a random topology (RND) while 
the network shown Fig. 2 (b) is a scale-free (SF) network. From the figure, we can 
observe the differences resulting due to two differing topologies. The random 
topology has arbitrary arrangement of links throughout the network while the scale  
 



 Generating Synthetic Gene Regulatory Networks 245 

Table 1. The Synthetic data sets are organized in four groups A, B, C, D. Column 2 gives 
different network topologies: Scale Free (SF), Small World (SW), Random (RND) and 
Handcrafted (HC). For each group, column 3 shows the number of repeated models for a given 
experiment. Column 4 and column 5 respectively give the number of genes and the edges in a 
given model. Column 6 gives the % fraction of complex interactions. Column 7 gives the 
network transmission delay. Column 8 gives the number of parents while column 9 gives the 
%ge noise of each model. Column 10 gives number of samples for each condition. 

1 2 3 4 5 6 7 8 9 10 

Group Topology No. of 
Models Genes Edges %

Complexity Delay No. of 
parents

%
Noise Samples 

SF 50 100 200 20 0 2 1 20, 50, 100 
SW 50 100 200 20 0 2 1 20, 50, 100 

RND 50 100 200 20 0 2 1 20, 50, 100 
A

HC 50 100 200 20 0 2 1 20, 50, 100 
SF 5 500 500 40 2 5 5 50 B

RND 5 500 500 40 2 5 5 50 
SF 50 50 50 20 1 3 5 50 
SF 50 50 100 20 1 4 5 50 C
SF 50 50 200 20 1 7 5 50 
SF 10 100 200 40 1 1 5 20, 50 
SF 10 100 200 30 2 2 1 20, 50 
SF 10 100 200 50 -2 3 5 20, 50 
SF 10 100 200 10 3 4 1 20, 50 
SF 10 100 200 40 -3 4 5 20, 50 
SF 10 100 200 30 4 5 1 20, 50 
SF 10 100 200 50 0 3 10 20, 50 

D

SF 10 100 200 10 0 2 1 20, 50 
 

 
free network has hubs with large proportion of links in the top right corner of the 
figure while lesser number of links in the rest of the figure. Note that the number of 
genes and gene interactions is the same for the two cases under consideration. Since 
scalability is an important feature of GRN algorithms, this group enables to justify if 
the algorithm is robust in terms of size. 

In Group C, the number of genes in the networks is kept fixed at 50 and the 
topology chosen for study is Scale Free. The number of links is varied as 50, 100, 
200.  This group is useful for checking robustness of methods with respect to density 
of connectivity (i.e. no. of parents per gene) along with accuracy with respect to 
number of samples.  

The Group D is designed to test the combinational effect of density of connectivity 
and also to include varying delays and noise intensity parameters resulting in an 
increasing average number of connections per gene. The D group tests are for 
advanced level testing of GRN algorithms as the data generated is from a complex 
complicated network of interactions. Because these gene networks are generated with 
random connectivity for each of the rows in Table 1, we repeated the generation of 
models for specified number of times (see column 3) and took the average results  
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Fig. 2. Two illustrative network topologies of B Group: a- RND Network Topology (n=200,  
e = 100, di = dp = Poisson pdf), b – Adjacency matrix (n x n) of the random topology, c - Scale 
Free Network Topology (n=200, di = dp = Power law pdf), d – Power Law function, f(x) on  
y-axis. 

from each row to get a synthetic dataset which is close to real dataset. The simulation 
results from this synthetic dataset are shown in Figure 3.  

For these simulations, an example network given in Table 1 is considered. . The 
part of the network under consideration (also known as Markov Blanket of gene A is 
shown in figure 3(a). For investigations involving noise, we consider four different 
types of noise type’s namely a) Lognormal b) Gaussian c) Linear and d) Constant. 
The variation of these noises as a function of gene expression is shown in Fig 3(b). 
For purpose of experimentation, the amount of noise is added as a function of the 
gene expression (i.e. mRNA accumulation). In Figure 3(c), the expression of synthetic 
gene A is shown for both conditions: with and without noise. These plots show the 
effect of noise on the synthetic gene expression. Again, Figure 3(d) shows the effect 
of an input gene (such as gene B) and an output gene (such as gene D) on another 
gene A in the presence of time delay and regulation (plus or minus). As can be seen  
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Fig. 3. Simulation results: (a) A subset of genes of the example network (labeled A to G). This 
sub-network has two input genes and contains repressor gene D. (b) The different noise 
functions used in the simulation. (c) The expression gene A with and without addition of noise. 
(d) Shows phase shift (time delay) and plus/ minus regulation between B→A→D. 

from Figure 3(a), gene B has a strong effect on gene A, but a pronounced negative 
effect on the expression level of gene D. This is because gene D has a repressor link 
and is directly stimulated by gene A and also indirectly by input gene B. 

5   Conclusion 

The network generator system presented in this paper generates synthetic GRN 
datasets based on causal modeling approach for GRN [8]. Illustrative investigations 
using the network generator show the significance of the application of system for 
synthetic data generation. The proposed system can generate four different network 
topologies, namely scale free, small world, random and hierarchical. Further, the 
generated synthetic network is made realistic by incorporating complex network 
characteristics such as transmission delays, biological and experimental noise. These 
datasets are generated for evaluation of methodologies based on these synthetic 
datasets.  The system will help other similar methods to computationally determine 
the robustness and also establish comparisons between the methods. In comparison to 
other existing methods, the proposed system is useful in carrying out rigorous studies 
about the GRN methods by particularly varying single and combinational features of 
the networks such as the topology, interaction types, noise levels, time delay of the 
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interactions and so on. The complexity of the generated datasets can be easily varied 
by parametric variation thereby generating a hierarchy of networks in terms of size, 
scales, samples, etc. In real life GRNs, the products of some specific genes are 
essential for transcription to take place (e.g. mRNA), and their absence cannot be 
counteracted by increased expression of other activators (e.g. the transcription factor 
TF).  Although the synthetic gene network models and datasets generated here are 
simplistic in comparison to what actually happens between genes in the real world 
biology to produce the microarray dataset, they mimic the characteristics of 
experimental data which makes it suitable to test the methods used on real datasets. 
Furthermore, since the ground truth about real world GRN is still unknown to a 
certain extent and hence to make any significant advances towards understanding 
gene networks by using artificial synthetic networks and datasets will be highly 
important and useful for future analysis of very complex GRN models. 

Although only additive interactions for different hidden nodes have been included 
in this paper, it is easily possible to enhance the system further by including non-
additive interactions between the activators and repressors. All these improvements in 
generation of synthetic networks will make the network models more realistic.  With 
a clear understanding gene regulation problem, it would be possible to simulate the 
process of complex gene regulatory networks. Future developments in this research 
will include exploring large numbers of diverse synthetic gene networks to search for 
particular properties similar to real gene networks, and expanding the system to 
protein-protein interaction networks. 
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Abstract. Gene selection aims at identifying a (small) subset of infor-
mative genes from the initial data in order to obtain high predictive
accuracy. This paper introduces a new wrapper approach to this difficult
task where a Genetic Algorithm (GA) is combined with Fisher’s Linear
Discriminant Analysis (LDA). This LDA-based GA algorithm has the
major characteristic that the GA uses not only a LDA classifier in its
fitness function, but also LDA’s discriminant coefficients in its dedicated
crossover and mutation operators. The proposed algorithm is assessed
on a set of seven well-known datasets from the literature and compared
with 16 state-of-art algorithms. The results show that our LDA-based
GA obtains globally high classification accuracies (81%-100%) with a
very small number of genes (2-19).

Keywords: Linear discriminant analysis, genetic algorithm, gene selec-
tion, classification, wrapper.

1 Introduction

The DNA Microarray technology permits to monitor and to measure gene ex-
pression levels for tens of thousands of genes simultaneously in a cell mixture.
Several studies have demonstrated that expression profiles provide valuable in-
formation for cancer diagnosis and prognosis [1,2,3,9]. The ability to distinguish
a cancer from morphologically similar tissues using their gene expression profiles
is important to propose appropriate therapies. Classification of different tumor
types is intertwined with the problem of gene selection, which aims to extract
from a great number of genes monitored by a Microarray chip, a small subset of
discriminant genes. Gene selection is thus of practical and fundamental interest.
The identification of relevant biomarkers is necessary for the elaboration of med-
ical diagnostic tests. Knowledge about discriminant gene subsets may confirm
the understanding of cancer mechanisms and suggest new ideas to explore.

Two main approaches have been proposed for gene selection. Filter methods
rely on a criterion that depends only on the data to assess the importance or
relevance of each gene for class discrimination. A relevance scoring provides a
ranking of the genes from which the top-ranking ones are generally selected as the
most relevant genes. Filter methods ignore the correlations among genes and the
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interaction of the selected genes with the classifier. Wrapper approaches embed
gene subset selection and evaluation with the same process and consequently
overcome the above mentioned inconvenient.

In this paper, we propose a new wrapper approach for gene subset selection
and classification of Microarray data. Our approach uses Fisher’s Linear Dis-
criminant Analysis (LDA) to provide useful information to a Genetic Algorithm
(GA) for an efficient exploration of gene subsets space. LDA is a well-known
method of dimension reduction and classification, where the data vectors are
transformed into a low-dimensional subspace such that the class centroids are
spread out as much as possible. It has been used for several classification prob-
lems and recently for Microarray data [8,27,28].

Our approach first extracts a set of interesting genes (about 100 genes) by a
filter method in order to limit the search space. Then we use a dedicated GA
to determine a small subset of genes that allows a high classification accuracy.
Contrary to most previously GAs for gene selection that rely essentially on ran-
dom genetic operators, we devise a problem specific GA that takes into account
useful knowledge of the gene selection and classification problem. Our GA uses
a LDA classifier to assess the fitness of a given candidate gene subset and LDA’s
discriminant coefficients in its crossover and mutation operators.

To evaluate the usefulness of the proposed approach, we carry out extensive
experiments on seven public datasets and compare our results with 16 best
performing algorithms from the literature. We observe that our approach is able
to achieve a high prediction accuracy (from 81% to 100%) with a very small
number of informative genes (from 2 to 19). Moreover, our approach enables to
propose different subsets of discriminant genes, which may be of a great interest
for biological research.

The remainder of this paper is organized as follows. Section 2 recalls the main
characteristics of Fisher’s LDA and discusses the calculus that must be done in
the case of small sample size. Section 3 presents our LDA-based GA for gene
selection. Section 4 shows the experimental results and comparisons. Finally
conclusions are presented in Section 5.

2 LDA and Small Sample Size Problem

2.1 Linear Discriminant Analysis

LDA is a dimension reduction and classification method, where the data are
projected into a low dimension space such that the classes are well separated.
As we use this method for binary classification problems, we shall restrict the
explanations to this case. We consider a set of n samples belonging to two classes
C1 and C2, with n1 samples in C1 and n2 samples in C2. Each sample is described
by q variables. So the data form a matrix X = (xij), i = 1, . . . , n; j = 1, . . . , q.
We denote by µk the mean of class Ck and by µ the mean of all the samples:

µk =
1
nk

∑

xi∈Ck

xi and µ =
1
n

∑

xi

xi =
1
n

∑

k

nkµk



252 E. Bonilla Huerta, B. Duval, and J.K. Hao

The data are described by two matrices SB and SW , where SB is the between-
class scatter matrix and SW the within-class scatter matrix defined as follows:

SB =
∑

k

nk(µk − µ)(µk − µ)t (1)

SW =
∑

k

∑

xi∈Ck

(xi − µk)(xi − µk)t (2)

If we denote by SV the covariance matrix for all the data, we have SV = SB+SW .
LDA seeks a linear combination of the initial variables on which the means

of the two classes are well separated, measured relatively to the sum of the
variances of the data assigned to each class. For this purpose, LDA determines a
vector w such that wtSBw is maximized while wtSW w is minimized. This double
objective is realized by the vector wopt that maximizes the criterion:

J(w) =
wtSBw

wtSW w
(3)

One can prove that the solution wopt is the eigen vector associated to the sole
eigen value of S−1

W SB, when S−1
W exists. Once this axis wopt is determined, LDA

provides a classification procedure (classifier), but in our case we are particularly
interested in the discriminant coefficients of this vector: the absolute value of
these coefficients indicates the importance of the q initial variables for the class
discrimination.

2.2 Generalized LDA for Small Sample Size Problems

When the sample size n is smaller than the dimensionality of samples q, SW

is singular. In this case, it is not possible to compute S−1
W . To overcome the

singularity problem, recent works have proposed different methods like the null
space method [28], orthogonal LDA [26], uncorrelated LDA [27,26] (see also [17]
for a comparison of these methods). The two last techniques use the pseudo
inverse method to solve the small sample size problem and this is the approach
we apply in this work. When Sw is singular, the eigen problem is solved for S+

wSb,
where S+

w is the pseudo inverse of Sw. The pseudo-inverse of a matrix can be
computed by Singular Value Decomposition. More specifically, for a matrix A of
size m×p such that rank(A) = r, if we denote by A = UΣV T the singular value
decomposition of A, where U of size m× r and V of size r× p have orthonormal
columns, Σ of size r × r, is diagonal with positive diagonal entries, then the
pseudo-inverse of A is defined as A+ = V Σ−1UT .

2.3 Application to Gene Selection

Microarray data generally contain less than one hundred samples described by
at least several thousands of genes. We limit this high dimensionality by a first
pre-selection step, where a filter criterion (t-statistic) is applied to determine a
subset of relevant genes. In this work, we typically retain 100 genes from which
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an intensive exploration is performed using a genetic algorithm to select smaller
subsets. In this process, LDA is used as a classification method to evaluate the
classification accuracy that can be achieved on a selected gene subset. Moreover
the coefficients of the eigen vector calculated by LDA are used to evaluate the
importance of each gene for class discrimination.

For a selected gene subset of size p, if p ≤ n we rely on the classical LDA
(Section 2.1) to obtain the projection vector wopt, otherwise we apply the gen-
eralized LDA (Section 2.2) to obtain this vector. We explain in Section 3 how
the LDA-based GA reduces progressively the number of selected genes.

3 LDA-Based Genetic Algorithm

In this section we describe our LDA-based Genetic Algorithm (LDA-GA) for
gene subset selection. Notice that prior to the LDA-GA search, a filter (t-
statistic) is first applied to retain a group Gp of p top ranking genes (typically
p ≥ 100, in this work, p = 100). Then, the LDA-based GA is used to conduct
a combinatorial search within the space of size 2p. The purpose of this search
is to determine from this large search space small sized gene subsets allowing a
high predictive accuracy. In what follows, we present the general procedure and
then show the components of the LDA-based Genetic Algorithm. In particular,
we explain how LDA is combined with the Genetic Algorithm.

3.1 General GA Procedure

Our LDA-based Genetic Algorithm follows the conventional scheme of a gener-
ational GA and uses also an elitism strategy.

– Initial population: the initial population is generated randomly in such a way
that each chromosome contains a number of genes ranging from p× 60% to
p × 75%. The population size is fixed at 100 in this work.

– Evolution: the chromosomes of the current population P are sorted according
to the fitness function (see Section 3.3). To generate the next population P’,
|P| new chromosomes are first created using crossover and mutation (see
next point). These new chromosomes are then merged with the ”best” 10%
chromosomes of P to form P’ while deleting the worst chromosomes to keep
the population size constant.

– Crossover and mutation: mating chromosomes are determined from P by
considering each pair of adjacent chromosomes (the last one is mated with
the first one). By applying our specialized crossover operator (see Section
3.4), one child is created. This child then undergoes a mutation operation
(see Section 3.5).

– Stop condition: the evolution process ends when a pre-defined number of
generations is reached or when one finds a chromosome in the population
having a very small gene subset (fixed at 2 genes in this work).
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3.2 Chromosome Encoding

Conventionally, a chromosome is used simply to represent a candidate gene sub-
set. Following the idea of [11], a chromosome in our GA encodes more information
and is defined by a couple:

I = (τ ; φ)

where τ and φ have the following meaning. The first part (τ) is a binary vec-
tor and effectively represents a candidate gene subset. Each allele τi indicates
whether the corresponding gene gi is selected (τi=1) or not (τi=0). The second
part of the chromosome (φ) is a real-valued vector where each φi corresponds
to the discriminant coefficient of the eigen vector for gene gi. As explained in
Section 2, the discriminant coefficient defines the contribution of gene gi to the
projection axis wopt. A chromosome can thus be represented as follows:

I = (τ1, τ2, . . . , τp; φ1, φ2, . . . , φp)

The length of τ and φ is defined by p, the number of the pre-selected genes
with a filter (t-statistics) (see beginning of this Section).

Notice that this chromosome encoding is more general and richer than those
used in most genetic algorithms for feature selection in the sense that in addition
to the candidate gene subset, the chromosome includes other information (LDA
discriminant coefficients here) which are useful for designing powerful crossover
and mutation operators (see Section 3.4 and 3.5).

3.3 Fitness Evaluation

The purpose of the genetic search in our LDA-GA approach is to seek ”good”
gene subsets having the minimal size and the highest prediction accuracy. To
achieve this double objective, we devise a fitness function taking into account
these (somewhat conflicting) criteria.

To evaluate a chromosome I=(τ ;φ), the fitness function considers the classifi-
cation accuracy of the chromosome (f1) and the number of selected genes in the
chromosome (f2). More precisely, f1 is obtained by evaluating the classification
accuracy of the gene subset τ using the LDA classifier on the training dataset
and is formally defined as follows1:

f1(I) =
TP + TN

TP + TN + FP + FN
(4)

where TP and TN represent respectively the true positive and true negative
samples, i.e. the correct classifications; FP (FN) is the number of false (true)
samples misclassified into the positive (negative) samples.

The second part of the fitness function f2 is calculated by the formula:

f2(I) =
(

1 − mτ

p

)

(5)

1 For the sake of simplicity, we use I (chromosome) instead of τ (gene subset part of
I) in the fitness function even if it is the gene subset τ that is effectively evaluated.
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where mτ is the number of bits having the value ”1” in the candidate gene
subset τ , i.e. the number of selected genes; p is the length of the chromosome
corresponding to the number of the pre-selected genes from the filter ranking.

Then the fitness function f is defined as the following weighted aggregation:

f(I) = αf1(I) + (1 − α)f2(I) subject to 0 < α < 1

where α is a weighted parameter that allows us to allocate a relative importance
factor to f1 or f2. Assigning to α a value greater than 0.5 will push the genetic
search toward solutions of high classification accuracy (probably at the expense
of having more selected genes). Inversely, using small values of α helps the search
go toward small sized gene subsets. So variations of α will change the search
direction of the genetic algorithm.

3.4 LDA-Based Crossover

It is now widely acknowledged that, whenever it is possible, genetic operators
such as crossover and mutation should be tailored to the target problem. In other
words, in order for genetic operators to fully play their role, it is preferable to
integrate problem-specific knowledge into these operators. In our case, we use
the discriminant coefficients from the LDA classifier to design our crossover and
mutation operators. Here, we explain how our LDA-based crossover operates
(denoted by LDA-X hereafter).

LDA-X combines two parent chromosomes I1 and I2 to generate a new chro-
mosome Ic in such a way that 1) top ranking genes in both parents are conserved
in the child and 2) the number of selected genes in the child Ic is not greater
than the number of selected genes in the parents. The first point ensures that
”good” genes are transmitted from one generation to another while the second
property is coherent with the optimization objective of small-sized gene subsets.

More formally, let I1=(τ1; φ1) and I2=(τ2; φ2) be two parent chromosomes,
Ic=(τc; φc) the child which will be generated by crossover, κ ∈ [0, 1) a parameter
indicating the percentage of genes that will not be transmitted from the parents
to the child. Then our LDA-X crossover performs the following steps to generate
Ic, the child chromosome.

1. According to κ determine the number of genes of I1 and I2 (more precisely,
τ1 and τ2) that will be discarded, denote them by n1 and n2;

2. Remove respectively from τ1 and τ2, the n1 and n2 least ranking genes
according to the LDA discriminant coefficients;

3. Merge the modified τ1 and τ2 by the logic AND operator to generate τc;
4. Apply the LDA classifier to τc, fill φc by the resulting LDA discriminant

coefficients;
5. If needed, remove the least discriminative genes from τc until τc contains no

more genes than I1 or I2 does; update φc accordingly;
6. Create the child Ic=(τc; φc).

Before inserting the child into the next population, Ic undergoes a mutation
operation.
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3.5 LDA-Based Mutations

In a conventional GA, the purpose of mutation is to introduce new genetic
materials for diversifying the population by making local changes in a given
chromosome. For binary coded GAs, this is typically realized by flipping the
value of some bits (1 → 0 or 0 → 1). In our case, mutation is used for dimension
reduction; each application of mutation eliminates a single gene (1 → 0). To
determine which gene is discarded, two criteria are used, leading to two mutation
operators.

– Mutation using discriminant coefficient (M1): Given a chromosome I=(τ ; φ),
we identify the smallest LDA discriminant coefficient in φ and remove the
corresponding gene (this is the least informative genes among the current
candidate gene subset τ).

– Mutation by discriminant coefficient and frequency (M2): This mutation op-
erator relies on a frequency information of each selected gene. More precisely,
a frequency counter is used to count the number of times a selected gene
is classified (according to the LDA classifier) as the least informative gene
within a gene subset. Based on this information, we remove the gene that has
the highest counter, in other words, the gene that is frequently considered
as a poor predictor by the classifier.

4 Datasets and Experimental Setup

4.1 Microarray Gene Expression Datasets

To assess the performance of our LDA-based genetic algorithm, we performed
our experiments on seven well-known public datasets, namely Leukemia, Colon
cancer, DLBCL, CNS embryonal tumor, Lung, Prostate and Ovarian cancer. A
summary of the datasets is provided in Table 1.

4.2 Experimental Settings

For our experimentations, we used the following experimental settings. Each
initial dataset is split into a training set and a test set according to the literature.
LDA-GA is applied on the training set in order to select relevant gene subsets.

Table 1. Summary of datasets used for experimentation

Dataset Genes Samples References

Leukemia 7129 72 Golub et al [9]
Colon 2000 62 Alon et al [2]
Lung 12533 181 Gordon et al [10]

Prostate 12600 109 Singh et al [21]
CNS 7129 60 Pomeroy et al [20]

Ovarian 15154 253 Petricoin et al [19]
DLBCL 4026 47 Alizadeh et al [1]
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Because our fitness function relies on two criteria (3.3), we carry out two types
of experiments. In the first one, named Exp1 hereafter, we select the gene subset
according to the second criterion trying to minimize the number of selected
genes. In the second type of experiments, named Exp2, we focus on the accuracy
achieved by the different solutions obtained by LDA-GA and we retain the gene
subsets that provide the best accuracy. Because of the stochastic nature of our
LDA-GA algorithm, we run 10 executions of the GA and we retain the best
solution found during these 10 executions.

In both experiments, the final predictive accuracy of a selected gene subset is
estimated by the LDA-classifier built on the gene subset obtained by the training
step. As the data contain few samples, we use a 10-fold cross validation on the
whole dataset to obtain a reliable estimation of the classification accuracy.

We have explained in Section 3 that our LDA-GA can apply two kinds of
mutation (M1 and M2). That is why we report in the following subsection four
results for each dataset: GA-M1/Exp1 is our GA with M1 mutation and we select
the gene subset according to the conditions of Exp1 (focusing on the number of
genes); GA-M1/Exp2 is the GA with M1 mutation and we select the gene subset
according to the conditions of Exp2 (the best accuracy). Similarly, two results
are reported with M2 mutation (named GA-M2/Exp1, GA-M2/Exp2).

4.3 Results and Comparisons

In this section, we propose a comparison of our LDA-GA with some state-of-the-
art methods for gene selection and classification. A reliable comparison between
two methods is only possible if they use the same experimental conditions. For
this reason, we select 16 recent methods (since 2004) that seem to fulfill this
condition.

We show in Table 2 the best results (in bold) obtained by these methods and
by our LDA-based GA approach on the seven datasets presented previously. An
entry with the symbol (-) in this table means that the paper does not treat the
corresponding dataset. All the methods reported in this table use a process of
cross validation, notice however that in some cases, the papers do not explain
precisely how the experimentation is conducted.

From the results of Table 2, one observes that the proposed approach (last
four lines) gives very competitive results compared with these reference methods.
Indeed, our LDA-based GA achieves globally very high predictive accuracy (from
81.6% to 100%) with a very small number of selected genes (from 2 to 19).

The most remarkable results for our approach concern the DLBCL dataset. We
obtain a perfect prediction with only 4 genes while the previously methods reach
a prediction rate no greater than 98% with at least 20 genes. For the Ovarian
cancer dataset, the LDA-GA gives a prediction accuracy of 98.4% with a subset
of only 4 genes. The reference algorithms have a slightly better classification rate,
but select much more genes (20, 26, 75). Notice that a perfect rate is reported in
[15] with 50 genes. However the dataset used in [15] (30 cancerous and 24 normal
samples, 1536 genes) is different from the Ovarian cancer dataset described in
Table 1 (91 normal and 162 cancerous samples, 15154 genes).
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Table 2. Results of our LDA-based GA (four last lines) compared to the most rele-
vant works on cancer classification. The figures give the classification accuracy and in
brackets, the number of genes when this is available.

Authors Leukemia Colon Lung Prostate CNS Ovarian DLBCL
Ye et al [27] 97.5 85.0 – 92.5 – – –
Liu et al [14] 100(30) 91.9(30) 100(30) 97.0(30) – 99.2(75) 98(30)

Tan & Gilbert [22] 91.1 95.1 93.2 73.5 88.3 – –
Ding & Peng [7] 100 93.5 97.2 – – – –
Cho & Won [6] 95.9 (25) 87.7(25) – – – – 93.0(25)
Yang et al [25] 73.2 84.8 – 86.88 – – –
Peng et al [18] 98.6 (5) 87.0(4) 100(3) – – – –
Wang et al [24] 95.8 (20) 100(20) – – – – 95.6(20)
Huerta et al [4] 100 91.4 – – – – –
Pang et al [16] 94.1(35) 83.8(23) 91.2(34) – 65.0(46) 98.8(26) –
Li et al [12] 97.1(20) 83.5(20) – 91.7(20) 68.5(20) 99.9(20) 93.0(20)

Zhang et al [29] 100(30) 90.3(30) 100(30) 95.2(30) 80(30) – 92.2(30)
Yue et al [28] 83.8(100) 85.4(100) – – – – –

Hernandez et al [11] 91.5(3) 84.6(7) – – – – –
Li et al [13] 100(4) 93.6(15) – – – – –

Wang et al [23] 100(375) 93.5(35) – – – – –

GA-M1/Exp1 97.2(2) 90.3(2) 97.7(2) 94.1(2) 78.3(4) 96.0(2) 91.4(2)
GA-M2/Exp1 97.2(2) 91.9(3) 98.3(2) 94.1(2) 85.0(4) 96.4(2) 93.6(2)
GA-M1/Exp2 98.6(5) 91.9(3) 97.7(2) 94.8(6) 81.6(8) 98.4(4) 100(8)
GA-M2/Exp2 100(5) 93.5(9) 98.3(2) 95.5(18) 86.6(7) 98.8(19) 100(4)

Finally, notice that the LDA classifier used in this paper is not the most
powerful classifier. Effectively, in another experimentation, we also used a linear
SVM classifier to estimate the predictive accuracy of the gene subsets selected
by the LDA-GA, leading to slightly better results.

4.4 Discussion

We now discuss about two important issues of the LDA-GA approach: possible
influences of the pre-selection on the prediction accuracy and the capacity of the
approach to explore large sets of genes.

The search space of our LDA-GA is delimited by a first step which pre-selects
a limited number (100 in this paper) of genes with the t-statistic filter criterion.
One may wonder whether changing the filtering criterion and the number of
selected genes affects the performance of the approach. In [5], an exhaustive
study is presented concerning the influence of data pre-processing and filtering
criteria on the classification performance. Three filtering criteria, BSS/WSS, t-
statistic and Wilcoxon test were compared, and the results did not show any
clear dominance of one criterion with respect to the others. However, the fuzzy
pre-processing for date normalization and redundancy reduction presented in [5]
does show a positive influence on the classification performance whatever the
filtering criterion that is applied after.
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The main interest of this genetic approach for gene selection is its ability to
propose a combinatorial exploration of gene subsets. Clearly, this is not the case
in classical approaches like backward selection. In recursive feature elimination
for example, once a gene is discarded by the selection process, it is definitively
ignored in the further steps even if its association to other genes can improve
the classification result. Consider the Leukemia dataset, a perfect performance of
100% is reached with 5 genes (Table 2). LDA-GA also finds other gene subsets
(with 5 to 10 genes) achieving a perfect cross-validation classification. More
precisely, one of these subsets contains the genes placed in positions 3, 12, 63,
72, and 81 by the filter ranking criterion. Another gene subset that achieves
a perfect classification contains the genes ranked in positions: 1, 2, 19, 72 and
81. Generally filter methods retain a small number of genes for classification
(typically 30). Our observation shows that it is interesting and useful to explore
a large set of genes because relevant subsets can contain genes that are not in
the 30 top-ranking ones. Moreover, the possibility to examine diverse solutions
constitutes a valuable feature for further biological investigations.

5 Conclusions

In this paper, we have introduced a new wrapper approach for selecting small
gene subsets able to lead to high prediction accuracy. Our approach begins with a
t-statistic filter that pre-selects a first set of genes (100 in this paper). To further
reduce the gene dimension, we use a hybrid Genetic Algorithm to explore the
gene subset space. The hybrid GA includes some original features that make
it highly effective for identifying small sized and informative gene subsets. In
particular, it uses Fisher’s Linear Discriminant Analysis as its fitness function
to assess the quality of each candidate gene subset. Moreover, useful discriminant
information provided by the LDA classifier is directly integrated into its crossover
and mutation operators. Indeed, the discriminant coefficients of LDA’s eigen
vector constitute a valuable indicator for recombining gene subsets (crossover)
and for gene dimension reduction (mutation). The bi-criteria fitness function
provides a very flexible way for the LDA-GA to explore the gene subset space
either for the minimization of the selected genes or for the maximization of the
prediction accuracy.

We have evaluated extensively our LDA-based GA approach on seven public
datasets (Leukemia, Colon, DLBCL, Lung, Prostate, CNS and Ovarian) using
a 10-fold cross validation process. A large comparison was carried out with 16
state-of-art algorithms that are based on a variety of methods. The results show
clearly the interest of the LDA-GA approach for finding small sized informative
gene subsets leading to high prediction accuracy. For all the datasets, our ap-
proach is able to select gene subsets of the smallest size while ensuring the best
or the second best classification rate. For one dataset (DLBCL), we obtain the
best result ever found with a perfect prediction with only 4 informative genes.

Finally, the proposed approach has another practically useful feature for bi-
ological analysis. In fact, instead of producing a single solution (gene subset),
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our approach can easily and naturally provide multiple non-dominated solutions
that constitute valuable candidates for further biological investigations.
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Abstract. In order to accurately measure the gene expression levels in
microarray experiments, it is crucial to design unique, highly specific and
highly sensitive oligonucleotide probes for the identification of biological
agents such as genes in a sample. Unique probes are difficult to obtain
for closely related genes such as the known strains of HIV genes. The
non-unique probe selection problem is to find one of the smallest probe
set that is able to uniquely identify targets in a biological sample. This
is an NP-hard problem. We present heuristic for finding near-minimal
non-unique probe sets. Our method is a variant of the sequential forward
selection algorithm, which used for feature subset selection in pattern
recognition systems. The heuristic is guided by a probe set selection cri-
terion which evaluates the efficiency and the effectiveness of a probe set
in classifying targets genes as present or absent in a biological sample.
Our methods outperformed all currently published greedy algorithms for
this problem.

Keywords: Probe Selection, Gene Expression.

1 Introduction

Oligonucleotide microarrays are widely used tools, in molecular biology, provid-
ing a fast and cost-effective method for monitoring the expression of thousands
of genes simultaneously [7]. In order to measure the expression level of a spe-
cific gene in a sample, one must design a microarray containing short strands
of known DNA sequences of 8 to 30 bp, called oligonucleotide probes, which are
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complementary to the gene’s segments, called targets. These targets, if present in
the sample, should bind to their complementary probes by means of hybridiza-
tion. The success of a microarray experiment depends on how well each probe
hybridizes to its target under specified experimental conditions such as temper-
ature and salt concentration. However, choosing good probes is a difficult task
since different sequences have different hybridization characteristics.

A probe is unique, if it is designed to hybridize to a single target. However, due
to hybridization errors, there is no guarantee that unique probes will hybridize
to their intended targets only. Many parameters such as secondary structure,
salt concentration, GC content, free energy and melting temperature also affect
the hybridization quality of probes [7], and their values must be carefully deter-
mined to design high quality probes. It is particularly difficult to design unique
probes for closely related genes, given the probe length and melting temperature
constraints. An alternative approach is to devise a method that can make use
of non-unique probes, i.e. probes that are designed to hybridize to at least one
target [7]. Also, a smaller probe set can be used with non-unique probes than
can be with unique probes. Minimizing the number of probes in a microarray ex-
periment is also a reasonable objective, since it is proportional to the cost of the
experiment. The non-unique probe selection problem is to determine a smallest
set of probes able to identify all targets present in a biological sample. This is an
NP-hard problem [1], for which several approaches have been proposed recently
[2][6][7][8][9].

Schliep et al. [7] first introduced the non-unique probe selection problem and
described a simple but fast greedy heuristic, which computes an approximate
solution that guarantees smin-separation for pairs of small target groups. Klau
et al. [1] proposed two ILP formulations for this problem, respectively for single
targets and for target groups, then solved it using the ILP solver CPLEX on
pre-reduced problem instances. They also proved that the non-unique probe
selection problem is NP-hard. Meneses et al. [2] proposed a deterministic greedy
heuristic, for single targets only, which first constructs an initial feasible solution
through local search, and then applies a reduction method to further reduce
this solution. Ragle et al. [6] developed an optimal cutting-plane ILP heuristic,
for single targets only, to find optimal solutions within practical computational
limits. Wang et al. [8] proposed deterministic greedy heuristics that select probes
based on their ability to help satisfy the constraints. Recently, Wang et al. [9]
combined the probe selection functions with evolutionary methods and produced
results that are at least comparable to those obtained by the method of [6], which
is the best published approach for this problem.

2 Non-unique Probe Selection Problem

Given a target set, T = {t1, . . . , tm}, and probe set, P = {p1, . . . , pn}, an m ×
n target-probe incidence matrix H = [hij ] is such that hij = 1, if probe pj

hybridizes to target ti, and hij = 0 otherwise. Table 1 shows an example of a
matrix with m = 4 targets and n = 6 probes. A probe pj separates two targets,
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Table 1. A 4 × 6 target-probe incidence matrix

p1 p2 p3 p4 p5 p6

t1 1 1 0 1 0 1

t2 1 0 1 0 0 1

t3 0 1 1 1 1 1

t4 0 0 1 1 1 0

ti and tk, if it is a substring of either ti or tk, that is, if |hij − hkj | = 1. For
example, if ti = AGGCAATT and tk = CCATATTGG, then probe pj = GCAA
separates ti and tk, since it is a substring of ti only, whereas probe pl = ATT
does not separate ti and tk, since it is a substring of both targets [2]. Two targets,
ti and tk, are s-separated, s ≥ 1, if there exist at least s probes such that each
separates ti and tk; in other words, the Hamming distance between rows i and
k in H is at least s. For example, in Table 1 targets t2 and t4 are 4-separated.
A target t is c-covered, c ≥ 1, if there exist at least c probes such that each
hybridizes to t. In Table 1, target t2 is 3-covered. Due to hybridization errors
in microarray experiments, it is required that any two targets be smin-separated
and any target be cmin-covered; usually, we have smin ≥ 2 and cmin ≥ 2. These
two requirements are called separation constraints and coverage constraints.

Given a matrix H , the aim of the non-unique probe selection problem is to find
a minimal probe set that determines the presence or absence of specified targets,
and such that all constraints are satisfied. In Table 1, if smin = cmin = 1 and
assuming that exactly one of t1, . . . , t4 is in the sample, then the goal is to select
a minimal set of probes that allows us to infer the presence or absence of a single
target. In this case, a minimal solution is {p1, p2, p3} since for target t1, probes
p1 and p2 hybridize while p3 does not; for target t2, probes p1 and p3 hybridize
while p2 does not; for target t3, probes p2 and p3 hybridize while p1 does not;
and finally for target t4, only probe p3 hybridize. Thus, each single target will
be identified by the set {p1, p2, p3}, if it is the only target present in the sample;
moreover, all constraints are satisfied. For smin = cmin = 2, a minimal solution
that satisfies all constraints is {p2, p3, p5, p6}. Of course, {p1, . . . , p6} is a solution
but it is not minimal, and hence is not cost-effective.

Stated formally, given an m× n matrix H with a target set T = {t1, . . . , tm}
and a probe set P = {p1, . . . , pn}, and a minimum coverage parameter cmin,
a minimum separation parameter smin and a parameter dmax ≥ 1, the aim
of the non-unique probe selection problem is to determine a subset Pmin =
{q1, q2, · · · , qs} ⊆ P such that:

1. s = |Pmin| ≤ n is minimal.
2. Each target ti ∈ T is cmin-covered by some probes in Pmin.
3. Each target-pair (ti, tk) ∈ T × T is smin-separated by some probes in Pmin.
4. Each pair of small groups of targets is smin-separated by some probes in

Pmin.
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This problem was proved to be NP-hard, in [1], by performing a reduction
from the set covering problem. It is NP-hard even for cmin = 1 or smin = 1.
The work of [1] formulated the non-unique probe selection problem as an integer
linear programming (ILP) problem. Let C = {(i, k) | 1 ≤ i < k ≤ m} be the set
of all combinations of target indices. Assign xj = 1 if probe pj is chosen and 0
otherwise. We have:

Minimize:
n
∑

j=1

xj . (1)

Subject to:

xj ∈ {0, 1} 1 ≤ j ≤ n , (2)
n
∑

j=1

hijxj ≥ cmin 1 ≤ i ≤ m , (3)

n
∑

j=1

|hij − hkj |xj ≥ smin 1 ≤ i < k ≤ m . (4)

Function (1) minimizes the number of probes. The probe selection variables
are binary-valued in Restriction (2). Constraints (3) and (4) are the coverage
and separation constraints, respectively. Note that Constraints (4) are for single
targets only. As opposed to this, in [1], another ILP formulation was proposed,
which includes the separation constraints for small groups of targets. In this
paper, we solve the ILP formulation, above, using a deterministic greedy heuristic
based on a feature subset selection method used in pattern recognition. Note that
one can easily check if the probes in the original set of candidate satisfy all the
constraints. If not, then there are no feasible solutions. In this case, we can insert
unique virtual probes in the original probe set only for those targets or target-
pairs that are not cmin-covered or smin-separated. This will ensure the existence
of feasible solutions.

3 Probe Selection Functions

We want to select a minimum number of probes such that each target is cmin-
covered and each target-pair is smin-separated. Consider a target-probe incidence
matrix, H , the parameters cmin and smin, the initial feasible candidate set of
probes, P = {p1, . . . , pn}, and the set of targets T = {t1, . . . , tm}. Let Pti be the
set of probes hybridizing to target ti, and Ptik

be the set of probes separating
the target-pair tik. A probe p ∈ Pti is an essential covering probe if and only
if |Pti | = cmin. In Table 1, for instance, the probes in Pt2 = {p1, p3, p6} are
essential covering probes if cmin = 3. Essential separating probes are defined
similarly. Essential probes must be contained in any minimal solution; that is,
removing any such probe will make the solution unfeasible. A redundant probe is
the one for which a feasible solution remains feasible when the probe is removed.
Note that a probe may be redundant for some candidate solutions but non-
redundant for others. There is a degree of redundancy between probes such
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that highly redundant probes are in very few or no minimal solutions. Our
approach associates with each probe and each probe set a degree of contribution
to minimal solutions (or, degree of non-redundancy)[8]. This degree corresponds
to the ability of a probe, or a probe set, to help satisfy all the constraint.

3.1 Coverage Function

We want to choose the minimum number of probes such that each target is cmin-
covered. Given H , the parameter cmin, the probe set P = {p1, . . . , pn} and the
target set T = {t1, . . . , tm}, we defined the function covdrc : P × T �→ [0, 1] in
[8] as follows:

covdrc(pj , ti) = hij × cmin

|Pti |
, pj ∈ Pti , ti ∈ T , (5)

where, Pti is the set of probes hybridizing to target ti; covdrc(pj , ti) is the amount
that pj contributes to satisfy the coverage constraint for target ti. For target ti, pj

is likely to be redundant for a larger value of |Pti | and likely to be non-redundant
for a smaller value of |Pti |. We defined the coverage function Cdrc : P �→ [0, 1]
in [8] as follows:

Cdrc(pj) = max
ti∈Tpj

{covdrc(pj , ti) | 1 ≤ j ≤ n} , (6)

where Tpj is the set of targets covered by pj . Cdrc(pj) is the maximum amount
that pj can contribute to satisfy the minimum coverage constraints. Table 2
shows the coverage function table produced from Table 1.

Function Cdrc favors the selection of probes that cmin-cover targets ti that
have the smallest subsets Pti ; these are the essential or near-essential covering
probes. In Table 2, for example, target t2 has the minimal value |Pt2 | = 3,
and hence any probe that covers it can be selected first. In particular, function
Cdrc guarantees the selection of near-essential covering probes that cmin-cover
dominated targets ; ti dominates tk if Ptk

⊂ Pti . In Table 2, for example, t3
dominates t4 since Pt4 = {p3, p4, p5} ⊂ {p2, p3, p4, p5, p6} = Pt3 . Any cmin-cover
of the dominated target tk will also cmin-cover all its dominant targets, and

Table 2. Coverage function table obtained from Table 1

p1 p2 p3 p4 p5 p6

t1
cmin

4
cmin

4
0 cmin

4
0 cmin

4

t2
cmin

3
0 cmin

3
0 0 cmin

3

t3 0 cmin
5

cmin
5

cmin
5

cmin
5

cmin
5

t4 0 0 cmin
3

cmin
3

cmin
3

0

Cdrc
cmin

3
cmin

4
cmin

3
cmin

3
cmin

3
cmin

3

Cdps
cmin

6
cmin

8
cmin

4
cmin

4
cmin

6
cmin

4



Sequential Forward Selection Approach 267

therefore, more targets are cmin-covered. Probes covering the dominated target
tk have larger covdrc values than probes covering its dominant targets ti, since
|Ptk

| < |Pti |, and hence they will be selected first.
We would also like to favor the selection of dominant probes ; pj dominates

pl if Tpl
⊂ Tpj . In Table 2, for instance, p6 dominates p1 since Tp1 = {t1, t2} ⊂

{t1, t2, t3} = Tp6 . Selecting dominant probes instead of dominated probes covers
more targets. In the example, however, we have Cdrc(p1) = Cdrc(p6), and hence
p1 could be selected for target coverage rather than p6, depending on a particular
order of the probes. On the other hand, p6 dominates p2 and Cdrc(p6) > Cdrc(p2),
and hence p6 will be selected first. To favor the selection of a dominant probe
among dominated probes equal in value Cdrc, we penalize each probe p by an
amount proportional to |Tp|, as follows:

Cdps(pj) = Cdrc(pj) × 1
m − |Tpj | + 1

, (7)

and probes that cover fewer targets are penalized more than probes that cover
more targets. Table 2 shows the values of Cdps for each probe.

3.2 Separation Function

We want to choose the minimum number of probes such that each target-pair is
smin-separated. We defined the function sepdrc : P ×T 2 �→ [0, 1] in [8] as follows:

sepdrc(pj , tik) = |hij − hkj | × smin

|Ptik
| , pj ∈ Ptik

, tik ∈ T 2 , (8)

where, Ptik
is the set of probes separating target-pair tik; sepdrc(pj , tik) is what

pj can contribute to satisfy the separation constraint for target-pair tik. We
defined the separation function Sdrc : P �→ [0, 1] in [8] as follows:

Sdrc(pj) = max
tik∈T 2

pj

{sepdrc(pj , tik) | 1 ≤ j ≤ n} , (9)

where T 2
pj

is the set of target-pairs separated by pj . Sdrc(pj) is the maximum
amount that pj can contribute to satisfy the minimum separation constraints.
The full separation function table can be found in [9].

Function Sdrc also favors the selection of probes that smin-separate target-
pairs tik which have the smallest subsets Ptik

and further favors the selection of
near-essential separating probes that smin-separate dominated target pairs. To
favor the selection of a dominant probe that has the same value, Sdrc, as some
of its dominated probes, we penalize each probe p by an amount proportional
to |T 2

p |, as follows:

Sdps(pj) = Sdrc(pj) × 1
m(m−1)

2 − |T 2
pj
| + 1

, (10)

and probes that separate fewer target-pairs are penalized more than probes that
separate more target-pairs.
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3.3 Selection Function

We want to select the minimum number of probes such that all coverage and
separation constraints are satisfied; that is, we must select a probe according
to its ability to help satisfy both coverage and separation constraints. In [8],
we combined functions Cdrc and Sdrc into a single probe selection function,
Ddrc : P �→ [0, 1] as follows:

Ddrc(pj) = max{(Cdrc(pj), Sdrc(pj)) | 1 ≤ j ≤ n} . (11)

Ddrc(pj) is the degree of contribution of pj , that is, the maximum amount re-
quired for pj to satisfy all constraints. Ddrc ensures that all essential probes
pj will be selected for inclusion in the subsequent candidate solution, since
Cdrc(pj) = 1 or Sdrc(pj) = 1. With our definition of Ddrc, probes p that cover
dominated targets or separate dominated target-pairs have the highest Ddrc(p)
values. By selecting a probe p to cover a dominated target ti or to separate a
dominated target-pair tik, we are also selecting p to cover as many targets as
possible (all targets that dominate ti) or to separate as many target-pairs as
possible (all target-pairs that dominate tik). This is the main greedy probe se-
lection strategy in our heuristics in Section 5. In this paper, we use the following
probe selection function, Ddps : P �→ [0, 1]:

Ddps(pj) = max{(Cdps(pj), Sdps(pj)) | 1 ≤ j ≤ n} , (12)

to favor the dominant probes among all probes that have equal values in Ddrc;
this is the secondary greedy selection principle. These two greedy principles
together allow larger coverage and separation when using Ddps than Ddrc in a
greedy search method.

4 Subset Selection Criteria

Given the initial probe set, P = {p1, . . . , pn}, the sequential search algorithm,
discussed in Section 5, greedily selects the best subset of probes among a col-
lection, P ⊆ 2P , of subsets; 2P is the power set of P . In this section, we
define the criteria required to decide which is the best subset to select. Let
P 1...u = {q1, . . . , qu} ⊆ P be a probe set to be evaluated, where qj ∈ P , 1 ≤ j ≤ u
and 1 ≤ u ≤ n, and P 1...0 = ∅. P 1...u cmin-covers a target ti if at least cmin probes
in P 1...u cover ti. P 1...u smin-separates a target-pair tik if at least smin probes
in P 1...u separate tik. Our aim is to select the subset P 1...u which cmin-covers as
many target as possible and smin-separates as many target-pairs as possible, or,
which satisfies all the constraints with the least cardinality u.

4.1 Coverage Criterion

Given a collection P ⊆ 2P , we want to choose the subset P 1...u ⊆ P such that
each target is cmin-covered by P 1...u. Given the matrix H , the parameter cmin,
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Table 3. Example of subset coverage obtained from Table 1

{p3} ∪ {p1} = P31 P32 P34 P35 P36

t1 0 + cmin
4

2
4

= cmin
8

cmin
8

3cmin
16

0 3cmin
16

t2
cmin

3
3
4

+ cmin
3

2
4

= 5cmin
12

cmin
4

cmin
4

cmin
4

cmin
2

t3
cmin

5
3
4

+ 0 = 3cmin
20

cmin
10

3cmin
10

cmin
10

3cmin
10

t4
cmin

3
3
4

+ 0 = 3cmin
20

cmin
4

cmin
2

5cmin
12

cmin
4

Cdps
cmin

3
3
4

+ cmin
3

2
4

= 5cmin
12

cmin
4

cmin
2

5cmin
12

cmin
2

the candidate probe set P = {p1, . . . , pn} and the target set T = {t1, . . . , tm}; to
evaluate the ability of subset P 1...u to cmin-cover T , we generalize the coverage
function as follows:

Cdps(P
1...u) = max

ti∈T
P1...u

(
j=uX
j=1

covdrc(qj , ti) × 1

m − ˛̨
Tqj

˛̨
+ 1

| qj ∈ P 1...u

)
, (13)

where TP 1...u = Tq1∪. . .∪Tqu is the set of targets covered by P 1...u. Cdps(P 1...u) :
2P �→ �+ is the maximum amount that P 1...u can contribute to satisfy the
minimum coverage constraints. Table 3 shows an example of a subset coverage
table obtained from Table 1, given five subsets. In the example, Pab means the
subset {qa, qb}. We also show, for P31, the computation of Equation (13).

Clearly, Cdps(P 1...u) is maximal if Cdps(qj) is maximal for each qj ∈ P 1...u.
Thus, for subsets of probes, function Cdps favors the selection of those subsets
that contain probes having the highest coverage values. For example in Table 2,
probes p3, p4 and p6 have the highest coverage values, and hence, subsets such
as P34 and P36 have the best values. Cdps indicates only how much a subset con-
tributes in satisfying the coverage constraints, not how well the subset satisfies
the coverage constraints. For instance, in the table, subsets P31 and P35 produce
a tie, but P31 should be preferred since it covers more targets. Also, between
the two subsets, which attain the same value of Cdps, the one that satisfies all
coverage constraints (or, closer to satisfying all coverage constraints) should be
preferred. We define the coverage criterion, FCdps : 2P �→ �+, as follows:

FCdps (P
1...u) = Cdps(P

1...u)× |TP1...u | − |UP1...u |
m − |UP1...u | ×

P
ti∈T�U

P1...u
fea

`
P 1...u

ti

´
(m − |UP1...u |) · cmin

, (14)

where, UP 1...u is the set of targets already cmin-covered by P 1...u (probes need
not be selected to cover such targets); P 1...u

ti
is the set of probes in P 1...u that

cover ti, and fea : 2P �→ �+ defined as

fea
(

P 1...u
ti

)

=
{∣
∣P 1...u

ti

∣
∣ , if

∣
∣P 1...u

ti

∣
∣ < cmin

cmin , otherwise , (15)

specifies how much the coverage constraint is satisfied on ti; the sum equals
(m − |UP 1...u |) cmin when all coverage constraints are satisfied. Hence, the second
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term penalizes subsets that cover fewer targets and the third term penalizes
subsets that satisfy fewer coverage constraints. FCdps is maximal when all three
terms are maximal.

4.2 Separation Criterion

The derivation of the separation criterion is similar to that of coverage, except
that we use terms and variables related to separation; such as, target-pair, smin,
and so on, in the equations below. Given a collection P ⊆ 2P , we want to
choose the subset P 1...u ⊆ P such that each target-pair is smin-separated by
P 1...u. Consider the matrix H , the parameter smin, the candidate probe set P =
{p1, . . . , pn} and the target set T = {t1, . . . , tm}. Following the same reasoning
as in Section 4.1, we obtain the following equations for separation:

Sdps(P
1...u) = max

tik∈T2
P1...u

8<
:

j=uX
j=1

sepdrc(qj , tik) × 1
m(m−1)

2
−

˛̨̨
T 2

qj

˛̨̨
+ 1

| qj ∈ P 1...u

9=
; ,

(16)

where T 2
P 1...u = T 2

q1
∪ . . . ∪ T 2

qu
is the set of target-pairs separated by P 1...u.

Sdps(P 1...u) : 2P �→ �+ is the maximum amount that P 1...u can contribute to
satisfy the minimum separation constraints. The separation criterion is given
by:

FSdps(P
1...u) = Sdps(P 1...u)×

∣
∣T 2

P 1...u

∣
∣− ∣

∣U2
P 1...u

∣
∣

m(m−1)
2 − ∣

∣U2
P 1...u

∣
∣
×
∑

tik∈T 2
�U2

P1...u
fea

(

P 1...u
tik

)

(
m(m−1)

2 − ∣
∣U2

P 1...u

∣
∣

)

· smin

,

(17)

where, U2
P 1...u is the set of target-pairs already smin-separated by P 1...u (probes

need not be selected to separate such target-pairs); P 1...u
tik

is the set of probes in
P 1...u that separate tik, and fea : 2P �→ �+ defined as

fea
(

P 1...u
tik

)

=
{∣
∣P 1...u

tik

∣
∣ , if

∣
∣P 1...u

tik

∣
∣ < smin

smin , otherwise , (18)

specifies how much the separation constraint is satisfied on tik; the sum equals
(

m(m−1)
2 − ∣

∣U2
P 1...u

∣
∣

)

smin when all separation constraints are satisfied. Thus,
the second term penalizes subsets that separate fewer target-pairs and the third
term penalizes subsets that satisfy fewer separation constraints. FSdps is maximal
when all three terms are maximal.

4.3 Selection Criterion

As in the selection function of Section 3.3, we combine both the coverage criterion
and the separation criterion into a single subset selection criterion

FDdps(P
1...u) = max

{

FCdps(P
1...u) , FSdps(P

1...u)
}

, (19)

which specifies the degree to which a subset of probes satisfies all constraints.
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5 Sequential Forward Probe Selection Algorithm

In this section, a sub-optimal technique from pattern recognition is applied for
the first time, to the best of our knowledge, to the non-unique probe selection
problem. In particular, the well-known sequential forward selection (SFS) algo-
rithm [5], for feature subset selection, is adapted to find near-minimal feasible
probe sets. Feature selection (FS) constitutes one of the two principal phases of
pattern recognition system design, the other being the design of pattern clas-
sification stage which employs the selected features. The main goal of FS is to
select a subset of d features from the given set of D measurements, d < D,
without significantly degrading or with possibly improving the performance of
the recognition system. Given a suitable criterion function for assessing the ef-
fectiveness of feature subsets to classify data, FS is reduced to a combinatorial
search problem that finds an optimal subset based on the selected measure. The
SFS is among the methods[3][4][5] proposed by researchers to avoid searching
the feature space exhaustively.

A microarray design experiment is a pattern recognition system where the
measurements are provided by a biological sample and a target set (augmented
with the set of all target-pairs, if non-unique probes are used), and where the
classifier system is a probe set that classifies each target, or target-pair, as present
or absent in the sample. However, with microarrays, the problem is to reduce
the complexity of the classifier system (i.e., the size of the probe set) while still
able to correctly classify each target and target-pair as present or absent in
the biological sample. Here, the feature space representing the sample, which
includes the targets and the target-pairs, is not subject to optimization.

We adapt the SFS to find a near minimal probe set as follows: the best probe
set is constructed by adding, to the current non-feasible probe set, one probe
at a time until we obtain a feasible probe set with the hope it has the least
cardinality u. More specifically, to form the best feasible subset of probes, the
starting point of the search is the empty set, P 1...0, which is then successively
built up. This is known as the bottom up approach. This method is generally
sub-optimal since the best probe is always added to a working subset of probes,
P 1...u.

The sequential forward probe selection (SFPS) method (Algorithm 1) is based
on the SFS algorithm. SFPS uses the FDdps function as the criterion for selecting
the best subset among a collection of probe sets. The best probe, q+, to insert in
a working subset, P 1...u, is the one that maximizes the criterion, FDdps , when it
is included. SFPS terminates when P 1...u is feasible; which is then reduced to a
near-minimal solution, Pmin, in Algorithm 2, by removing the redundant probes.

SFPS locally searches the power set, 2P , of the probe set P . That is, at each
subset selection step, the neighborhood of the working subset P 1...u ∈ 2P is the
collection P1...(u+1) =

{

P 1...u ∪ {q1}, P 1...u ∪ {q2}, . . . , P 1...u ∪ {qn−u}
} ⊂ 2P ,

qj ∈ P � P 1...u for 1 ≤ j ≤ n − u. The subset to select is the one in P1...(u+1)

that maximizes the criterion FDdps .
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Algorithm 1. Sequential Forward Probe Selection
Input: T = {t1, . . . , tm}, P = {p1, . . . , pn}, and H = [hij ]
Output: Near-minimal solution Pmin

Compute Ddps(p) for all p ∈ P ;
u ← number of essential probes;
P 1...u ← set of essential probes;
repeat

q+ ← arg maxq∈P �P1...u FDdps

`
P 1...u ∪ {q}´

;

P 1...(u+1) ← P 1...u ∪ {q+};
u ← u + 1;

until P 1...u is feasible;
Return Pmin ← Reduction(P 1...u, P, T, H).

Algorithm 2. Reduction
Input: P 1...u, P , T , H
Output: Reduced solution Pred

Pred ← P 1...u;
H ← H |Pred , /* restrict to Pred */ ;
Compute Ddps(q) for all q ∈ Pred;
Sort Pdel ← {q ∈ Pred | Ddps(q) < 1} in increasing Ddps(q);
if Pred � {p} is feasible for each q ∈ Pdel then

Pred ← Pred � {q};
end if
Return Pred.

6 Computational Experiments

We performed experiments to show the minimization ability of SFPS and that it
outperform all the greedy methods currently published in literature for the non-
unique probe selection problem. The programs were written in C and all tests ran
on two Intel XeonTM CPUs 3.60GHz with 3GB of RAM under Ubuntu 6.06 i386.

We conducted experiments on ten artificial data sets and three real data sets,
that were kindly provided by Dr. Ragle and Dr. Pardalos [6]. These data sets
were used in all previous studies mentioned in Section 1, except for HIV-1 and
HIV-2 sets which were used only in [2][6][8][9]. Table 4 shows, in the second and
third columns, the dimension |T | × |P | (number of targets × number of probes)
of the incidence matrix for each set (M for Meiobenthos is the largest set).
Column A is the number of required virtual probes inserted into P to maintain
the feasibility of the initial probe sets P . Due to space constraints, we refer the
readers to [1][2][7] for the full details on the construction of these data sets. All
experiments were performed with parameters cmin = 10 and smin = 5, as in all
previous studies.

Table 4 shows, for all data sets, the minimum sizes |Pmin| attained by the
greedy methods, GrdS of [7], GrdM of [2], DRC and DPS of [8], our SFPS
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Table 4. Size of Pmin for each heuristic

Set |T | |P | A GrdS GrdM DRC DPS SFPS ILP

a1 256 2786 6 1163 568 549 547 530 503

a2 256 2821 2 1137 560 552 537 516 519

a3 256 2871 16 1175 613 590 577 557 516

a4 256 2954 2 1169 597 579 578 557 540

a5 256 2968 4 1175 605 583 571 558 504

b1 400 6292 0 1908 961 974 921 883 879

b2 400 6283 1 1885 976 1013 942 890 938

b3 400 6311 5 1895 951 953 915 896 891

b4 400 6223 0 1888 1001 1019 956 920 915

b5 400 6285 3 1876 1022 1019 969 933 946

M 679 15139 75 3851 2336 2084 2068 2036 3158

HIV-1 200 4806 20 - 531 487 472 468 -

HIV-2 200 4686 35 - 578 506 501 492 -

method, and the integer linear programming technique, ILP of [1]. In the table,
the final Pmin’s include the virtual probes inserted into P .

Table 5 reports the improvements, Imp, of SFPS over GrdS, GrdM, DRC,
DPS and ILP, computed as in Equation 20 below.

Imp =
PSFPS

min − PHeu
min

PHeu
min

× 100 , (20)

where Heu is either GrdS, GrdM, DRC, DPS or ILP. A negative (positive) value
of Imp means that a SFPS result is Imp% better (worse) than Heu result. Con-
sequently, Imp is negative when SFPS returns a probe set smaller than PHeu

min .
Therefore, the smaller the value of Imp, the better is SFPS.

SFPS substantially outperformed all the other greedy methods in all instances.
GrdS and GrdM use different local search methods to find probes that satisfy the
constraint on each target and target-pair. They use no probe selection function
and thus, they do not know which probes are good or bad to select. DRC and
DPS use a local search method similar to that in GrdM, but are guided by probe
selection functions to decide which probes are best to select or not. SFPS uses
the probe selection function, Ddps, of DPS but only to evaluate the effectiveness
of each individual probe in a probe set. SFPF does not select the best probes,
as in DPS, to construct a near minimal probe set; it uses the criterion FDdps

to select the best subset from a collection of probe sets, as explained in Section
5. DPS locally searches the probe set P , where the neighborhood of a probe
q ∈ P is the set of probes that cover the same targets and separate the same
target-pairs as q. SFPS locally searches the power set 2P ; which is more global
than DPS search strategy. Therefore, as expected, SFPS performs better than
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Table 5. Improvements of SFPS over GrdS, GrdM, DRC, DPS and ILP

Set GrdS GrdM DRC DPS ILP

a1 −54.43 −6.69 −3.46 −3.11 +5.37

a2 −54.62 −7.86 −6.52 −3.91 −0.58

a3 −52.60 −9.14 −5.59 −3.47 +7.95

a4 −52.35 −6.70 −3.80 −3.63 +3.15

a5 −52.51 −7.77 −4.29 −2.28 +10.71

b1 −53.72 −8.12 −9.34 −4.13 +0.46

b2 −52.79 −8.81 −12.14 −5.52 −5.12

b3 −52.72 −5.78 −5.98 −2.08 +0.56

b4 −51.27 −8.09 −9.72 −3.77 +0.55

b5 −50.27 −8.71 −8.44 −3.72 −1.37

M −47.13 −12.84 −2.30 −1.55 −35.53

HIV-1 - −11.86 −3.90 −0.85 -

HIV-2 - −14.88 −2.77 −1.80 -

DPS, DRC, GrdM and GrdS, due to its ability to assess the effectiveness of a
probe set and its ability to search 2P .

Also, SFPS achieved a greater reduction on the M set than all the others
methods, including ILP. The authors of [1], first applied GrdS to reduce the ini-
tial probe sets (and to reduce the ILP running time), and then further optimized
the reduced probe sets with ILP solver CPLEX (CPLEX is one of the leading
mathematical programming software packages available and few heuristics, if
any, are able to compete with its results). CPLEX was restricted to search only
a small portion of the solution space, hence ILP was not aware of the full initial
probe sets. SFPS had no such restriction. The improvements of SFPS over ILP
are still quite small, but it implies that one could obtain better results than ILP,
with better functions, than our Ddps or FDdps , or with a better search method,
than our SFPS method.

7 Conclusions and Future Research

In this paper, the sequential forward search algorithm is applied for the first
time to solve the non-unique probe selection problem. SFPS outperformed all
the currently published greedy algorithms for non-unique probes and gave results
close to the optimal search method of ILP. SFPS also suffers from the nesting
effect of SFS; that is, a probe that was selected cannot be discarded later to
correct a wrong decision, and hence, the solution tends to be sub-optimal. The
main cause of the nesting effect is the use of a non-monotonic criterion such
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as our FDdps criterion. We are investigating sequential methods, such as the
floating search methods of [5], which reduces the nesting effect and cope with
non-monotonic criterion functions.
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On Finding and Interpreting Patterns in Gene

Expression Data from Time Course Experiments
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Abstract. Microarrays are being widely used for studying gene activity
throughout a cell cycle. A common aim is to find those genes that are
expressed during specific phases in the cycle. The challenges lie in the
extremely large number of genes being measured simultaneously, the rel-
atively short length of the time course studied and the high level of noise
in the data. Using a well-known yeast cell cycle data set, we compare
a method being used for finding genes following a periodic time series
pattern with a method for finding genes having a different phase pattern
during the cell cycle. Application of two visualisation tools gives insight
into the interpretation of the patterns for the genes selected by the two
approaches. It is recommended that (i) more than a single approach be
used for finding patterns in gene expression data from time course exper-
iments, and (ii) visualisation be used simultaneously with computational
and statistical methods to interpret as well as display these patterns.

1 Introduction

DNA microarrays have enabled the simultaneous monitoring of the expression
patterns of thousands of genes during cellular differentiation and response. A
major challenge has been to find and interpret patterns in these massive data
sets. Cluster analysis is one of the main methodologies used to study such data
and find patterns. It is well known that there is no straightforward, rigorous way
to quickly extract clusters from complex, high-dimensional data and hundreds
of algorithms have been proposed [1]. As noted in [2] ‘All the [cluster analysis]
methods have their limitations and weak points. That is why it is so important
to look at the clustering problem from multiple perspectives’.

One widely used application of DNA microarrays is for the study of the cell
cycle transcriptome. For some time it has been clear that certain genes are
expressed at specific stages of the cell cycle [3]. So these genes show a periodic
pattern of expression when monitored during consecutive cell cycles. Clustering
methods have been proposed for finding patterns in these time course data;
including self-organizing maps [4], principal component analysis [5], amongst
other methods (see [6]). Alternative approaches specifically for finding relevant,
periodic patterns in time course data have been proposed; see, for example, [3],
[7], [8], [9]. Generally, the foremost aim for these latter methods is to find cell
cycle regulated genes.

M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 276–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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When searching for, and evaluating, patterns of gene expression, a statis-
tical modelling approach has the following, major advantage compared with
non-statistically based, computational modelling approaches that underpin most
clustering methods. Namely, the type of patterns being found can be compared
in a rigorous manner [10]. For time course data, recently we proposed a novel
statistical model for selection of genes with different phases and/or amplitudes
[9] and compared the results of applying this approach to the Cho et al data
with the results previously published ([11], [3]).

As noted above, there are limitations for all approaches, and it is important
to use and compare different perspectives. So we focus here on two approaches
for finding relevant patterns in gene expression time course data, namely (i)
Fisher’s exact test for hidden periodicities of unspecified frequency [12], [7],
and (ii) the absolute sine model [9]. A valuable step when analysing genome-
wide expression is to visualise the results from the analysis in such a way as
to facilitate interpretation of the data, including the patterns found, as well as
those not found [6]. Here two useful visualisation tools for interpreting patterns
simultanously in a large number of expression measures are used, the h-profile
plot [9] and the GE-biplot [14].

The next section summarises the two approaches for finding patterns in time
course data and the visualisation tools, and the Cho et al [11] data are described
in section 3. The statistical approaches and visualisation tools are applied to
these data in section 4, and the results presented there illustrate the usefulness
of the two statistical approaches for finding different types of patterns in the time
course data, and of the visualisation methods for interpreting these patterns.

2 Methods Summary

2.1 Fisher’s Exact Test for Hidden Periodicities (FET)

Consider an observed time series z1, ..., zN of gene expression values (possibly
transformed). Fisher devised an exact procedure based on the periodogram to
test the null hypothesis of Gaussian white noise against the alternative of an
added deterministic periodic component of unspecified frequency. Basically, the
null hypothesis will be rejected if the periodogram contains a value significantly
greater than the average value; see 10.2 in [12]. Writing [r] for the integer part
of [r], the statistic is given by

ξr = {max1≤k≤[r]I(ωk)}/{Σ[r]
k=1I(ωk)}

where
I(ωk) = N−1|ΣN

t=1zte
−itωk |2, ωk = 2πk/N.

In [7], [N/2] is used for [r], but [(N −1)/2] is the correct form; see [12], [13]. The
significance level for the corresponding test is given by

P (ξr ≥ x) = 1 − Σ
[r]
j=0(−1)j

(

[r]
j

)

(1 − jx)[r]−1
+

where y+ = max(y, 0).
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This procedure has been applied to multiple time series data derived from
microarray experiments ([7], [15], [8]). For this application, it is referred to as
the ‘(g)-statistic’ and ‘g test’. The challenge of multiple testing is addressed
using the False Discovery Rate (FDR) that controls the expected proportion of
false positives. If G genes are considered, first the corresponding p-values are
ordered, p(1), ..., p(G) with corresponding genes g(1), ..., g(G), then jq, the largest
j such that p(j) ≤ (j/G)q, is determined. The null hypothesis is rejected for
genes g(1), ..., g(jq). This controls the FDR at level q. The GeneCycle package in
R [16] implements the approach outlined in [7] that we refer to as FET-gs. Note
that during revision of the paper, GeneCycle was updated to use the correct
form of [r].

2.2 Absolute Sine Model (ASM)

Many genes, rather than having periodic behaviour instead may be following a
different pattern in each cycle. Based on many of the profile plots that appeared
to depict this behavior, we proposed the following model [9] for gene expression
data

Zt = |Asin(2πKt + L)|,
where A is the amplitude, K the period and L the part of the cycle at time
zero, i.e. related to phase. This model allows the selection of genes with different
phases and/or amplitudes.

If K = 1 and time t is scaled to run from 0 to 1, there are exactly two cycles
so that genes whose profiles complete two cycles and have approximately equal
amplitude in both cycles will be selected. A scale free estimate of residual error
RSS =

∑

t((zt − ẑt
∗)/Â)2 is obtained, where ẑt

∗ = |Âsin(2πt+ L̂)|. To assess fit
based on RSS, simulation was used to determine the quantiles of the distribution
of RSS, denoted by ĉ. Estimates of RSSg for all genes, g, were calculated and
compared to ĉ. All genes, where ˆRSSg ≤ ĉ were selected as being compatible
with the two cycle model, where different values of ĉ select genes with more or
less compatability with the model.

Values of Â provide information on the extent of gene expression change
(amplitude), and the corresponding value of t is an estimate of the time of
maximal expression. The value of the intercept parameter L̂ gives an estimate
of the expression at the beginning of the cycle.

2.3 Visualisation Tools

It is advised that ‘an essential first step [ ] when considering any time series is
simply to plot the observation against time’ [17]. This is straightforward if one is
considering a handful of time series data, but when there are hundreds, or even
thousands, of series it is more problematic. Two visualisation tools, the h-profile
plot and the covariance-biplot (and a variant called the GE-biplot) are useful in
this setting, and are now described.

Let Z be the matrix of expression values, or functions of gene expression
values, with G ‘genes’ in the columns and N microarrays (one for each time point
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in this application) in the rows, such that the column (gene) means are zero.
To illustrate ideas, we describe the methods as if Z contained gene expression
values and refer to the columns as ‘genes’, although this is not strictly correct.

Let the SVD of Z be Z = UΛVT , where U, size N by N , and VT , size G by
G, are orthogonal matrices such that UTU = I and VT V = I (where I is used
to denote a conformable identity matrix).

In both plots, the coordinates for all genes, in d dimensions, are defined as

G̃T
d =

1√
N − 1

ΛdVT
d ,

where Ud and Vd are matrices comprising the first d columns of U and V
respectively and Λd is a sub matrix of Λ formed from the first d columns and
rows of Λ. For two dimensional representation d = 2 and then G̃T

2 consists of
pairs of co-ordinates, one for each gene, defining the location of gene points on
the horizontal and vertical axes.

Genes, represented by gene points, have expression values which increase in
variance as distance from the origin increases. The angular separations between
the gene points are approximations to cosines of correlation between the gene
expression profiles. So genes that are highly correlated will lie approximately on
a line passing through the origin, with those that are positively correlated on
the same side of the origin, while those that are negatively correlated lie on the
opposite side.

In the h-profile plot reduced versions of a plot (thumbnail) for each gene is
placed at the gene points. When the reduced plot is a time series graph, and
Z contains the gene expression values, profiles of similar ‘shape’ are located
together, while those of ‘reversed’ shape lie on the opposite side of the origin.

For the covariance-biplot, where microarrays and the genes are simultaneously
displayed, the gene coordinates are as in the h-profile plot and the microarray
coordinates are given by

C̃d =
√

N − 1Ud.

When Z consists of gene expression values that have been logged, standardized
over each microarray, and finally column mean corrected, the covariance-biplot
is called the GE-biplot [14].

In these biplots, the scalar product between the tth row point (microarray
point) and gth column point (gene point) with respect to the origin is approx-
imately equal to the (t, g)th element, zt,g, of Z. The juxtapositions of the gene
points to the microarray points provides an approximation to the value of the
(transformed) gene expression values on the microarrays. The inner product can
be viewed geometrically as the product of the signed length of one of the vec-
tors and the length of the projection of the other vector onto it. Thus if a gene
point is close to a microarray point then the gene will be relatively up regulated
in that microarray and if the gene point is on the opposite side of the plot to
the microarray point then the gene will be relatively down regulated on that
microarray. The accuracy of these predictions depends on how good the approx-
imation is in the lower ranked space; two measures of fit, I1 and I2, ranging from
0 to 1, can be determined [14], [9]. R source code is available at [18].
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For time course data, one would expect those microarrays falling in the same
cell phase to be relatively close to one another, and the greater the separation
between the different cell phases, the greater the distance between the corre-
sponding microarrays.

A novel application of these plots for time series data demonstrated in this
paper, replaces the gene expression values in the columns of Z by the residuals
arising after first fitting ‘some model or other’ to the series. Such (initial) model
fitting is often necessary in time series analyses [17].

3 Mitotic Cell Cycle Data

The aim of the time-course experiment described in Cho et al [11] was to char-
acterize mRNA transcript levels during the cell cycle of the budding yeast S.
cerevisiae. Synchronous yeast cultures were arrested in late G1 and the cell cy-
cle re-initiated with cells collected at 10 minute intervals, covering two full cell
cycles. The time course was divided into early G1, late G1, S, G2 and M phases
based on the size of the buds, the cellular position of the nucleus, and standard-
ization to known transcripts.

For our analyses of these data, the negative values were truncated to .01, the
data logged using base 2 (as is commonly done, see for example [7]), and finally
standardized so that, for each microarray, the mean over all values is zero and
the corresponding variance is one. This latter transformation effectively ‘normal-
izes’ the distributions so that the first two moments of the distributions on each
microarray agree. Control genes were removed leaving a total of 6565 genes. Al-
though not technically correct the transformed gene expression is often referred
to as simply ‘gene expression’ to avoid cumbersome phrases. Preprocessing can
have a large impact on analyses, but such considerations are beyond the scope
of this paper. The sample at time zero, that is immediately after arrest, was
eliminated from the following analyses, leaving 16 microarrays, one at each 10
minute interval, from time 10 to 160 minutes.

4 Results

Using FET-gs in the GeneCycle package [16] with an FDR of 0.05, 532 genes
were selected. On the left of Fig.1 is the GE-biplot where the genes are shown
as symbols, marking their positions relative to the microarray points which are
shown as numerals indicating the time in minutes. The microarrays are coloured
according to their cell phase determined by Cho et al, and the same colouring
is applied to the genes according to the phase in which the time of maximum
(TOM) occurred. TOM was determined by averaging the four values in each
phase and then finding the maximum. On the right of Fig.1 is the h-profile plot
using a periodogram as the thumbnail [16], with different colours differentiating
the estimates of k. The measures of fit are I1 = 0.65 and I2 = 0.88.

Previously, in the GE-biplot for these data using genes selected by ASM [9],
microarrays allocated to the different coloured phases appeared in the same
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Fig. 1. On the left is a GE-biplot using the 532 genes selected by FET-gs (FDR=0.05).
The microarray points are shown as coloured numerals (time in minutes) indicating the
phase determined by Cho et al (see legend). The genes are shown as coloured symbols,
marking their positions relative to the microarray points, where the colour (and symbol)
analogously are according to the phase in which time of maximum occurred. On the
right is a corresponding h-profile plot (outliers removed) showing the periodograms
for 531 of these genes (after removing the outlier). The periodograms are coloured to
differentiate the k values (see legend, and the equations in Section 2.1).

−2 −1 0 1

−
1

0
1

2

Axis 1

A
xi

s 
2

10

20

30

40

50

60

70

80

90

100

110

120
130

140

150

160

Cell phase
G1
S
G2
M

−2 −1 0 1

−
2

−
1

0
1

Axis 1

A
xi

s 
2

10

20

30

40
50

60

70

80

90

100

110

120

130

140

150

160

Cell phase
G1
S
G2
M

Fig. 2. On the left is the GE-biplot using the 221 genes determined by ASM (ĉ = 0.6)
and on the right the GE-biplot using the 254 genes determined by FET-gs (FDR=0.05)
restricted to k = 2. The colours, numbers and symbols are as described for the GE-
biplot in the caption for Fig.1.
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region and showed a strict ordering of the microarrays in time around the origin
indicating strong cyclic behaviour in time. The plot on the left of Fig.2, that uses
the 221 genes selected by ASM (with ĉ = 0.6), exemplifies this form of cyclic
behaviour. Such clear, cyclic, behaviour is not apparent in Fig.1. For example,
microarrays in the first G2 cell phase (50, 60 minutes) are quite separated from
those in the second G2 phase (130, 140 minutes). In the plot on the left of Fig. 2,
these microarrays are relatively close to each other.

In the h-profile plot in Fig.1, it is clear that only about half (254) of the 532
genes correspond to k = 2, the value one would expect for data collected for
two cell cycles. The GE-biplot for these (254) genes (when k = 2) is shown on
the right in Fig.2. Now it can be seen that the microarrays are positioned in
such a way as to reflect the cell phases that are known for these yeast data. The
two plots in Fig.2 are quite similar to each other, with clear separation of the
microarrays and (most of) the genes into the four distinct phases. The measures
of fit are essentially identical, and much better than those for Fig.1, namely
I1 = 0.82 and I2 = 0.99. The corresponding h-profile plots are given in Fig.3.

From the FET-gs results, 7 genes had estimated k values greater than 2 (2
with a value of 3, 1 a value of 4, and 4 with value 8). The remaining 271 genes
had an estimated k value of 1, and Fig.4 gives a GE-biplot and an h-profile plot
for these genes. The measures of fit are essentially identical to those for Fig.2
The three groups of genes seen in the biplot of Fig.4 correspond to the first 6
time points (10 to 60 minutes), the next 5 (70 to 110 minutes) and the final
5 (120 to 160 minutes). From the h-profile plot in Fig.4, it appears that gene
profiles towards the upper right corner might have an upward slope, while those
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Fig. 3. On the left is the h-profile plot for the 221 genes determined by ASM (ĉ =
0.6), and on the right the corresponding plot for the 254 genes determined by FET-
gs (FDR=0.05) restricted to k = 2. The h-profile plot uses the standard time series
plots of the (transformed) gene expression values plotted over the 16 time points. The
colours are described for the GE-biplot in the caption for Fig.1.
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Fig. 4. On the left is the GE-biplot using the 271 genes determined by FET-gs
(FDR=0.05) restricted to k = 1, and on the right is the corresponding h-profile plot
with outlying genes removed. The colours, numbers and symbols are as described for
the GE-biplot in the caption for Fig.1, with the profiles as described for Fig. 3.

towards the lower left might slope downward. These slopes are not so obvious in
the h-profile plot on the right of Fig.3 for the 2-cycle genes found by FET-gs.

Now FET is a test for periodicity with the null hypothesis of randomness. Such
a test is likely to be affected by other deviations from randomness such as a trend.
So we detrended the (transformed) gene expression data, by applying ordinary
least squares (linear) regression, and used the residuals in FET-gs (FDR=0.05).
The outcome was quite stunning. The number of genes selected fell dramatically,
from 532 to just 82. The I1 and I2 measures of fit improved slightly (now 0.74
and 0.9 respectively, compared with 0.65 and 0.88 previously). The covariance-
biplot is given on the left in Fig.5. Amongst the 82 genes, 59 (72%) had a k-value
of 2, 22 a value of 1 and one a value of 4. Amongst the 59 two-cycle genes, 21
were in the top 59 genes found using ASM. On the right of Fig.5, we give an
h-profile plot showing these 21 genes as well as the 38 that were uniquely found
for the detrended data using FET-gs, FDR=0.05, k=2, and the 38 that were
unique to the top 59 found from fitting ASM.

We selected 8 genes for closer comparisons, namely 4 of the genes unique to
FET-gs lying on the left hand side of the h-profile plot in Fig.5, and 4 that
were unique to ASM and well separated from the first 4 genes. The genes are
identified on the h-profile plot. In Fig.6 we give time series profiles for these
8 genes, distinguishing the 4 unique to FET-gs on the left plot, from the 4
unique to ASM on the right. Note the different shapes of the profiles for the
genes selected by FET-gs, after accommodating the (slight) phase shift compared
with the profiles for the genes selected by ASM. This demonstrates that different
approaches are selecting genes with profiles that have distinct patterns.
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expression values. The coordinates use the residuals from the linear model. On the
right is an h-profile plot using the genes selected by different approaches; see legend.
Eight of the genes selected for Fig.6 are identified.
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Fig. 6. Detailed time series profiles for 4 of the genes uniquely selected by FET-gs
(using residuals, FDR=0.05) on the left, and 4 genes selected uniquely by ASM (ĉ =
0.6) on the right. The colours correspond to those used on the right in Fig.5.

Two of Cho et al’s [11] landmark genes are in our selection. One of these
is CLN1 (found by ASM, and depicted in the plot in the right in Fig.6), and
the other is CDC47 (found by FET-gs, and depicted in the plot on the left in
Fig.6). Cho et al identified CLN1 as being characterized by the specific cell cycle
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phase (late) G1. Previously we used CLN1 to show how one can determine those
genes that are highly correlated with a (landmark) gene of interest [9], and found
there, as here, that it peaks in the G1 phase. CLN1 was one of the two genes
that Cho et al found to have the largest change of 25-fold. So it is interesting
that this gene was not found using FET-gs (with the detrended data). In Fig.6,
CDC47 has a profile that peaks in the M phase of the cell cycle. Cho et al
used CDC47 as an early G1 phase landmark, although from their (Fig4C) plot
it would appear to peak during phase M. In the space available, these results
briefly illustrate that the ability to visualise the profiles allows the researcher
to examine the approaches being used for finding genes and gives added insight
into the findings from the analyses.

5 Discussion

There are no true gold standards for finding expressed genes that vary system-
atically during the cell cycle, and so absolute assessment of different methods is
not possible. Until now, many approaches have been restricted to finding period-
ically expressed genes using time series methods. We advocate that alternative
models should also be applied.

We note that complete evaluation also requires the integration of results from
the genes found and the visual interpretation along with biological background.
For example, it has been argued (e.g. [7], [3]) that due to the synchronisation
technique used, the cells may be perturbed so some of the observed periodic
genes are due to stress response rather than cell cycle activity. In other words
some genes selected may be artifacts due to the treatment of the cells that would
not occur in freely growing cells. Certainly this could explain the genes selected
for k = 1.

On first consideration, one might think that the two approaches, ASM and
FET, should be directly comparable. In general, they are not. ASM was devel-
oped to model the pattern of gene expression in a cycle in a specified manner (see
section 2.2) while, on the other hand, FET is a test for periodicity with the null
hypothesis of randomness and the (implicit) underlying model is quite different
[12]. Further, the ASM could be generalised to allow a differently shaped function
with a more pronounced peak where the gene is “switched on” compared with
the expression value in the other phases, where say the gene is “switched off”.

For FET, residuals from other detrending or modelling approaches, such as
from fitting a quadratic function, could result in different genes being selected.
We also note the possibility of different results from using FET-gs from [16],
rather than FET in [12]. Further, the FDR assumes independence of the genes
that obviously does not hold, as many genes are expected to be highly correlated
with one another. Evaluation of this assumption is beyond the scope of the paper.

Preprocessing and transformation of the data has an effect whose size has
not been consistently evaluated. Currently, there are no agreed guidelines, and
consideration of the sensitivity of the results to this decision is beyond the scope
of this paper. Further, we note that the common practice of ‘norming’ the gene
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expression values for each gene will distort the plots as then the gene points will
tend to lie on the circumference of a circle, as the variance has been set to 1 for
all genes.

FET as proposed in [7] has been used for unevenly spaced time points [8],
and detrending does not seem to have been considered. The ASM can be used
whether the time points are evenly or unevenly spaced. A robust alternative to
FET has been proposed [13] and this could be usefully evaluated, as could the
application of methods for testing for fixed periodicities, as outlined in [12], when
one was only interested in, say, finding all genes completing two cycles during
the experiment.

In [7], averaging was recommended. We note that if there are approximately
an equal number of genes in different phases then averaging over all the genes
would result in no periodicity being able to be detected. Averaging would only
determine periodically expressed genes if the number exhibiting the identical
periodic behaviour were significantly greater than the remainder.

6 Conclusions

Fisher’s exact test (FET) is being widely used for finding periodic patterns for
gene expression data from time course experiments. The Absolute Sine Model
(ASM) is an alternative approach to finding patterns during a cell cycle. Using
a well-known yeast data set, we applied these two approaches, as well as two
visualisation methods that enable (i) genes and arrays to be displayed simul-
taneously (the GE-biplot) and (ii) profiles for a large number of genes to be
displayed (the h-profile plot). These visualisation tools enabled many insights to
be obtained, including the differentiation of the genes into groups according to
their periodicity, and the need to detrend the gene expression values first before
applying FET.

This paper highlights the advantages of (i) using visualisation methods simul-
taneously with computational and statistical approaches, and (ii) using more
than a single approach for finding patterns in gene expression data from time
course experiments, as different approaches can highlight uniquely different as-
pects of the gene expression patterns.
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Abstract. This paper explores the design problem of selecting a small
subset of clones from a large pool for creation of a microarray plate.
A new kernel based unsupervised feature selection method using the
Hilbert–Schmidt independence criterion (hsic) is presented and evalu-
ated on three microarray datasets: the Alon colon cancer dataset, the
van ’t Veer breast cancer dataset, and a multiclass cancer of unknown
primary dataset. The experiments show that subsets selected by the hsic
resulted in equivalent or better performance than supervised feature se-
lection, with the added benefit that the subsets are not target specific.

1 Introduction

Feature selection is an important procedure in data mining. The elimination of
features leads to smaller and more interpretable models and can improve gen-
eralisation performance. Supervised methods produce feature subsets tailored
towards the prediction target and are applicable when labels are available. In
contrast, unsupervised methods select features that capture some of the infor-
mation contained within the whole dataset without requiring labels; as no labels
are used the feature selections are not target specific.

The problem of designing a sugarcane microarray plate by choosing a subset
of approximately 7000 clones from an initial pool of 50,000 clones is studied
herein. As the initial pool of clones contains some highly correlated pairs, there
is a preference towards decorrelation. Furthermore, the array must remain as
general as possible and not be tailored towards any specific phenotypes. As
such, this is an unsupervised selection problem.

The Hilbert–Schmidt independence criterion [1] (hsic) hsic is a dependence
measure between two random variables which is closely related to kernel target
alignment [2] and maximum mean discrepancy [3] (mmd). Previous papers [4,5]
used the hsic for supervised feature selection and demonstrated that the method
had good performance and flexibility on several genomics datasets. This paper
presents an unsupervised variant named unsupervised feature selection by the
hsic (ubhsic, pronounced ���������	
).

Ubhsic was evaluated in several experiments comparing the selection using
various kernels to supervised feature selection. As labels are not available on the
sugarcane dataset, ubhsic was evaluated on three cancer genomics datasets: the
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Alon colon cancer dataset [6,7,8,9], the van ’t Veer breast cancer dataset [10],
and a multiclass cancer of unknown primary (cup) dataset [11]. The cup dataset
closely resembles the sugarcane problem as it was intended for the development
of a clinical test on a lower resolution platform.

2 Hsic and Ubhsic

The hsic is a quantity that measures the mutual dependence between two vari-
ables. For the task of unsupervised feature selection, the dependence between
subsets of features and the full set of features is measured by the hsic; a subset
with maximum dependence on the full dataset is desired. This section gives an
overview of the hsic and specifies the unsupervised feature selection problem as
a constrained optimisation problem.

Let

X :=

⎡

⎢
⎣

x11 · · · x1m

...
. . .

...
xn1 · · · xnm

⎤

⎥
⎦

be a finite dataset in matrix form with xij ∈ R, where n is the number of samples
and m is the number of features. Each row xi· corresponds to a sample, and each
column x·j corresponds to a feature.

Let θ ∈ 2m be a subset of features, where 2m denotes the power set of
{1, . . . , m}, and define Xθ as the dataset restricted to only the features in θ,
i.e., the features with indices not in θ are discarded. By this definition, Xθ is a
matrix with dimension n×|θ|, where | · | denotes set cardinality. The dependence
between the reduced dataset Xθ and the full dataset X is the quantity we wish to
maximise. The hsic measures this dependence through kernel functions [12,13].

A kernel function defines the inner product between two points of a Hilbert
space, and can be considered intuitively as a measure of similarity. Indeed, the

correlation function cor(x,x′) := 〈x,x′〉
||x||||x′|| , where 〈·, ·〉 denotes the inner product

and ||x|| =
√〈x,x〉, is a kernel function used in the experiments section. Given

a kernel function k, the kernel matrix is defined [Kij ]1≤i,j≤n := k(xi·,xj·). The
kernel matrix of the full dataset X is referred to as K, and the kernel matrix of
the reduced dataset Xθ as Kθ.

An estimator for the hsic using these two kernel matrices [1] is

tr(KθHKH), (1)

where tr is the matrix trace (the sum over the elements of the main diagonal),
H := Id − 1

n , Id is the identity matrix, and the subtraction is element wise.
Using this dependence measure, the unsupervised selection task can simply be
stated as

max
θ

tr(KθHKH) (2)

such that
|θ| = m′
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for some 1 ≤ m′ < m. Solving this optimisation equation for a set θ gives the
ubhsic solution.

The solution to the optimisation equation is explicit in the linear kernel case
where K := XXT . Let M := HKH . The hsic estimator is then

tr(KM) = tr(XXT M)

= tr(XT MX)

=
∑

j

xT
·jMx·j .

Thus, in the case of a linear kernel the features are independent and can be
ranked by xT

·jMx·j and greedily selected.
For other kernels, an analytical solution does not exist and a good subset

must be found through searching. The forward selection and recursive elimina-
tion greedy nested subset strategies [14] can be used to find a good solution if the
number of features is not large. This approach was used for the supervised vari-
ant presented by Song et al. [4,5]. Alternatively, a good solution can be found
using combinatorial optimisation algorithms such as simulated annealing. For
the sugarcane dataset, a good solution to (2) is found using an annealing algo-
rithm as nested subset selection is unattractive due to the large pool of initial
features. Efficient solving the optimisation problem is an open problem.

3 Results and Discussion

The proposed method was analysed on several cancer genomics datasets using
different kernels. These kernels are defined as follows:

Radial basis function (rbf): k(x,x′) := exp(−σ||x−x′||22) with σ set as the
inverse median of the squared distances ||x − x′||22 between points in the
dataset

Linear: k(x,x′) := 〈x,x′〉
Polynomial: k(x,x′) := (〈x,x′〉 + 1)d for d ∈ {2, 3}
Variance: k(x,x′) := 〈x,x′〉2

〈x,x〉〈x′,x′〉

The variance kernel was chosen to produce highly decorrelated selections. The
preference towards decorrelation is indirectly encoded as 〈x,x′〉 /

√〈x,x〉 〈x′,x′〉
is the cosine of the angle between the two vectors x and x′. Thus, as adding
a feature highly correlated with another already selected feature will not affect
the angle between the vectors as much as a feature orthogonal to all selected
features, one may postulate that the kernel used with ubhsic will produce highly
decorrelated selections.

Three cancer genomics datasets were analysed, the van ’t Veer breast cancer
dataset [10] and a colon cancer dataset [6,7,8,9]. The van ’t Veer dataset consists
of 98 samples, 46 with a distant metastasis and 52 with no metastasis. Each
sample has 5952 dimensions. The colon cancer dataset has 62 samples, 22 normal
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and 40 cancerous, and 2000 dimensions per sample. Both datasets are 2-class
classification problems.

The final cancer genomics dataset is a cancer of unknown primary (cup)
dataset [11]. This is a multiclass classification dataset where the aim is to develop
a predictor for the site of origin of a tumour from a microarray of a sample. The
dataset consists of 14 classes, 220 samples, and 9630 features. Not each class is
represented equally, with the smallest class containing only 3 samples and the
largest containing 34.

To gauge the utility of feature subsets selected by ubhsic for prediction, the
reduced datasets were evaluated using supervised classification and generalisa-
tion estimation. The performance achievable from the reduced datasets were also
compared to a fully supervised selection approach.

The classification and supervised feature selection algorithm used was a cen-
troid based classifier and supervised feature selector [15]. This method was cho-
sen as it is simple, fast, and has performed well on these particular datasets [15].
For the multiclass cup dataset, a one-vs-all architecture [16] was used in con-
junction with the centroid classifier to produce a multiclass classifier. For gen-
eralisation performance estimation, the ε-0 bootstrap estimator [17] was used
with 200 repetitions. The area under the roc curve (aroc) [18] was used as
a performance metric for the two-class datasets. A multiclass extension to the
aroc was used [19] for the cup dataset.

Each dataset was analysed by applying ubhsic with the various kernels to
reduce the full dataset. The centroid classifier and supervised feature selector
was then applied to the ubhsic reduced datasets to evaluate the performance.
The same centroid classifier and supervised feature selector was applied to the
full dataset to obtain the performance achievable using supervised selection only
without any ubhsic pre-filtering.

Figure 1 shows the results of pre-filteringusingubhsicdownto50 (Subfigure 1a)
and 500 features (Subfigure 1b) on the van ’t Veer dataset. With the reduction
to 500 features, the linear, rbf and variance kernels do very well; they achieve a
level of performance equivalent to the full dataset at higher numbers of features
and exceed the performance at lower numbers of features. The two polynomial
kernels initially perform poorly, but after mild supervised feature selection the
performance equals that of the other kernels and the full dataset. Under aggres-
sive reduction down to 50 features, somewhat surprising results are obtained; the
maximum performance achieved was substantially better than the full dataset us-
ing a polynomial kernel of degree 2 despite the operating with only 32 features.
Furthermore, the variance kernel achieves very high performance at the eight
features operating point. Both are significantly fewer than the original 70 genes
proposed for classification by the original paper [10].

Performing the same experiments on the colon cancer dataset yielded the
results in Figure 2. Again, strong performance when using the variance and
rbf kernels is observable in Subfigure 2b; rbf produced very good results after
further supervised filtering down to a few features (4) while the variance kernel
produced very similar results to the full dataset. The linear and polynomial
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(a) Aggressive reduction to 50 features
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(b) Reduction to 500 features

Fig. 1. van ’t Veer dataset with centroid classifier and feature selector. Results are
using the ε-0 bootstrap with 200 repetitions. Error bars show 95% confidence interval.
Subfigure (a) shows the performance of the dataset reduced to 50 features using the
ubhsic procedure and various kernels. Each plot corresponds to a different kernel,
with the purple plot corresponding to the cfs-centroid method on the entire dataset
(i.e., without prefiltering using ubhsic). The 5 plots where prefiltering using ubhsic
was used do not extend above 50 features, and further supervised filtering using the
cfs was applied to determine the maximum performance achievable from the reduced
datasets. Subfigure (b) is similar to subfigure a, except with less aggressive ubhsic
reduction (reduced to 500 features instead of 50).
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Fig. 2. Colon cancer dataset with centroid classifier and feature selector. ε-0 boot-
strap with 200 repetitions. Error bars show 95% confidence interval. The experiment
is identical to Figure 1, except with a different dataset.
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Fig. 3. cup cancer dataset with centroid classifier and feature selector. ε-0 bootstrap
with 200 repetitions. Error bars show 95% confidence interval. Number of features
shown is per class not overall. Experiment details are as in Figure 1.

kernels do not perform well on this dataset; this is supported by the results
shown in Subfigure 2a where the linear and polynomial kernels again perform
poorly, but the rbf and variance kernels perform well.

Finally, the results of applying the unsupervised feature selection to the cup
dataset is shown in Figure 3. As this dataset is a larger dataset (220 samples)
than both the colon and van ’t Veer datasets, a less aggressive filtering was ap-
plied. Subfigure 3b shows the performance curves obtained after filtering to 500
features. At 500 features, the variance kernel produces a subset with equivalent
performance to the full dataset. At the aggressive reduction to 100 features, the
performance does not suffer greatly for the variance kernel. The other kernels do
not perform well on this dataset.

Furthermore, the 500 feature subset selected by the variance kernel outper-
formed the full dataset at low numbers of features. The performance achieved
below 32 features is greater than the performance at the same operating point
obtained with the full dataset. Given this performance, a satisfactory operating
point at 16 features or even 8 features per class may be chosen, resulting in a
very sparse predictor.

In summary, these results show that unsupervised pre-filtering does not de-
grade the classification performance and can actually improve the performance
at few features. The rbf and variance kernels perform very well across both
two-class datasets, with the other kernels not performing as consistently. On the
multiclass dataset, the variance kernel is the only kernel that performed well.
The aggressive feature reduction down to 50 features for the two-class datasets
and 100 features for the cup dataset showed surprisingly good performance, sug-
gesting that the full datasets contains significant redundancy and can be highly
compressed without significant loss of performance.



294 J. Bedo

3.1 van ’t Veer in Detail

To gain a better understanding of the relation between features selected by
ubhsic, the feature subsets obtained on the van ’t Veer data were visualised.
Subfigure 4a shows the full unfiltered dataset projected down onto the first two
principal components with each sample represented by a number. It is clear
from the projection that sample 10 is an outlier, sitting far away from the other
samples. Excluding this sample and reprojecting the data obtains the embedding
shown in Subfigure 4b. Here one can observe that the samples roughly form two
groups separated mostly by the first principal component (x-axis).

Subfigure 5a displays a biplot [20] of the dataset filtered down to 100 features
using the linear kernel and ubhsic. In the figure, samples are shown as black
points and features as red vectors. If two feature vectors have a small angle then
they are highly correlated. From the figure the two-group structure observable on
the original projection (Subfigure 4b) is maintained. Furthermore, the selected
features are strongly positioned along the first principal component. This is not
unexpected as a linear kernel is expected to favour the first principal component,
and as features are selected independently it is also expected to select highly
correlated feature sets. Indeed, a selection of 100 features most correlated with
the first principal component yields a subset of features with 77 features in
common with the subset selected by the linear kernel and ubhsic.

The biplot produced using the rbf kernel (Figure 6) resembles the linear
kernel results in that the two-group structure is preserved with many features
selected along the first principal component. However, in comparison the features
are more spread out in two fan-like structures, each spanning one of the groups
well, whereas the “fans” formed by the linear kernel are not as spread out and
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Fig. 4. Biplot of samples and features projected onto first two principal components
using the full van ’t Veer dataset. The x-axis is the first principal component, and
the y-axis is the second. The sample marked as 10 in subfigure a is clearly an outlier;
removing the outlier and reprojecting the samples produces the embedding shown in
subfigure b.
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Fig. 5. Biplot after filtering the van ’t Veer dataset down to 100 features using the linear
and rbf kernels. Both kernels produce selections polarised along the first principal
component, though the rbf kernel selections span the samples better than the linear
kernel selections.
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(b) Outlier removed

Fig. 6. Biplot after filtering the van ’t Veer dataset down to 100 features using a
polynomial kernel of degree 2. Unlike the linear and rbf kernels, the pattern is more
radial, suggesting the selection has less coregulation. With this selection, an outlier is
apparent in subfigure (a). Subfigure (b) shows the biplot with the outlier removed.

well aligned with the groups. The rbf kernel is selecting sets with high cross-
correlation; this is evident from the number of feature vectors with small interior
angles.

Running the same analysis using the polynomial filter of degree 2 yields the re-
sults shown in Figure 6. Interestingly, the selected feature subset appears to have
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Fig. 7. Biplot after filtering the van ’t Veer dataset down to 100 features using the
variance kernel. A highly radial pattern is visible, more-so than the polynomial kernel,
with no clear outliers.

generated an outlier that is clearly visible in Subfigure 6a; removing this outlier
produces a vastly different projection as shown in Subfigure 6b. In this figure
the feature vectors can be observed to have a “radial” pattern, indicating the
selected features do not have high cross-correlation. Similar results are obtained
with the polynomial kernel of degree 3 (not shown). The indication here is that
polynomial kernels tend to favour feature subsets with lower cross-correlation
than the rbf and liner kernels.

Finally, the variance kernel is shown in Figure 7. Unlike the polynomial kernel,
the variance kernel did not produce any new outliers and resulted in a more “ra-
dial” pattern than the polynomial filter. This indicates that the selected features
are highly decorrelated as postulated previously.

These results indicate the linear and rbf kernels produce subsets with high
cross-correlations; the linear kernel is especially highly cross-correlated and
aligned with the first principal component while the rbf kernel spans the sam-
ples well and is less cross-correlated. The polynomial kernel and variance kernels
result in much more decorrelated results, with the variance kernel producing
highly decorrelated selections. Given the classification performance observed on
the van ’t Veer datasets, the rbf and variance kernels are both good choices and
can be selected depending if one wishes to obtain whitened data or not.
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4 Conclusions

A method for unsupervised feature selection, ubhsic, was presented and evalu-
ated on several bioinformatics datasets. The results were very promising: on the
cancer genomics datasets the classification performance after pre-filtering using
ubhsic was equivalent or better than the performance obtained using the full
dataset. The rbf and variance kernels show good performance on all two-class
datasets, and the variance kernel showed good performance on the multiclass
dataset. Furthermore, the variance kernel producing highly decorrelated selec-
tions as postulated.

The high level of classification performance observed after filtering strongly
suggests shifting to a lower resolution platform by selecting a subset of clones
using the presented method is a viable option. In particular, ubhsic may be
a reasonable solution to the inspiring sugarcane microarray plate design prob-
lem. Furthermore, the feature subsets obtained using ubhsic procedure are not
tailored for a specific target and thus may be used to predict many different
phenotypes, though further supervised feature selection may be needed to reach
the maximum performance.
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Abstract. There has been considerable interest in identifying biologically 
relevant genes from temporal microarray gene expression profiles using linear 
and nonlinear measures. The present study uses two distinct approaches 
namely: classical order zero-crossing count (ZCC) and Lempel-Ziv (LZ) 
complexity in identifying non-random patterns from temporal gene expression 
profiles. While the former captures the linear statistical properties of the time 
series such a power-spectrum, the latter has been used to capture nonlinear 
dynamical properties of gene expression profiles. The results presented 
elucidate that ZCC can perform better than LZ in identifying biologically 
relevant genes. The robustness of the findings are established on the given gene 
expression profiles as well as their noisy versions. The performance of these 
two techniques is demonstrated on publicly available yeast cell-cycle gene 
expression data. A possible explanation for the better performance of the ZCC 
over LZ complexity may be attributed to inherent cyclic patterns characteristic 
of the yeast cell-cycle experiment. Finally we discuss the biological relevance 
of new genes identified using ZCC not previously reported. 

Keywords: Gene expression, Time series, Zero-crossing count, Lempel-Ziv 
complexity. 

1   Introduction 

Microarrays have proven to be useful tools in capturing simultaneous expression of a 
large number of genes in a given paradigm. These high-throughput assays provide 
system-level understanding of the given paradigm. Recently, microarrays have been 
used to generate temporal expression profiles. Such profiles capture the 
transcriptional activity of genes as a function of time, hence their dynamics. There has 
been considerable interest in developing appropriate techniques to understand 
functional relationships and network structures from temporal gene expression 
profiles (see [1] and references therein). These include global analysis techniques 
such as PCA, hierarchical clustering and self-organizing maps (see [2] and references 
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therein). As pointed out by [3], such techniques treat the expression across the time 
points as independent entities, hence immune to the temporal structure/dynamics. 
Such global analyses may also be susceptible to inherent transcriptional delays. 
Therefore, it might be necessary to explore alternate techniques that are sensitive to 
the temporal structure of the data. Temporal expression profiles of biologically 
relevant genes orchestrating a specific paradigm follow characteristic and reproduci-
ble patterns. This in turn supports their inherent non-random nature. While genetic 
networks are undoubtedly nonlinear dynamical systems, these dynamical nonlineari-
ties need not necessarily manifest in the external recording such as microarray 
expression profiles. This can be attributed to noisiness and nonlinearities at the 
measurement and dynamical levels [4]. On a related note, nonlinear dynamical 
systems can also give rise to simple cyclic/periodic behavior (limit cycle) for certain 
choice of the system parameters which can be modeled as linear stochastic processes. 
Therefore, measures sensitive to linear as well as nonlinear statistical properties have 
been used to investigate patterns in gene expression profiles. In the present study, we 
compare the performance of two measures in identifying biologically relevant genes, 
namely. (a) zero-crossing count (ZCC), [5] which is related to the linear statistical 
properties of temporal data such as power-spectrum and (b) Lempel-Ziv (LZ) 
complexity measure, [6,7] which is sensitive to linear as well as nonlinear dynamical 
properties in the given data. We show that ZCC can prove to be a better choice than 
LZ complexity in identifying biologically significant genes. The better performance 
of ZCC may be due to inherent cyclic patterns in the yeast cell-cycle data. Such 
patterns can be modeled as linear stochastic processes with Gaussian innovations. 
Therefore, measures sensitive to the linear correlation structure may be sufficient to 
describe them. 

Techniques such as power-spectral analysis which capture the linear statistical 
properties of the stationary time series are a natural choice for investigating experimental 
time series [8]. Power-spectrum is related to the auto-correlation function (Wiener-
Khinchin theorem) which in turn is used to estimate the optimal process parameters of 
linear stochastic processes (Yule-Walker equations) [9, 10]. Alternatively, auto-
correlation function is sufficient statistics for describing normally distributed linear 
stochastic processes. Uncorrelated noise is characterized by a flat power-spectrum 
representing equal power across all frequencies. A significant skew in the power-
spectrum towards lower-frequencies is indicative of correlation or non-random signatures 
in the given time series. These in turn may be indicative of biologically relevant genes. 
Classical spectral estimation may not be possible due to the small length of the temporal 
gene expression profiles. However, the spectral properties of a given time series can also 
be captured by zero-crossing count [5]. The latter overcomes some of the caveats 
encountered in classical spectral estimation and its interpretation is fairly straight 
forward. In the present study, biologically relevant genes will be identified from ZCC. In 
order to establish statistical significance, ZCC estimates on the given data are compared 
to those obtained on random shuffled surrogates. The random shuffled surrogates 
represent uncorrelated counterpart of the given data. 

Information theoretic approaches have also been popular in capturing patterns in 
gene expression profiles. These include entropy-based approaches [11]. However, 
entropy estimates are governed solely by the probability distribution of the expression 
values, hence immune to the temporal expression profile. For instance a gene 
exhibiting a periodic pattern across 9 time points (001001001) has the same Shannon 
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entropy as gene exhibiting seemingly random pattern (101000100). The latter is 
obtained by randomly shuffling the former. Complexity measures which overcome 
some of the caveats of entropy have recently been proposed to investigate gene 
expression profiles [12, 15, 16]. Traditionally, uncorrelated noise is considered to be 
maximally complex or random. Any deviation from randomness ensures correlation 
and accompanied by a decrease in complexity. From the perspective of gene 
expression analysis, genes with low complexity are hypothesized to be biologically 
relevant. A recent study, proposed several measures of complexity for the analysis of 
temporal gene expression profiles in yeast cell-cycle experiment [12]. Such an 
analysis was carried out in an unbiased manner in the absence of any prior knowledge 
about the given data. The authors successfully identified biologically relevant genes 
in addition to those that exhibited characteristic cyclic behavior [13, 14]. Complexity 
measures have also been successfully used to gain insight into the dynamical aspects 
of genetic networks from the temporal expression profiles [15, 16]. In [15], the 
distribution of the Lempel-Ziv complexity from experimental gene expression profiles 
was compared to those generated from synthetic random Boolean networks (RBN) 
using Kullback-Leibler divergence and Euclidean distance. Subsequently, the 
dynamics of the genetic network governing the paradigm was found to lie in the 
ordered regime or between order and chaos. More recently, a variant of the 
Kolmogorov-complexity (i.e. normalized compression distance) was used to argue in 
favor of criticality in macrophage dynamics. In the present study, Lempel-Ziv (LZ) 
complexity is used identify biologically relevant genes. Unlike ZCC, LZ is sensitive 
to linear as well as nonlinear correlations in the given data. For instance, qualitative 
behavior of LZ complexity has been found to mirror invariants such Lyapunov 
exponents in nonlinear dynamical systems [7, 17]. Periodic time series such as sine-
waves are highly compressible and result in low values of LZ complexity. Ideally, 
uncorrelated noise cannot be compressed hence accompanied by large values of LZ 
complexity. As in the case of ZCC, LZ values obtained on the given data are 
compared to those obtained on random shuffled surrogates in order to establish 
statistical significance. There is no direct relation between LZ complexity and ZCC. 
However, it should be noted that ZCC as well LZ is likely to increase monotonically 
with increasing noise in the given data. Noise being reflected by high-frequency 
components in the power-spectrum. 

2   Methods 

2.1   Spectral Analysis by Zero-Crossing 

Consider a zero-mean normally distributed stationary process Ntxt ...1, = . The 

corresponding binary sequence of the differenced series 
1−−= ttt xxz is generated as  

otherwise  0

0if1

=
>= tt zy  (1) 

Expression (1) essentially quantizes the given input signal
tz onto a coarse-grained 

binary sequence. The sequence yt is subsequently differenced and passed through a 
memoryless nonlinear transform as  

2
1)( −−=∇ ttt yy  (2) 
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A zero-crossing is said to occur if 1=∇ t
. Subsequently, the zero-crossing count is 

given by 

∑
−

=

∇=
1

1
1

N

t
tD  (3) 

The zero-crossing count is related to the linear correlation, hence the power-
spectrum [see 5 and references therein]. For certain class of colored Gaussian noise, 
zero-crossing analysis may be sufficient to describe the process dynamics [5]. 
Examples include cyclic patterns such as those encountered in the Spellman alpha-
factor synchronization yeast cell-cycle experiment. At this point, it might be necessary 
to point out certain resemblance between the zero-crossing analysis and the complexity 
maps proposed in [12]. The first-order crossing

1−−= ttt yyδ  shares resemblances to the 

map
1∆γ proposed recently in [12]. On a similar note the maps

2∆γ  and
3∆γ in [12] share 

resemblance to the expressions 2
tδ ))(i.e.( 1−−= ttt yy δδδδ  and 3

tδ ))(i.e.( 2
tδδ  for higher 

order crossings obtained repeated application of the difference operator (high-pass 
filter) [5]. On closer observation, we note subtle differences in their definitions. The 
complexity maps [12] use (i) ranks of the values as opposed to the sign of the mean-
subtracted values (1). (ii) Discontinuous memoryless function as opposed to 
continuous memoryless function (2). While the maps in [12] capture the complexity of 
the given process, ZCC captures the spectral characteristics of the process. 

2.2   Lempel-Ziv Complexity 

Lempel-Ziv complexity (LZ) [6] and its extensions [7] have been used widely to 
understand the dynamics in biomedical [18, 19] and genomic signals [15]. An elegant 
implementation of the LZ algorithm for binary sequences was proposed in [7]. In the 
present study, binary sequence of the expression profiles was generated by 
thresholding about the mean. The objective of the LZ algorithm is to reconstruct the 
given sequence s of length n, using two fundamental operations, namely: copy and 
insert by parsing it from left to right. This information in turn is used for estimating 
the algorithmic complexity of that. The working principle of the LZ algorithm is 
shown below for completeness. Prior to the discussion of the example we introduce 
the notation v(s) in the following example corresponds to the vocabulary set [6]. 
Consider s = 00, then v(s) represents all possible words that can be reconstructed from 
s when scanning from left to right, i.e. v(s) = {0, 00}. It is important to note that while 
0 can be generated from v(s), 1 cannot be generated from v(s).  
 
Consider a period 3 sequence s0 = 001001001……. as before 
 

(a) The first digit 0 is unknown hence have to be inserted, resulting in c(n) 
= 1 and s* = 0. 
(b) Consider the second digit 0. Now s = 0, q = 0; sq = 00; sqπ = 0; 
q∈v(sqπ); therefore copying is sufficient resulting in no change in the 
complexity i.e. c(n) = 1 and s* = 0.0 
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(c) Consider the third digit 1. Now s = 0, q = 01; sq = 001; sqπ = 00; 
q∉v(sqπ); therefore insertion is required, resulting in c(n) = 2 and s* = 0.01.  
(d) Consider the fourth digit 0: s = 001; q = 0; sq = 0010; sqπ = 001; 
q∈v(sqπ); therefore copying is sufficient, resulting in c(n) = 2 and s* = 0.01.0 
(e) Consider the fifth digit 0: s = 001; q = 00; sq = 00100; sqπ = 0010; 
q∈v(sqπ); therefore copying is sufficient, resulting in c(n) = 2 and s* = 
0.01.00 
(f) Consider the sixth digit 1: s = 001; q = 001; sq = 001001; sqπ = 00100; 
q∈v(sqπ); therefore copying, is sufficient resulting in c(n) = 2 and s* = 
0.01.001 
 

It is important to note that subsequent addition of symbols from s does not change 
c(n). This can be attributed to the inherent periodicity of the sequence s. Since s* does 
not end in a dot (.) we add one to the complexity, resulting in c(n) = 3. In the present 
study, we consider the normalized complexity measure (γ) given by the expression  

)(
)(

nb

nc=γ ,
n

n
nb

2log
)( where =  (4) 

The normalized complexity (γ) tends to unity in the asymptotic limit for sequences 
whose Shannon entropy is unity [6, 7]. 

2.3   Random Shuffled Surrogates 

Resampling techniques are encouraged in literature for establishing statistical 
significance where the null distribution is unknown. Resampling without replacement 
is used widely within the context of correlated data analysis [20, 21]. Such an 
approach retains certain statistical properties of the given empirical sample in the 
surrogates. For the same reason these surrogates are termed as constrained 
realizations [21]. In the present context, the objective is to argue in favor of 
correlation in the given gene expression profile, i.e. the statistics considered namely: 
D1 (3) and γ (4) are sensitive to correlation in the given data. Therefore, the objective 
is the reject the null that the given data is uncorrelated noise. The surrogates under the 
above null are generated by randomly shuffling (RS) the temporal expression profile 
of that gene. The constraint here is on retaining the distribution of the gene expression 
profile in the surrogates. Alternatively, the distribution of the gene expression profile 
is treated as a nuisance variable [21]. The discriminant statistics (3) and (4) are 
sensitive to the temporal structure, hence are expected to exhibit a significant 
discrepancy between the empirical sample and the surrogate counterpart in the case of 
correlated expression profiles. More importantly, estimates of (3) and (4) on the 
surrogate realizations will be higher than those estimated on the empirical sample for 
correlated gene expression profiles. Therefore, a one-sided test is sufficient to 
establish statistical significance. In the present study, the number of surrogates were 
chosen as (ns = 99) corresponding to a significance level α = 1/(99+1) = 0.01 [21]. It 
is important reiterate that the null is rejected only when the estimate of (3) and (4) is 
lesser than each of the 99 surrogate realizations.  
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3   Data 

In order to establish reproducibility and direct comparison, we have used the same 
data sets as those investigated recently by [12] using a battery of complexity 
measures. The final list of genes was obtained from the Ahnert et al., (personal 
communication). The authors in [12] identified 150 genes as top-ranked by one of 
their proposed complexity measures )/( 3∆γfk . 52 of these 150 genes were listed as 

biologically relevant either by Spellman (104 genes, http://genome-www.stanford.edu  
/cellcycle/data/rawdata/-Knowngenes.doc) or Simon (140 genes, http://web.wi.mit. 
edu/young/cellccycle/-Table of Regulated genes). Their set of 150 genes also included 
genes not listed in either Spellman (104) or Simon (140).  

 

LIST OF 133 GENES: Since identifying the missing data is not one of the objectives 
of the proposed study, we first eliminate all genes whose values are missing even at a 
single time point in the Spellman alpha-factor synchronization yeast cell-cycle 
experiment (6178 genes across 18 time points) [14]. The reduced set consisted of 
4491 genes. Therefore, all subsequent discussions will be restricted to this set of 4491 
genes. Spellman et al., 1998 [14] identified 104 genes as well-documented through 
extensive literature survey. Out of these 104 genes, 72 genes had values across all 18 
time points (i.e. overlapped with the list of 4491 genes). The ORFs of these 72 genes 
were subsequently identified. In a related study, Simon et al., 2001 [13] identified 140 
genes as being relevant to yeast cell-cycle. The gene IDs of these 140 genes were 
retrieved by comparing their ORFs to those spotted on the array. Only 125 of the 140 
identified had gene IDs. Out of these 125 genes, 93 genes had values across all 18 
time points (i.e. overlapped with the set of 4491 genes). Thus in essence we have 72 
out of the 104 genes from study [14] and 93 out of the 140 genes from study [13]. The 
union of the above sets resulted in 133 genes relevant to yeast cell-cycle.  
 

LIST OF 40 GENES: The performance of the measures (3) and (4) are also 
determined using the set of 40 genes as ground truth from Ahnert et al., (personal 
communication). Of the 52 genes identified by Ahnert et al., 2006 40 had values 
across all 18 time points (i.e. overlapped with the 4491 genes).  

 
The objective of the present study is to determine the effectiveness of the measures 
(3) and (4) on retrieving biologically relevant genes from the set of 4491 genes. Of 
interest is to investigate the false-positive and false-negative rates using the 133 genes 
and 40 genes as ground truths. The effect of noise on the performance of the two 
measures (3), (4) is also investigated. Finally the usefulness of the ZCC (3) in 
identifying new genes not previously reported in either Simon [13] or Spellman [14] 
is discussed. The temporal expression profiles of the 4491 genes were mean-
subtracted prior to the analysis. The present study also assumes the gene expression 
profiles to be generated from stationary stochastic processes. 

4   Results 

Prior to investigating the gene expression profiles we demonstrate the effectiveness of 
the proposed measures in quantifying regularity in patterns across synthetic linear and 
nonlinear dynamical processes.  
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4.1   Synthetic Data 

Periodic sine-wave 
Consider a periodic sine-wave given by )2sin()( 1ωπfts = with (f1 = 2, N = 200), Fig 1a. 

The sampling frequency (Fs = 15) was chosen so as to satisfy the Nyquist criterion, 
i.e. Fs > 2f1. Periodic signatures can be modeled as linear stochastic processes such as 
auto-regressive moving average processes (ARMA), hence linear statistical properties 
are sufficient to describe them. However, periodic signatures can also be generated by 
nonlinear dynamical systems (limit cycles). The power-spectrum of the periodic sine-
wave exhibits a dominant frequency, Fig. 1b. The results of the zero-crossing analysis 
(3) and the normalized complexity (4) are shown in Fig. 1c and 1d respectively. The 
statistical measures (3) and (4) of the periodic sine-wave is clearly lesser than those 
obtained on the random shuffled surrogates (ns = 99, α = 0.01) rejecting the null as 
expected, Figs. 1c and 1d.  

 
Chaotic logistic map 
Consider a chaotic logistic map given by xn+1 = 3.8.xn.(1-xn), Fig 1e. Unlike periodic 
sine-wave, chaotic logistic map is nonlinearly correlated and is accompanied by a 
broad-band power-spectrum characteristic of random noise, Fig. 1f. The results of 
zero-crossing analysis (3) and the normalized complexity (4) are shown in Fig. 1g and 
1h respectively. The time series was mapped onto a binary sequence by thresholding 
about the superstable fixed point (0.5). This particular choice has been shown to 
capture the dynamics faithfully [17]. Zero-crossing estimate (3) on the chaotic process 
was considerably higher than those on the random shuffled surrogates failing to reject  
 

 

Fig. 1. Time series generated from periodic sine-wave (left) and chaotic logistic map (right) are 
shown in (a) and (e) respectively. The corresponding power-spectra are shown in (b) and (f) 
respectively. Zero-crossing crossing analysis (c and g) and normalized complexity (d and h) 
estimates of the empirical samples are shown by hollow circles. The histogram of their 
estimates on (ns = 99) random shuffled surrogates are also shown in the corresponding subplots 
(black bars).  
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the null (ns = 99, α = 0.01), Fig. 1g that the given process is uncorrelated noise. The 
one-step auto-correlation estimated using (7) and directly from the data was negative  
failing to provide any meaningful insight into the dynamics. However, analysis using 
the normalized complexity clearly rejected the null, Fig. 1h. Thus the zero-crossing 
analysis may have clear limitations when analyzing from nonlinear processes. 

4.2   Yeast Cell-Cycle Experiment 

Zero-crossing analysis (3) of the 4491 genes (Sec. 3) identified 101 genes as being 
significant (α = 0.01).  A similar analysis using normalized complexity (4) identified 
133 genes as being significant (α = 0.01). Prior to a detailed analysis we investigated 
two genes namely:  YBR010W (Fig. 2a) and YPR150W (Fig.2b) using D1 and γ. The 
choice of these two genes can be attributed to a recent study which investigated their 
biological relevance using a battery of complexity measures [12]. Visual inspection of 
the temporal expression profiles of YBR010W (Fig. 2a) revealed characteristic low-
frequency non-random signatures unlike YPR150W (Figs. 2b). Zero-crossing (D1), 
Fig. 2c, as well as normalized complexity (γ), Fig. 2e, estimates on YBR010W were 
considerably less than those obtained on the surrogate realizations rejecting the null 
that YBR010W is uncorrelated noise. The results of a similar analysis of YPR150W 
using (D1) and (γ) are shown in Figs. 2d and 2f respectively. Both the measures failed 
to reject the null in the case of YPR150W. Earlier studies have reported YBR010W 
(or HHT1) to be actively involved in cell-cycle [13]. In contrast, YPR150W is an 
open-reading frame (ORF) with no documented evidence of its role in yeast cell-
cycle. The performance of the two measures (D1, γ) were subsequently investigated 
by introducing noise in the zero-mean temporal expression profile for a gene x as  
 

 

Fig. 2. Temporal expression profiles of two genes YBR010W and YPR150W are shown in (a) 
and (b) respectively. The corresponding zero-crossing (D1) estimates (circle) along with the 
distribution of the estimates on the 99 random shuffled surrogates (black bars) for each of the 
three genes are shown right below them in (c) and (d) respectively. The results of a similar 
analysis using normalized complexity (γ) for the genes are shown right below them in (e) and 
(f) respectively.  
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Fig. 3. False-negative rate and false positive rate obtained assuming the 133 genes [13,14] as 
ground truth using zero-crossing (D1, solid lines) and the normalized complexity (γ, dotted 
lines) for noise factors (f = 0, 0.10, and 0.20) is shown in (a) and (b) respectively. False-
negative rate and false-positive rate obtained by a similar analysis assuming the 40 genes [12] 
as ground truth is shown in (c) and (d) respectively. 

(yt = xt + f.et), where et is i.i.d Gaussian noise. Introducing noise to the observed 
expression falls under measurement noise ubiquitous in microarray studies. 

Assuming the 133 genes identified by the union of 140 genes and 104 genes [13, 14] 
whose values are known across all time points as the ground truth.  
Zero-crossing analysis (D1) identified 37 of the 133 biologically relevant genes (i.e. 
31/133 ~ 23%). The normalized complexity (γ) identified only 7 out of the 133 genes 
(i.e. 7/133 ~ 5%). These have to be compared to those of [12], who identified 52 
genes from an union set of 195 genes (52/195 ~ 26.7%) using complexity measure 
k(f/d3). The discrepancy in the number of genes between [12] and the present study 
(133) can be attributed to the fact that we considered only genes whose expression 
values are known across all time points. The false-positive rate (FPR) and false-
negative rate (FNR) for the normalized complexity (γ) and zero-crossing analysis (D1) 
across noise factors (f = 0, 0.10, 0.20) is shown in Figs. 3a and 3b respectively. From 
Fig. 3a it is evident that the FPR and FNR of the normalized complexity are 
considerably higher than that of the zero-crossing analysis.  

Assuming the 40 genes from (52) [12] whose values are known across al the time 
points as the ground truth. 
It should be noted that these 40 genes are present in the union set of 133 genes 
discussed above. While zero-crossing analysis (D1) identified (24/40) genes, the 
normalized complexity (γ) identified only (4/40) genes from [12]. The FPR and FNR 
for the two measures assuming these 40 genes as the ground truth across noise factors 
(f = 0, 0.10, 0.20) is shown in Figs. 3c and 3d respectively. The results are similar to  
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Fig. 4. Six genes YDL018C, YHL050C, YHR005C, YIL129C, YLR455W and YMR029C 
identified by D1 and not present in the list of 133 genes. The estimate of D1 on the gene 
expression profile (circle) and their (ns = 99) random shuffled surrogates (black bars) are shown 
in each of the subplots. 

those obtained for the 133 genes with considerably higher FNR and FPR for (D1) 
compared to γ.  
 

New genes discovered by the zero-crossing analysis 
As noted earlier, out of the 101 genes detected as being statistically significant by 
zero-crossing analysis, 37 exhibited overlap with the documented 133 genes. The 
remaining 64 genes consisted of YDL018C (ERP3) [22], YHL050C, YHR005C 
(GPA1) [23], YIL129C (TAO3) [24, 25], YLR455W (Uncharacterized ORF) [26], 
YMR029C (FAR8) [27], see Fig. 4. YDL018C or ERP3 had been shown to be 
involved in the G1/S phase of the cell cycle [22]. YHL050C is an uncharacterized 
open-reading frame but we believe its non-random nearly periodic pattern is 
compelling for us to hypothesize it as a likely candidate in yeast cell cycle regulation. 
There has been evidence [23] on the role of YHR005C (GPA1, G-protein alpha 
subunit 1) on the mating-factor mediated cell cycle arrest. YIL129C (TAO3) is a 
member of the RAM (Regulation of Ace2p activity and cellular Morphogenesis) [24] 
signaling network which governs cell separation, integrity and progression [25]. 
There has been evidence of YLR455W being involved in S-phase of the cell-cycle 
[26]. YMR029C (FAR8) has been documented to be involved in G1 cell cycle arrest 
in response to pheromone [27]. 

5   Discussion 

There has been considerable interest in understanding temporal gene expression 
profiles using suitable techniques. Biologically relevant genes are hypothesized to 
exhibit non-random and reproducible temporal expression profiles. Understanding the 
correlation in these patterns has been of great interest. The present study investigated 
two distinct measures namely: zero-crossing count and the normalized Lempel-Ziv 
complexity in identifying biologically relevant genes from their expression profile. 
While the former is sensitive to only the linear correlation, the latter is sensitive to 
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linear as well as nonlinear correlations in the given data. These techniques implicitly 
assume that the given temporal expression profiles are sampled from a stationary 
process. From the results presented, it is evident that zero-crossing count which 
mimics the spectral content of the given data may prove to be useful in determining 
biologically relevant genes from their expression patterns. Its performance was found 
to be better than that of the normalized complexity. The results were demonstrated on 
yeast cell cycle expression profiles with and without noise. The better performance of 
the zero-crossing count may be attributed to cyclic patterns which can be modeled as 
linear stochastic processes.  
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Abstract. Previous empirical works have shown the effectiveness of differen-
tial prioritization in feature selection prior to molecular classification.  We now 
propose to determine the theoretical basis for the concept of differential prioriti-
zation through mathematical analyses of the characteristics of predictor sets 
found using different values of the DDP (degree of differential prioritization) 
from realistic toy datasets.  Mathematical analyses based on analytical measures 
such as distance between classes are implemented on these predictor sets.  We 
demonstrate that the optimal value of the DDP is capable of forming a predictor 
set which consists of classes of features which are well separated and are highly 
correlated to the target classes – a characteristic of a truly optimal predictor set.  
From these analyses, the necessity of adjusting the DDP based on the dataset of 
interest is confirmed in a mathematical manner, indicating that the DDP-based 
feature selection technique is superior to both simplistic rank-based selection 
and state-of-the-art equal-priorities scoring methods.  Applying similar analyses 
to real-life multiclass microarray datasets, we obtain further proof of the theo-
retical significance of the DDP for practical applications. 

1   Introduction 

The aim of feature selection is to form, from all available features in a dataset, a rela-
tively small subset of features capable of producing the optimal classification accuracy.  
This subset is called the predictor set.  A feature selection technique is made up of two 
components: the predictor set scoring method (which evaluates the goodness of a can-
didate predictor set); and the search method (which searches the gene subset space for 
the predictor set based on the scoring method).  This study focuses on filter-based 
technique which its classifiers are not invoked in the predictor set scoring method. 

An important principle behind most filter-based feature selection studies can be 
summarized by the following statement: A good predictor set should contain features 
highly correlated to the target class concept, and yet uncorrelated with each other [1].  
The predictor set attribute referred to in the first part of this statement, ‘relevance’, is 
the backbone of simple rank-based feature selection techniques.  The aspect alluded to 
in the second part, ‘redundancy’, refers to pairwise relationships between all pairs of 
features in the predictor set.   
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Previous studies [1, 2] have based their feature selection techniques on the concept 
of relevance and redundancy having equal importance in the formation of a good pre-
dictor set. We call the predictor set scoring methods used in such correlation-based 
feature selection techniques equal-priorities scoring methods.  On the other hand, it is 
demonstrated in another study [3] using a two-class problem that seemingly redundant 
features may improve the discriminant power of the predictor set instead, although it 
remains to be seen how this scales up to multiclass domains with thousands of fea-
tures.  A previous study was implemented on the effect of varying the importance of 
redundancy in predictor set evaluation [4].  However, due to its use of a relevance 
score that is inapplicable to multiclass problems, the study was limited to only two-
class classification. 

Currently, when it comes to the use of filter-based feature selection for multiclass 
tumor classification, three popular recommendations are: 1) no selection [5, 6]; 2) select 
based on relevance alone [5, 7]; and finally, 3) select based on relevance and redun-
dancy [2, 8].  Thus, so far, relevance and redundancy are the two existing criteria which 
have ever been used in predictor set scoring methods for multiclass tumor classification. 

To these two criteria we introduce a third criterion: the relative importance placed 
between relevance and redundancy [9].  We call this criterion the degree of  
differential prioritization (DDP). DDP compels the search method to prioritize the op-
timization of one of the two criteria (of relevance or redundancy) at the cost of the  
optimization of the other.  Unlike other existing correlation-based techniques, the 
DDP-based feature selection technique does not take for granted that the optimiza-
tions of both elements of relevance and redundancy are to have equal priorities in the 
search for the predictor set [10]. 

Although a large body of work has provided empirical support regarding the effi-
cacy of the DDP concept in feature selection [9-11] , we have yet to establish the 
theoretical strengths and merits of the DDP-based feature selection technique.  This is 
precisely the aim of this paper, which is to be realized through vigorous mathematical 
analyses of predictor sets found using the DDP-based feature selection technique and 
simple but illustrative examples using toy datasets.   

To generate toy datasets for this purpose, we employ a model which is well-known 
and recognized not only in the domains of molecular classification and microarray 
analysis but also conventional data minings.  Later in this paper, we also show how 
close conditions in real-life multiclass microarray datasets resemble those of our toy 
datasets. Additional advantages of toy datasets include the unlimited number of data-
sets we can generate [vs. the limited number of available real-life microarray data-
sets]; the control we are able to exercise over dataset characteristics such as the num-
ber of classes and features [11]; and prior knowledge of the members of the ideal 
predictor set, which provides the ultimate means for measuring the efficacy of the fea-
ture selection technique without involving the inductions of actual classifiers. 

The organization of the paper is as follows: Beginning with a description of the 
DDP-based feature selection technique, we proceed to present a model for producing 
the toy datasets. Then, we analyze the class separation property of the predictor sets 
obtained from each of the toy datasets.  We then apply the same analysis to eight real-
life multiclass microarray datasets. Finally, we present the conclusions of the study. 
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2   Differential Prioritization 

For gene expression datasets, the terms gene and feature may be used interchangea-
bly.  From the total of N genes, the objective is to form the subset of genes, called the 
predictor set S, which gives the optimal classification accuracy. 

The score of goodness for predictor set S is given as follows. 

( ) ( ) αα −⋅= 1
, SSSA UVW                                                (1) 

VS represents the relevance of S. VS measures the average of the correlation of the 
members of S to the target class concept. 
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The target class concept is represented by the target class vector y, which is defined 

as [ ]Tyyy ,,, 21 K ,  [ ]Ky j ,1∈  in a K-class dataset.  yj is the class label of sam-

ple j.  The training set, T, consists of all training samples of K classes.  Based on y, 
the relevance of gene i is computed as follows. 
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where I(.) is an indicator function returning 1 if the condition inside the parentheses is 

true, otherwise it returns 0.  •,ix  is the average of the expression of gene i across all 

training samples in T.  kix ,  is the average of the expression of gene i across training 

samples belonging to class k.  xi,j is the expression of gene i in sample j.  F(i) is the 
BSS/WSS (between-groups sum of squares/within-groups sum of squares) ratio for 
gene i [12].  It indicates the ability of the gene in discriminating among samples be-
longing to K different classes. 

US represents the antiredundancy of S.  Antiredundancy is a measure opposite to 
redundancy in quality [9].   

( )∑
≠∈

−=
jiSji

S jiR
S

U
,,

2
,1

1
                                             (4) 

The absolute value of the Pearson product moment correlation coefficient between 
genes i and j, |R(i,j)|, is used to measure the correlation between genes i and j. 

The power factor α ∈ (0, 1] in Eq. 1 denotes the DDP between maximizing rele-
vance and maximizing antiredundancy.  Decreasing the value of α forces the search 
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method to put more priority on maximizing antiredundancy at the cost of maximizing 
relevance.  Raising the value of α increases the emphasis on maximizing relevance 
(and at the same time decreases the emphasis on maximizing antiredundancy) during 
the search for the predictor set [10].   

A predictor set found using a larger value of α has more features with strong rele-
vance to the target class concept, but also more redundancy among these features.  
Conversely, a predictor set obtained using a smaller value of α contains less redun-
dancy among its member features, but at the same time also has fewer features with 
strong relevance to the target class concept.  At 5.0=α , we get an equal-priorities 
scoring method.  At 1=α , the feature selection technique becomes rank-based. 

We posit that different datasets will require different values of the DDP between 
maximizing relevance and maximizing antiredundancy in order to come up with the 
most efficacious predictor set.  Therefore the optimal range of α (leading to the pre-
dictor set giving the best accuracy) is dataset-specific. 

The linear incremental search is conducted as follows:  The first member of S is 
chosen by selecting the gene with the highest F(i) score.  To find the second and the 
subsequent members of the predictor set, the remaining genes are screened one by one 
for the gene that would give the maximum WA,S.  Since the combination of our predic-
tor set scoring method and this search method does not specify an output as to the fi-
nal size of the predictor set to be used, the maximum size of the predictor set, P, will 
have to be predetermined by the user. 

3   Toy Datasets Based on One-vs.-All (OVA) Model 

In using toy datasets, we aim to provide simple but clear and demonstrative examples 
which highlight the importance of choosing the correct value of the DDP in forming 
the best predictor set.  Furthermore, another advantage of toy datasets is the fact that 
we know exactly just how large a predictor set should be found for each case, facili-
tating the task of choosing the value of P. 

It is widely accepted that over-expression or under-expression (suppression) of 
genes causes the difference in phenotype among samples of different classes.  The 
categorization of gene expression is given as follows. 

1. A gene is over-expressed: if its expression value is above baseline. 
2. A gene is under-expressed: if its expression value is below baseline. 
3. Baseline interval: the normal range of expression value. 

Usually the mean of the expression across genes is taken as the middle of the base-
line interval. In analyses of microarray data, the conventional data normalization  
procedures often set the mean across genes for each sample to zero. Hence, over-
expression is represented by positive values and under-expression by negative values.  
With this categorization we next employ a well-known paradigm leading to the one-
vs.-all (OVA) model, which is then used to generate toy datasets. 

The crux of the OVA concept has gained wide, albeit tacit, acceptance among mi-
croarray and tumor gene expression researchers.  The fact that particular genes are 
only over-expressed in tissues of certain type of cancer, and not any other types of 
cancer or normal tissues [13], is part of the entrenched domain knowledge.  Hence the 
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term ‘marker’ – for genes that mark the particular cancer they are associated with.  In 
the OVA model, certain groups of genes, also called the ‘marker genes’, are only 
over-expressed (or under-expressed) in samples belonging to a particular class and 
never in all samples of other classes. This model emphasizes that a group of marker 
genes is specific to one class.  Therefore for a K-class dataset, there are K different 
groups of marker genes. 

Let us denote as G the number of genes in each group of marker genes, Xmax and 
Xmin the maximum and minimum limits respectively to the absolute value of the class 
means for the whole dataset.  Thus, for the g-th gene in a group of marker genes, the 
maximum limit to the absolute value of the class means is defined as: 

( )( )1maxmax, −∆−= gXXx g                                        (5) 

where g = 1, 2, …, G, and 
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Among the K classes, the class means are made to vary such that there is an imbal-
ance in terms of class means.  The reasons are firstly to mimic a condition prevalent in 
multiclass microarray datasets (imbalance among classes in terms of class means even 
after normalization), especially in datasets with very large number of classes; and sec-
ondly, to present a challenge to the feature selection technique in choosing relevant but 
non-redundant genes.  We will provide further elucidation on the second reason later in 
this section.  For the g-th gene in a group of marker genes, the difference between the 
class means of subsequent classes is defined in the following manner. 
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Next, initialize a matrix M:=( µi,k)N×K of zeros where N is the total number of genes 
in the dataset, and, in this case, is the product of G and K.  This is the matrix of class 
means, whose element, µi,k, represents the mean of gene i across samples belonging to 
class k (k = 1, 2, …, K). 

( ) ( ) ( )( )[ ]11 max,,1 −∆−−=+− kxx gg
g

kkKgµ                            (8) 

The ( )[ ]kKg +− 1 -th gene is the g-th member of the k-th group of marker genes 

and therefore has non-zero class mean for class k and zero class mean for all other 

classes – the archetypal OVA trait.  The term ( )g1−  serves to change the sign of the 

class mean at different values of g so as to produce both over- and under-expressed 
marker genes.  The strongest marker genes are composed of the first genes ( 1=g ) of 

each group of marker genes while the weakest marker genes consist of the last genes 
( Gg = ) of each group of marker genes. 

Standard deviation among samples of the same class, or class standard deviation, is 
set to 1 for all instances, σi,k = 1 for all k and i.  To produce a K-class toy dataset, a  
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Table 1. A 4-class example from the OVA model (µi,k  represents the mean of gene i across 
samples belonging to class k) 

g k µi,k µi,1 µi,2 µi,3 µi,4 
1 1 µ1,k −Xmax 0 0 0 
1 2 µ2,k 0 −0.5Xmax 0 0 
1 3 µ3,k 0 0 0.5Xmax 0 
1 4 µ4,k 0 0 0 Xmax 
2 1 µ5,k Xmax−∆X 0 0 0 
2 2 µ6,k 0 0.5(Xmax−∆X) 0 0 
2 3 µ7,k 0 0 0.5(∆X−Xmax) 0 
2 4 µ8,k 0 0 0 ∆X −Xmax 

M  M  M  M  M  M  M  
G 1 µ(G−1)K+1,k (−1G)Xmin 0 0 0 
G 2 µ(G−1)K+2,k 0 0.5(−1G) Xmin 0 0 
G 3 µ(G−1)K+3,k 0 0 −0.5(−1G) Xmin 0 
G 4 µ(G−1)K+4,k 0 0 0 −(−1G)Xmin 

 
total of m samples are generated for class k (k = 1, 2, …, K) using Gaussian distribu-
tion of mean µi,k and standard deviation σi,k for gene i. 

In Table 1, an entry on the i-th row and k-th column represents the class mean of 

class k for gene i, where ( )[ ]kKgi +−= 1 , and therefore gene i is the g-th member 

of the k-th group of marker genes.  We can see that using relevance alone as a crite-
rion, and with uniform class size, marker genes associated with class 1 and 4 will al-
ways be favored more than marker genes specific to any other classes, regardless of 
the value of g.  Including antiredundancy as the second criterion will obviate this im-
balanced predilection – therein lies the reason for us to use unequal values for class 
means among different classes. But how much weight is to be assigned to relevance, 
and how much to antiredundancy? 

The apparent answer would be equal weights, which is the foundation of existing 
equal-priorities scoring methods.  But as mentioned previously in Section 1, it has 
been shown that antiredundancy is not as important as relevance for the two-class 
case – this is obvious in the case of our OVA toy dataset; any subset of sufficiently 
relevant genes will be capable of differentiating between the two classes.  Hence as 
the number of classes increases (an important theme in multiclass classification stud-
ies), will not the importance of antiredundancy (w.r.t. relevance) increase as well?  
This question is to be answered from the analyses in this study. 

4   Experiment Settings 

Ten values of α are tested from 0.1 to 1 with equal intervals of 0.1.  G is set to 3, 5, 
10, 20, and 30.  Xmax and Xmin is set to 100 and 1 respectively, while the number of 
samples per class, or class size, m, is set to 100 uniformly for all classes.  We test for 

2=K  to 30=K . Since no inductions of classifiers are to be implemented in this 
study, whole datasets are used as training sets during feature selection.   
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The minimum predictor set size necessary to differentiate among the K classes is 
1−K .  The optimal predictor set is actually any subset of 1−K  genes from the first 

K of the marker genes (that is, at 1=g ) generated using the class means defined in 

Eq. 8.  Thus, P is set to 1−K .   

5   Analyses of Predictor Sets 

In this section we critically analyze the properties of the predictor sets produced from 
different values of α.  The property of separation of classes is studied.  Finally, we 
apply the analyses to real-life datasets for comparison to results from toy datasets. 

5.1   Separation of Classes 

The goodness of a predictor set can be measured by how well separated the classes of 
features in the predictor set are. If there are two predictor sets with the same relevance 
score, the set with better separated classes of features is deemed to be better as there is 
less redundancy among its features. A natural way to measure separation of classes is 
the distance between pairs of class means.  In this study, we use the Euclidean dis-

tance metric.  For the q-th pair of classes, { }qqq ccC ,2,1 ,= , the separation between 

classes given by the predictor set found through a DDP value of α, Sα, measured us-
ing the Euclidean metric is given below. 
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kix ,  is the average of the expression of gene i across samples belonging to class k.  

Averaging across all KC2 pairs of classes, we obtain the mean Euclidean distance be-
tween all pairs of classes as measured by Sα.   
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The value of the DDP leading to the best separation of classes in terms of the 

Euclidean metric is the one which gives the largest α,Ed . 

( )α
α

α ,
* maxarg EE d=                                                      (11) 

If there is more than one value of α satisfying Eq. 11, the mean among these values 

is taken as *
Eα .  Since these values are generally adjacent to each other, taking the 

mean will still provide a good picture of how the DDP affects separation of classes.   
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Fig. 1. The DDP producing the optimal separation of classes as measured by the Euclidean dis-
tance, *

Eα , as a function of K for toy datasets generated from (a) the OVA model and (b) the 

PW model 

Fig. 1 shows that the number of classes, K, influences the value of  *
Eα , regardless 

of the value set to G.  Larger G tends to produce a more distinct *
Eα −K plot.  As K 

increases beyond 20, *
Eα  settles to a smaller value (around 0.2). Regardless of the pa-

rameter values of G, the number of classes in the dataset undoubtedly affects the 
value of the DDP which brings about the best separation of classes in terms of the 
Euclidean distance. 

6   Real-Life Datasets 

We now apply the previous analyses to real-life datasets.  Descriptions of eight real-
life microarray datasets are shown in Table 2. The Brown (BRN) dataset [14] includes 
15 broad cancer types.  Following a previous study [15], the skin tissue samples due 
to small class size (3 samples) are excluded from analysis. The GCM dataset [13] 
contains 14 tumor classes. For the NCI60 dataset [16], only 8 tumor classes are ana-
lyzed; the 2 samples of the prostate class are excluded due to the small class size.  

The PDL dataset [17] consists of 6 classes, each class representing a diagnostic 
group of childhood leukemia.  The SRBC dataset [18] consists of 4 subtypes of small, 
round, blue cell tumors (SRBCTs).  In the 5-class lung dataset [19], 4 classes are sub-
types of lung cancer; the fifth class consists of normal samples.  The MLL dataset 
[20] contains 3 subtypes of leukemia: ALL, MLL, and AML.  The AML/ALL dataset 
[21] also contains 3 subtypes of leukemia: AML, B-cell ALL, and T-cell ALL. 
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Table 2. Descriptions of real-life datasets. N is the number of genes after preprocessing. K is 
the number of classes in the dataset. 

Dataset Type N K Training:Test set size 
BRN cDNA 7452 14 174:83 
GCM Affymetrix 10820 14 144:54 
NCI60 cDNA 7386 8 40:20 
PDL Affymetrix 12011 6 166:82 
Lung Affymetrix 1741 5 135:68 
SRBC cDNA 2308 4 55:28 
MLL Affymetrix 8681 3 48:24 

AML/ALL Affymetrix 3571 3 48:24 

 
Except for the BRN and SRBC datasets (which are only available as preprocessed 

in their originating studies), datasets are preprocessed and normalized based on the 
recommended procedures [12] for Affymetrix and cDNA microarray data.  Except for 
the GCM dataset, for which the ratio of training to test set sizes used in the originating 
study [13] is maintained to enable comparison with previous studies, for all datasets 
we employ the standard 2:1 split ratio. 

But before applying the analyses to real-life datasets, we investigate how close 
conditions in real-life datasets match those of toy datasets. 

6.1   Investigating the Imbalance of Class Means in Real-Life Datasets 

We have mentioned in the section on the generation of toy datasets that imbalance in 
terms of class means among classes is prevalent in highly multiclass microarray data-
sets.  Investigation is conducted on whole datasets (no splitting) in order to determine 
the extent of the aforementioned imbalance.  For class k ( Kk ,,2,1 K= ), we choose 

the class mean with the greatest absolute value (equivalent to the absolute value of 

( ) kkKg ,1 +−µ  from Eq. 8 or ( )( ) qb
K cqCg ,2 ,1 +−

µ  from Eq. 9 at 1=g ) among all N class 

means.     

( )ki
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Next, to illustrate the imbalance among classes in terms of class means, we com-
pute the range of class means. 

( ) ( ) ( )k
k

k
k

k xxxR ,0,0,0 minmax −=                                        (13)  

The result is shown in Table 3. We observe that the range ( )kxR ,0  for datasets 

with large K (such as BRN, GCM, and NCI60) is greater than the range ( )kxR ,0  for 

datasets with smaller K. Looking at the maximum and minimum values of kx ,0  

across k in Table 3, we can say with certainty that there is an imbalance among 
classes in terms of class means, especially in datasets containing more than 6 classes.   
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Table 3. Range of class means in real-life datasets 

Dataset ( )k
k

x ,0max  ( )k
k

x ,0min  ( )kxR ,0  

BRN 11.57 3.93 7.65 
GCM 73.00 7.77 65.23 
NCI60 7.64 4.20 3.44 
PDL 2.77 2.67 0.10 
Lung 9.62 8.39 1.23 
SRBC 2.27 1.59 0.68 
MLL 4.35 4.08 0.27 
AML/ALL 7.14 6.76 0.38 

 
We expect this imbalance to either increase or at least stay constant as K increases be-
yond 14 (which is the largest number of classes to be found among real-life datasets).  
Therefore the implementation of unequal maximum limits to the absolute value of the 
class means for different classes in Eqs. 8 and 9 is justified, particularly in analyses 
involving K as high as 30 for toy datasets, as is the case in this study. 

6.2   Applying the Analyses to Real-Life Datasets 

For real-life datasets, the analyses are implemented separately upon the training set of 
each split, there being a total of 10 splits of training and test sets.  The mean across all 

splits is taken for the α,Ed  measured in the analyses, and then used to find the corre-

sponding value of the DDP which optimizes α,Ed . 

We will assume that the optimal P for each real-life dataset is directly proportional 
to K (as is the case for toy datasets).  However, allowing for remnant noise (left even 
after data preprocessing), we assign larger values to P for real-life datasets (30K) than 
for toy datasets with similar K.   

Fig. 2 shows that for the majority of real-life datasets, the trend regarding α,Ed  is 

similar to the trend for toy datasets.  However, in the *
Eα −K plot, one dataset  

 

 

Fig. 2. *
Eα values of the DDP which optimize various predictor set characteristics as a function 

of K for real-life microarray datasets 
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(NCI60) produces a point ( 1* =Eα  at  8=K ) which diverges from the *
Eα −K plots 

observed in toy datasets.  Despite this discrepancy (due to small class sizes and the 
heterogeneity of some of the classes), the overall picture provided by Fig. 2 indicates 

that the effect of K on the values of the DDP which optimize α,Ed  in real-life data-

sets is the same as the effect in toy datasets. 

7    Conclusions 

In this paper, we have proposed a systematic method to model toy datasets based on 
the OVA concept. We have used these toy datasets for analyzing the DDP concept in 
feature selection. The findings in this study have shown that DDP is necessary be-
cause it subsumes existing techniques such as equal-priorities scoring methods and 
rank-based selection. The optimal value of α is not always 0.5 (equal-priorities scor-
ing methods) or 1 (rank-based selection).  Instead, it is based on the number of classes 
in the datasets.  By using this optimal value in the DDP-based feature selection tech-
nique, we can then find the predictor set with the best adjustment of maximum rele-
vance and minimum redundancy pertinent to the number of classes in the dataset. 

Finally, since all findings have been achieved based on analytical evaluations, not 
empirical evaluations involving classifiers, this study establishes the theoretical basis 
for the usefulness of the DDP. 
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Abstract. Gene selection and expression profiles classification are im-
portant for diagnosing the disease using microarray technology and reveal-
ing the underlying biological processes. This paper proposes a weighted
top scoring pair (WTSP) method which is a generalization of the current
top scoring pair (TSP) method. By considering the proportions of samples
from different classes, the WTSP method aims to minimize the error or
misclassification rate. Results from several experimental microarray data
have shown the improved performance of classification using the WTSP
method.
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1 Introduction

By measuring the expression levels of thousands of genes, microarray techniques
have been used to diagnose and explore the biologically relevant genes related to
a disease. The obtained microarray data normally contains several thousands of
genes and tens to hundreds of samples. The analysis of this data is challenged by
the “small N, large P” problem, that is, the number of genes (P) is greatly larger
than the number of samples (N ). In order to deal with this high dimensional data
and make the analysis feasible, dimension reduction (or gene selection) meth-
ods are used to choose the most informative genes by comparing the expression
levels between the cancer tissue and normal ones, or between different tumor
types. The purpose of the gene selection is to discard those genes which are
least interesting to the classification and select the relevant genes which could
provide the best ability to distinguish the samples from different classes and
hence reveal the biomarkers or molecular signature for the disease. This purpose
can be achieved by ranking the genes according to some relevance measurement
and select those genes with the highest relevance scores. The commonly used
genes selection methods can be categorized into three categories: i) choosing
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single differentially expressed genes; ii) choosing gene pairs which co-regulate;
and iii) choosing a set of genes or gene network. To discover the differentially
expressed genes, t-statistic could be calculated for each gene and the genes with
significantly different expression levels are chosen [1]. This single gene selection
method considers the genes independently and may miss the functional rela-
tionships among genes due to the interaction/co-regulation of the genes. Some
methods are proposed to investigate the information provided by the gene pairs.
In [2], two-sample t -statistics are calculated for each gene pairs projected to
the diagonal linear discriminant (DLD) axis in order to find the pairs with the
highest score that together could discriminate the samples from different classes.
In [3], a correlation-based method is developed to discover the gene pairs whose
functional relationship changes across different conditions. This method is based
on the assumption that gene pairs with largest differential correlation are more
likely to be involved in the mechanisms of the disease. In [4], a feature construc-
tion method is proposed to find the synergic gene pairs which could enhance the
accuracy of the classification. In this method, the mutual information contained
in the interaction of the gene pairs is explored for the gene selection and these
gene pairs are assumed to have biological significance for the underlying cellular
processes. In addition to investigate the information contained in pairs of genes,
the microarray data analysis can also be carried out with a list of genes (or gene
networks). The information buried in this gene network could reveal the biolog-
ical function or pathways of these genes related to the disease. In [5], the gene
expression data is analyzed by integrating a priori the knowledge of the gene net-
work to achieve a better classification. The hypothesis underlying this approach
is that the genes close to the network are more likely to be co-expressed. In [6],
a friendly neighbors (FNs) method for time-course microarray data analysis is
proposed to find the genes whose induction-repression pattern are shared with
other genes more often and these genes are considered to be the most informa-
tive for a certain cellular function. Based on this method, a differential friendly
neighbors (DiffFNs) method is proposed to choose the genes in which the gain
or loss of the relationships with other genes are most significant [7]. These genes
could provide the biomarkers to distinguish the tumor from the healthy ones
and signify the underlying pathways.

Besides the above methods, the common dimension reduction methods are
also used to represent the information of the large number of genes with a set of
gene components which could capture as much information of the original gene
expression data as possible. These methods include: Q-mode Principle Compo-
nent Analysis (PCA) which retain most of the variation [8]; Partial Least Squares
(PLS) which constructs the components that maximize the covariance between
classes and genes [9]; Sliced Inverse Regression (SIR) which regresses the gene
expression data on the classes [9].

Having selected the most informative genes, the samples from different classes
could be successfully identified. Many algorithms have been proposed to achieve
this goal, such as Support Vector Machine (SVM) [10], nearest and k-nearest
neighbors (kNN) [11][12], linear discriminant analysis (LDA) [11], Decision Trees
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(DT) [13], naive Bayes (NB) [11], Prediction Analysis of Microarrays (PAM) [14]
and so on.

Among these gene selection and classification methods, one of the simple and
effective methods is Top Scoring Pair (TSP) based methods [15][16][17]. This
method integrates the gene selection and classification based on a simple rule.
It aims to find pairs of genes such that the expression level of gene A is greater
than that of gene B in class 1, but smaller in class 2; and this rule is also used
for the classification. Being a rank-based method, the TSP is invariant to the
preprocessing steps such as normalization since it does not change the rank of a
specified gene. Compared to the traditional methods which use more genes and
a complex decision procedure, the TSP method is shown to have the ability to
achieve comparably high accuracy of classification by using very few genes [18].

In this paper, a weighted TSP (WTSP) method is proposed as a generaliza-
tion of the classical TSP method. Different from the TSP, the proposed WTSP
method adjusts the scores of gene pairs by incorporating the information of
the proportion of the samples belonging to different classes and/or the cost
of misclassification. This weighted TSP method aims to minimize the cost of
misclassifications and hence could achieve better performance compared to the
classical TSP. This paper is organized as follows. In Section 2, the method of
weighted TSP will be developed. Some implementation issues will also be given
in this part. Section 3 presents the results of the proposed method as well as its
comparison with the TSP classifier. This is followed by Section 4 where some
discussion about the proposed method will be given.

2 Method

The gene expression data can be represented as a matrix X with dimension
P ×N , where P is the number of genes and N is the number of samples (or gene
expression profiles). Each column in X is an expression profile of P genes from
a sample either in class 1 (Y = 1) or in class 2 (Y = 2). Normally, the number
of genes is greatly larger than the number of samples (P � N) and this causes
the problem of curse of dimensionality.

The TSP method aims to find the gene pairs whose relative relationship of
expression levels change from one class to the other. That is, the marker gene
pairs should be the ones that the expression level of gene A is greater than
that of gene B in class 1, but smaller in class 2. Suppose there are N1 samples
from class 1 and N2 samples from class 2 (N1 + N2 = N), and for a gene pair
(i, j), there are respectively aij and bij samples from class 1 and class 2 with
the expression level of gene i less than that of gene j (i.e., Xi < Xj). The TSP
scheme order the gene pairs according to their scores defined as:

∆ij = |P (Xi < Xj |Y = 1) − P (Xi < Xj |Y = 2)|
= |pij(C1) − pij(C2)|
≈ ∣
∣
aij

N1
− bij

N2

∣
∣ (1)
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By choosing the gene pairs which achieve the top scores in the training data, a
new gene expression profile x′ could be classified according to the relation of the
expression level X ′

i of gene i and X ′
j of gene j (or the rank of these two genes)

according to the following rule:
If pij(C1) > pij(C2),

Y ′ =
{

1, if X ′
i < X ′

j

2, o.w. , (2)

else if pij(C1) ≤ pij(C2),

Y ′ =
{

2, if X ′
i < X ′

j

1, o.w.
(3)

2.1 Weighted TSP Method

The proposed weighted TSP method is based on the classical TSP with the
incorporation of the probabilities of the samples belonging to each class and the
cost of misclassification. It aims to minimize the cost of misclassification, that
is, to minimize the following equation:

Cost = P (error|Y = 1)P1λ1 + P (error|Y = 2)P2λ2, (4)

where, P1 = P (Y = 1) and P2 = P (Y = 2) are respectively the probability of
the samples coming from class 1 and class 2; λ1 and λ2 represent the cost it may
induce if a sample is misclassified.

If we specify the classification rule as: if Xi < Xj , the sample is classified
to class 1 (Y = 1); else if Xi > Xj , it is classified to class 2 (Y = 2); and if
Xi = Xj , the sample is assigned to the class with higher probability. Let aij

be the number of samples correctly assigned to class 1 under this classification
rule (i.e., either Xi < Xj or Xi = Xj with P1 > P2) and bij be the number of
samples incorrectly assigned to class 2, Eq. (4) could be reduced to:

Cost =
N1 − aij

N1
P1λ1 +

bij

N2
P2λ2 (5)

= P1λ1 − (
aij

N1
P1λ1 − bij

N2
P2λ2) (6)

It can be easily observed from the above equation that the minimization of the
cost of misclassification is actually equivalent to the maximization of the quantity
aij

N1
P1λ1 − bij

N2
P2λ2. Therefore, for each gene pair, a weighted score is calculated

according to:

∆′
ij =

aij

N1
P1λ1 − bij

N2
P2λ2. (7)

Compared to the original score, the weighted score ∆′
ij is a generalization of

the original score ∆ij by considering the proportion of the samples in each class
as well as the cost of misclassification. Here, we consider two special cases of this
weighted score.
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1. If P1λ1 = P2λ2, ∆′
ij is reduced to a scaled version of the score ∆ij calculated

in the classical TSP as shown in Eq. (1). It can also be seen that the original
score does not consider the proportions of samples from each class and hence
the maximization of the original score is equivalent to minimizing the sum
of misclassification probabilities over two classes instead of the probability
of total misclassification.

2. If λ1 = λ2, minimization of the cost of misclassification in Eq. (4) is actually
the minimization of the probability of total misclassification (or the error
rate).

By ordering the scores of each pair, the gene pair with the largest score is
chosen as the marker gene pair to classify the samples. And for a new expression
profile x′, the classification rule now is:

Y ′ =
{

1, if X ′
i < X ′

j ; or X ′
i = X ′

j and P1 > P2
2, o.w.

. (8)

It is to be noted that in the proposed WTSP method, the absolute sign is
discarded compared to the original method and the classification rule is also
accordingly simplified. This is because that in the weighted score ∆′

ij , the order
of the genes in the pair is considered. That is, the scores of both the pair (i, j)
and (j, i) are calculated and only the one which can achieve higher score is kept
for further analysis. While in the original TSP, the order of the genes in the pair
is not considered and hence the absolute sign is used and the classification rule
depends on the relative value of pij(C1) and pij(C2).

In practice, several gene pairs may achieve the same top score. The original
TSP method uses two schemes to deal with this situation: i) use all the top score
gene pairs and a majority voting scheme to classify the test samples [17]; ii) find
the rank of the genes in the pair and choose the pair whose rank difference of the
two genes is largest as the marker gene pair for classification [15]. In the WTSP
method, a different scheme is used. We treat the gene pairs whose scores are close
to the top score as having the same power to classify the samples. This is because
that the relative relationship of Xi and Xj may reverse due to noise and this
may cause that the measured aij and bij are slightly different from the real ones
(especially when the Xi and Xj are close to each other). Therefore, it is desirable
to treat these gene pairs as potential pairs to be chosen for classifying the test
samples. Among these gene pairs, the marker gene pair should have the property
that their expression levels are most negatively correlated. And this marker gene
pair is the one used in the proposed WTSP (w/ corr.) for classifying the test
samples.

2.2 Cross-Validation

In this paper, leave-one-out cross-validation (LOOCV) is used to estimate the
error or misclassification rate. For each sample in the available training data with
known class, we select the gene pair and build the classifier from the remaining
samples. The sample which is left out is treated as the test sample and the
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classification is made according to the classifier established from the remaining
training samples. The classification accuracy is then calculated as the correct
classification divided by the number of samples.

Due to large number of genes, an efficient algorithm to perform the cross-
validation is desired. To achieve this, an accelerated cross-validation scheme is
utilized based on the idea that the gene pairs which possess very low scores can
be ignored since they never have the chance to be chosen as the top scoring pair
(or top two scoring pairs in the proposed WTSP (w/ corr.) method) no matter
which sample is left out in the process of cross-validation. This can be realized
by calculating the lower bound and upper bound of the weighted scores based
on all samples for each gene pair. The following steps describe this procedure.

1. For each gene pair (i, j), first calculate the weighted scores ∆′
ij according to

Eq. (7) by using all the samples, note down respectively the aij and bij .
2. Calculate the lower and upper bound of the weighted score of gene pair (i, j)

when one sample is left out. This can be done by calculating the following
four terms:

∆1
ij =

aij

N1 − 1
P1λ1 − bij

N2
P2λ2, if the sample is from class 1 and Xi > Xj

∆2
ij =

aij − 1
N1 − 1

P1λ1 − bij

N2
P2λ2, if the sample is from class 1 and Xi < Xj

∆3
ij =

aij

N1
P1λ1 − bij

N2 − 1
P2λ2, if the sample is from class 2 and Xi > Xj

∆4
ij =

aij

N1
P1λ1 − bij − 1

N2 − 1
P2λ2, if the sample is from class 2 and Xi < Xj

It can be easily observed that ∆2
ij < ∆1

ij and ∆3
ij < ∆4

ij .
So the lower bound is then:

∆L
ij = min(∆2

ij , ∆
3
ij), (9)

and the upper bound is:

∆U
ij = max(∆1

ij , ∆
4
ij). (10)

3. Find the lower bound of the top score pair based on all the samples, and
discard those gene pairs whose upper bound is less than the lower bound
of the top score pair since for these gene pairs, their weighted score cannot
become the top one no matter which sample is left out.

By using this scheme, a list of gene pairs L is obtained. In each LOOCV loop,
only the gene pairs in the list L are investigated and the weighted scores are
updated as well. This procedure greatly reduces the number of gene pairs that
we need to investigate and hence largely increases the time and space efficiency
of the cross-validation.
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3 Evaluation and Results

The proposed weighted TSP method was then tested on the data available from
the public database as well as from our own side. These data sets are respec-
tively Leukemia [19], Colon [20], Lung [21], DLBCL [22], GCM [23], CNS [24],
Prostate [25], p53 [26]. Table 1 gives a summary of these data sets, such as the
number of genes measured (P ), total number of samples (N) and the number of
samples in each class.

Table 2 shows the comparison of the performance of the proposed weighted
TSP and the original TSP. The classification accuracy is estimated using the
LOOCV. For the WTSP method, we choose λ1 = λ2 to calculate the weighted
scores. In this table, “WTSP (w/o corr.)” means that all the gene pairs with
the same top weighted scores are used to classify the samples and the classifica-
tion result is based on the majority voting strategy. “WTSP (w/ corr.)” means
weighted TSP with the consideration of the cross-correlation of the expression
levels of the gene pair. The gene pairs with the weighted score at least second
to the top ones are chosen as the potential gene pairs for classification and only

Table 1. Description of the Data Sets

Data sets # genes (P ) # total samples (N) # samples by class (N1/N2)

Leukemia 7129 72 47 ALL / 25 AML
Colon 2000 62 40 Tumor / 22 Normal
Lung 12533 181 150 ADCA / 31 MPM
DLBCL 7129 77 58 DLBCL / 19 FL
GCM 16063 280 190 Tumor / 90 Normal
CNS 7129 34 25 Classic / 9 Desmoplastic
Prostate 12625 88 50 Normal / 38 Tumor
p53 44928 257 59 p53+ / 198 p53-

Table 2. Classification Accuracy for 8 Data Sets

Data Sets WTSP (w/o corr.) WTSP (w/ corr.) TSP (w/o rank) TSP (w/ rank)

Leukemia 95.83% 97.22% 93.80% 94.44%
Colon 91.13% 90.32% 91.13% 91.94%

Lung 99.17% 95.58% 99.17% 98.30%
DLBCL 97.40% 94.80% 98.05% 97.40%
GCM 77.5% 84.64% 75.40% 75.40%
CNS 83.82% 79.41% 83.82% 79.41%
Prostate 65.34% 75.00% 55.68% 54.55%
p53 79.76% 79.00% 76.65% 76.65%

Average 86.24% 87.00% 84.21% 83.51%
Std 11.76 % 8.63% 14.66% 14.98%
Min 65.34% 75.00% 55.68% 54.55%
Max 99.17% 97.22% 99.17% 98.30%
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the one which is most negatively correlated is chosen as the marker gene pair to
classify the samples. Similarly, “TSP (w/o rank)” and “TSP (w/ rank)” repre-
sent the original TSP method respectively either using all the gene pairs having
the same original top scores with majority voting strategy, or choosing the one
whose average rank difference is largest [15].

From this table, it is clearly seen that on average, the WTSP-based methods
work better than the original TSP-based methods. For 4 out of 8 cases, both
WTSP (w/o corr.) and WTSP (w/ corr.) outperform either the TSP with or
without rank (respectively Leukemia, GCM, Prostate and p53). For the data
sets of Lung and CNS, the WTSP (w/o corr.) performs as well as the best of the
TSP-based methods. Only in the DLBCL and Colon case, the WTSP method
works slightly worse than the TSP method, but the difference is not significant
(respectively, 0.65% and 0.81% difference). An obvious observation is that when
the classification accuracies of TSP-based methods are high, the performance of
the WTSP-based methods are comparable to the TSP-based methods. However,
when the classification accuracies of TSP-based methods are low (such as in

Fig. 1. Performance Comparison of WTSP and TSP methods. Each method is repre-
sented as a point in this figure with the coordinates composed of average classification
accuracy and its standard deviation. The performance of WTSP (w/ corr.) is the best
among these methods with highest average accuracy (87.00%) and smallest standard
deviation (8.63%). The WTSP (w/o corr.) takes the second place with average ac-
curacy (86.24%) and standard deviation (11.76%). The TSP-based methods perform
worse compared to WTSP-based methods with lower average accuracies (84.21% for
TSP without rank and 83.51% for TSP with rank) and relatively larger standard de-
viation (respectively, 14.66% and 14.98%).
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GCM, Prostate and p53 data), the proposed WTSP-based methods significantly
improve the performance. The increase of the accuracy are respectively 9.24%
for GCM data, 19.32% for Prostate data and 3.11% for p53 data.

Figure 1 shows the performance comparison between the TSP-based and
WTSP-based methods. The average accuracies of classification and their stan-
dard deviations for each method are calculated. The method which could achieve
higher classification accuracy with lower standard deviation is desired (Ideally,
a method with 100% accuracy and 0 standard deviation is the best). If the
standard deviation of the accuracy is plotted against its average classification
accuracy for each method as shown in this figure, it can be seen that when a
method represented by a point in this figure is closer to the bottom-right corner,
its performance will be better.

From this figure, it is clearly seen that the WTSP (w/ corr.) works best
with the highest average accuracy of 87.00% and smallest standard deviation
of 8.63%, followed by WTSP (w/o corr.), TSP (w/o rank) and TSP (w/ rank).
The improvement of WTSP method comes from the fact that it minimizes the
probability of total misclassification and hence it may choose different gene pairs
than the ones chosen by the original TSP method for classification.

4 Discussion and Conclusion

Based on the classical TSP method, we proposed a weighted TSP (WTSP)
method for the supervised gene selection and classification scheme. This WTSP
method is a generalization of the original TSP method. Different from the TSP
method which actually minimizes the sum of misclassification probabilities over
two classes, the WTSP minimizes the cost of misclassification or the probabil-
ity of total misclassification by incorporating the probability of each class in
the data. The results obtained from experimental microarray data sets suggest
that the WTSP could achieve higher classification accuracy compared to the
TSP method. In addition, the WTSP method also simplifies the classification
rule by considering the order of the genes in the gene pair. Besides that, the
WTSP method possesses the advantages of TSP method such as achieving high
classification accuracy with few genes and invariant to the preprocessing.

At this stage, it is difficult to arrive at a conclusion about at what specific
conditions the proposed WTSP method can always work significantly better
than the original TSP method. The proposed WTSP method aims to handle
the problem of the unbalanced sample size in each class. This problem exists in
all the 8 data sets we tested. However, for some data sets, the TSP still works
comparatively as well as the WTSP. The possible reason is as follows. If the
gene pair which achieves the top score in WTSP have aij ≈ N1 and bij ≈ 0 (see
Eq. (7)), the same gene pair is likely to be chosen in the TSP method. Thus,
for those data sets, both methods can achieve a high classification accuracy
as shown in the Table 2 for the cases of Leukemia, Colon, Lung and DLBCL.
Whereas, if this scenario does not hold, that is, the TSP method works poorly,
the proposed WTSP method should improve the performance more significantly.
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This is consistent with the results from the GCM, CNS, Prostate and p53 data.
Therefore, although it is difficult to pinpoint the exact situation at which the
proposed WTSP works significantly better than TSP, a general conclusion is:
the WTSP method performs significantly better than TSP method when the
sample size in each class is unbalanced and TSP performs poorly.

Future work may include the investigation of other information contained in
the gene-gene interaction. The methods based on TSP exploit one pattern of
gene-gene interaction, that is, the relative expression levels of the gene pair re-
vert from one class to another class. There may exist other possible gene-gene
interaction patterns, such as the coexpression of two genes. By exploring these
possible patterns contained in the microarray data, a more accurate classifica-
tion method could be developed and the functional biological processes may be
revealed.
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Abstract. The identification of regulatory motifs underlying gene expression is a 
challenging problem, particularly in eukaryotes. An algorithm to identify statisti-
cally significant discriminative motifs that distinguish between gene expression 
clusters is presented. The predictive power of the identified motifs is assessed 
with a supervised Naïve Bayes classifier. An information-theoretic feature selec-
tion criterion helps find the most informative motifs. Results on benchmark and 
real data demonstrate that our algorithm accurately identifies discriminative mo-
tifs. We show that the integration of comparative genomics information into the 
motif finding process significantly improves the discovery of discriminative mo-
tifs and overall classification accuracy. 

Keywords: Discriminative motifs, regulatory elements, comparative genomics, 
classification, Naïve Bayes, mutual information. 

1   Introduction 

One of the challenges of post-genomic molecular biology is to understand gene regu-
lation and the complex mechanisms underlying gene expression. In protein-coding 
genes, gene regulation occurs by altering the rate of transcription of the gene thereby 
changing its expression levels. Transcriptional regulatory proteins exert control on the 
expression of genes in a cell by binding to specific DNA regulatory elements, in close 
proximity to the transcription start site of a gene. Computational methods have been 
quite successful in identifying patterns in DNA sequences as putative transcription 
factor binding sites, especially in bacteria and yeast. These methods typically make 
use of available gene expression measurements either to guide the search for motifs 
within DNA sequences [2], [3], [5], [13], or in a combined fashion by correlating 
gene expression data with the sequences [6], [7].  

Eukaryotic binding site prediction remains a complex problem and a challenging 
one for several reasons. The first is that transcription factors often bind to regions of 
the DNA several kilobases from the gene’s transcription start site. These sites may 
even be present within the introns or downstream of the gene. The factor MEF2 in hu-
mans, and GATA1 in mouse and human are examples. Another critical issue is that 
motif length is unknown and often highly variable between sites although they often 
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have a common core site of smaller length (such as WGATAR). In addition, tran-
scription factors may act cooperatively with other factors to control regulation. Since 
the length of sequences can be very long, computational identification of putative 
binding sites can lead to many false positives being detected. Functional regulatory 
elements are often conserved over evolution and true binding sites will often be pre-
sent in highly conserved regions of the multi-species sequence alignments. Some  
motif finding algorithms have used this approach to identify putative binding  
sites [1], [9].  

Motifs are represented using either position weight matrices (PWM) or string-
based models, and identified as over-represented patterns common to a given set of 
sequences relative to a set of background sequences. Methods that model motifs with 
a probability matrix model [11], [12], [19] are capable of capturing variability be-
tween binding sites effectively, but use maximum likelihood and local search tech-
niques to estimate parameters which are extremely dependent on starting conditions, 
number of iterations and stability of the model to converge to a local maxi-
mum/minimum. String-based motif finding algorithms [16], [17] on the other hand 
are based on basic counting schemes and have the advantage of being deterministic, 
in the sense that they produce identical results for every run with a fixed set of pa-
rameters. However, the motifs identified will vary depending on the choice and esti-
mation method of the background distribution. 

Discriminative methods find motifs that distinguish between two sets of input se-
quences or gene clusters, thereby avoiding the need for a background distribution. A 
probabilistic logistic regression model was proposed to identify discriminative motifs 
between two sets of genes, one expected to contain a cis-regulatory module (CRM) 
while the other did not [14]. The algorithm performs well but requires the estimation 
of an extremely large number of variables, with complexity exponential in the length 
of the sequences. Also, prior knowledge of CRMs is generally unavailable. DMotifs 
[17] uses a string-based approach to look for well-distributed motifs over individual 
promoters, identifying discriminative motifs between a set of positive and negative 
(background) sequences. The algorithm does not scale to large number of sequences. 
The DME algorithm [18] also uses an enumerative approach to perform an exhaustive 
search within a set of candidate matrices; refining the highest scoring matrices and 
erasing discovered motifs from the data iteratively. These methods cannot handle 
multiple clusters. 

We present a supervised learning approach to identify conserved discriminative 
motifs between multiple cohorts of genes. An enumerative method is used to model 
each gene individually based on the distribution of words in the sequence and distin-
guishing between words with different counts. Words (putative motifs) that do not 
contribute to the discrimination as measured by a feature selection method are itera-
tively dropped, resulting in a drastic reduction of the search space and number of can-
didate motifs. We show that the discriminative power of the identified motifs is  
increased by 15%-20% when comparative genomics information is incorporated into 
the algorithm. The design and implementation of the algorithm is specifically targeted 
to handle very large amounts of data.  



336 J. Kasturi, R. Acharya, and R. Hardison 

2   Methods 

Let K be the number of clusters into which the N input genes have been grouped 
based on gene expression or function similarity. Let S be the set of DNA sequences 
corresponding to the genes consisting of upstream, intron and downstream regions for 
each gene. The objective of the discriminative algorithm is to identify a small set of 
motifs or word patterns that can discriminate between these input gene clusters (Fig. 
1). For example, given a set of genes divided into an up-regulated cluster and a down-
regulated cluster, we are interested in identifying those motifs that discriminate  
between the two clusters thereby gaining a better understanding of their individual 
regulatory mechanisms. Once a relatively small set of putative motifs has been identi-
fied using computational means, they may be validated through appropriate in-vivo 
and in-vitro assays. 

Cl1
specific
motifs

Cl3
specific
motifs

Cl2
specific
motifs

Cluster1 Cluster2

Cluster3

W = {set of all words}

Candidate
discriminative
motifs

 

Fig. 1. Venn diagram showing candidate motifs to discriminate between 3 clusters 

2.1   The Mathematical Motif Model 

Let gene z correspond to a set of sequences (upstream, intron and downstream)  
denoted by sz; z = 1, 2, …, N. We use a string-based motif model that is capable of 
distinguishing between distinct words and their frequencies of occurrence. For a 
specified motif length l, the sequences are scanned using a sliding window of the cor-
responding size to obtain a list of all the word patterns. In defining the motif model, 
we distinguish between the terms token and word. A token is a DNA string pattern of 
specified length l. Let V={t1, t2, …., t|V|} denote the token vocabulary for the dataset. 
Given a sequence, the token ti may appear with frequency count n(ti) >= 0. Let the 
model parameter R (>= 1) denote the maximum frequency count considered by the 
model. The modified count xi for token ti is then given by 
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A word (potential motif) is then defined as the tuple(t, x) consisting of a token and its 
modified frequency, where t ∈ V and x ∈ X = {0,1,2,…,R}. Let Χ×⊂ VW  denote 
the set of all words (vocabulary of words) present in the dataset. Any given sequence 
sz may then be characterized using the word vocabulary as (sz

1, s
z
2, ….,sz

Nz); where 
sz

i∈W appears in the sequence (for i =1, 2, …, Nz). This representation of a word dis-
tinguishes between two or more clusters containing a common motif but differing in 
the exact number of occurrences in each of the clusters. Note that there is a word as-
sociated with a token not occurring within a gene sequence. Further, the model is in-
variant of the ordering of words within a sequence.  

This model differs from the more commonly used Multivariate Bernoulli (MB) and 
Multinomial (MN) models frequently used in the context of document analysis [8], in 
the characterization of a sequence, and the way in which probabilities are assigned. In 
the MB model, a sequence is represented as a vector of binary attributes obtained as 
the presence or absence of tokens in the sequence from the token vocabulary. The 
number of times a word occurs within a sequence is not captured. Observe that the MB 
model is a special case of the motif model described here for R = 1. On the other hand, 
the MN model represents a sequence as a vector of token occurrences (frequency 
counts). Only the words that are present within a sequence are utilized for analyses, 
ignoring words that are absent. In comparison, we define here a motif model that  
imposes an upper bound on the frequency count, but takes non-occurring tokens into  
account. Both the MB and MN models assign a single probability value to each token 
irrespective of its frequency count, with the probability for non-occurrence calculated 
by subtracting from unity the probability of occurrence. This is in sharp contrast to our 
motif model, which allows assignment of any probability values to (token, frequency 
count) pairs, i.e., different frequency counts for the same token can have probabilities 
not restricted by any imposing model (the MN model imposes such restrictions). The 
design rationale behind our motif model is to capture meaningful frequency count in-
formation and also to treat tokens with different frequency counts independently to 
achieve high classification accuracy using a small number of words/tokens. 

2.2   The Naïve Bayes Classifier 

Let the K clusters be represented by the random variable C taking values {c1, c2,…, 
cK}, with prior probabilities denoted by p(C1),  p(C2), …, p(CK). The Naïve Bayes 
model is generative in the sense that the word likelihood probabilities are first empiri-
cally estimated for each class using class prior probabilities and the dataset. It uses an 
easy to compute linear classifier to predict class membership for unknown sequences 
and has been shown to perform well in practice, especially suited to large datasets. 

The likelihood probability of a word given a class, p(wi|C) based on the m-estimate 

[10] is estimated as )|(|)()|( mCmpnCwp C
iji ++=  where jC

in denotes the number of 

sequences in class Cj with word wi occurring xi times; |C| is the total number of training 
examples in class Cj; p is the prior probability of words taken to be uniform = 1/|V|; 
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and m is a constant called the ‘equivalent sample size’ which determines how heavily 
to weight p relative to the observed data. Imposing the Naïve Bayes conditional  
independence assumption, the conditional probability of p(sz|Cj) is a product of the 
individual probabilities ∏==
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terior probabilities p(Cj|s
z) can be calculated by a simple application of the Bayes 

theorem. Given a new sequence s*, the classifier may be used in conjunction with the 
maximum a posteriori or MAP decision rule to assign it to a cluster.  
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The independence assumption applied on the predictor variables, although not always 
accurate, simplifies the classification task dramatically by allowing the class condi-
tional densities p(xk|Cj) to be calculated separately for each variable. In effect, Naive 
Bayes reduces a high-dimensional density estimation task to a one-dimensional kernel 
density estimation. The assumption does not seem to greatly affect the posterior prob-
abilities, especially in regions near decision boundaries, thus leaving the classification 
task unaffected. If higher order interactions were to be examined, such as with Bayes-
ian networks, the complete joint probability with size of vocabulary = |V|*(R+1), p(w1, 
w2, …, wn|Cj) has run-time exponential in the size of the vocabulary times the number 
of classes, O(|S||V| * |C|). This is impractical for interactions of more than order 3, im-
plying that it would be infeasible to identify CRMs with more than 3 combinatorial 
acting motifs. On the other hand, with the conditional independence assumption and 
assuming that the classification in independent of the positions of words (use same 
parameters for each position), the training time of the algorithm has order O(|S|LS + 
|C||V|) where LS is the average length of each sequence. Even when the number of  
sequences examined is small, their lengths are usually at least 1kb or higher for eu-
karyotes and the number of unique words is quite high. Combining the two DNA 
strand orientations usually reduces the vocabulary size by (1/3)rd, but is still higher than 
the number of sequences being examined. The test time for classification of new se-
quences takes O(|C|Lt) time, where Lt is the average length of the test sequence. 

2.3   Feature Selection to Identify Discriminative Cluster-Specific Motifs 

The number of distinct words can be very large (in the order of |V|*(R+l)) depending 
on the number of genes and sequence lengths, the maximum stored token frequency 
and the motif length. Though good classification performance can often be achieved by 
considering all the words or even a large number (~1000) of words, it is not useful in 
understanding the regulatory mechanism underlying the differences in the gene clus-
ters. Instead, we use a feature selection method to rank words by assigning scores to 
each word measuring its classification efficacy. The Mutual Information MI between 
two random variables measures the amount of information that the value of one vari-
able gives about the value of the other [4] and has been shown to perform well in text  
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mining contexts [8]. MI(X, Y) >= 0 and equality holds if and only if the random vari-
ables X and Y are independent of each other. Discriminative motifs are selected from 
amongst the words that contribute significantly to the entire clustering. For each 
word Ww∈ , a new random variable Y(w)={0,1} is defined to represent the occurrence 
or non-occurrence of a word. The probabilities are estimated from the data as p(y=1, 
Cj) = p(w, Cj) and p(y=1) = p(w); while p(y=0, Cj) = [1-p(w|Cj)]*p(Cj) and 

∑ === ),0()0( jj Cypyp . The Mutual information between Y(w) and C is then calcu-
lated as 
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2.4   Discriminative Algorithm 

We now describe the discriminative algorithm that identifies cluster-specific motifs as 
the over-represented words within each cluster, that is words that are useful in dis-
criminating a cluster from all the others. The mutual information feature selection 
criterion is used to score and sort all words in the vocabulary, the highest scores indi-
cating the most informative words. The algorithm (described in Table 1) identifies 
discriminative motifs by iteratively dropping the least significant words (with zero 
score or below a specified threshold). Next, the relative score for each word, to the 
observed maximum score (maxScore), is calculated as [(maxScore – current word 
score) * 100/maxScore]%. Words with relative scores below a certain threshold of 
λ% (initialized to some λ0) are removed from the complete word vocabulary W. If no 
word meets this condition indicating that the threshold is too stringent, the threshold 
is lowered by 5% and the removal step repeated. To avoid removing all the words in 
the vocabulary, user-defined value may be used to indicate the minimum number of 
words to be retained. The classifier is then re-trained using the new word vocabulary 
and the process repeated. The algorithm terminates when the desired number of dis-
criminative motifs or a certain performance threshold has been reached. 

Table 1. Algorithm to identify discriminative motifs 

For each word w in the word vocabulary W,
(the occurrence of each word taken to be independent {0,1,…,R})
1. Get word counts from the data sequences.
2. Obtain estimates for likelihood and posteriors.
3. Calculate scores MI(wi, Cj).
4. Drop words with the lowest scores.
5. Use the remaining words to define the set of candidate motifs.
6. Classify using Naïve Bayes classifier.
7. Calculate classification accuracy (%) on a set of test sequences (with known classes).

Repeat steps 2 to 7 until error = (100-accuracy) < (small) or a small number of candidate features or
motifs are obtained.  
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2.5   Constrained Enumeration Incorporating Sequence Conservation 

The availability of diverse genomic databases allows the integration of these data into 
the motif finding process. Comparative genomics information has been used in some 
motif finding algorithms [1], [9], with the premise that functional regulatory elements 
are often conserved over evolution, thereby showing up in highly conserved regions 
of the alignments. These algorithms use as input all of the multiple sequence align-
ments to calculate some kind of scoring to measure the extent of conservation among 
the sequences. The calculations of these scores are data intensive and time consum-
ing. DNA sequences do not change and can be considered a fixed data source, thereby 
eliminating the need to compute alignment scores dynamically within the motif find-
ing algorithm. Instead, the same information can be accessed through pre-computed 
sequence conservation scores such as ‘percent identity’ or more comprehensive 
measures such as the PHYLOHMM scores [15]. To incorporate this quantitative 
measure into the algorithm, the following general procedure is followed. 

Let Q denote any measure, such as conservation score for scoring the positions of a 
sequence, giving a higher score to regions of interest and a lower score to others. This 
information is incorporated into the motif finding process by considering sequence 
positions above a high preset threshold τ when scanning a sequence to extract tokens, 
Q > τ . This constrains the enumeration of words, thereby influencing the likelihood 
probabilities based on the score information. The rest of the motif finding procedure 
remains the same.  

2.6   Scalability and Implementation  

Motif finding for higher eukaryotes like rodents and humans is a significantly greater 
challenge than for yeast or bacterial genomes in that transcription factor binding sites 
may be present at any distance from the transcription start site. Typically we will use 
a threshold of 3000bp to restrict the length of upstream and downstream sequences, 
but retain the complete intron sequences. The current implementation of the algorithm 
is designed to handle vast amounts of data - large number of genes and long se-
quences. The software is written in Java and connects to a MySQL database for input 
data and runtime storage. The PhyloHMM scores for the mouse genome require ap-
proximately 70GB of disk space. A typical run to enumerate about 360 genes with 
4363 sequences (sequence lengths around 100kb) takes approximately 5 minutes 
without conservation and 15 minutes with conservation on an AMD Athlon XP 3000+ 
power with 1GB RAM. 

3   Experimental Data and Results 

3.1   Motif Assessment Data 

The performance of our discriminative algorithm is assessed using benchmark data 
for mouse comparing the results with 13 other computational motif-finding tools [20]. 
The data consists of a total of 36 datasets with real binding sites from TRANSFAC 
planted within the sequences at their known positions and orientations, each dataset  
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consisting of one of three different types (12 datasets each) of background sequence 
namely (i)binding sites from real promoter sequences (called ‘real’), (ii)randomly 
chosen promoter sequences from the same genome (called ‘generic’), and 
(iii)sequences generated by a Markov chain of order 3 (called ‘markov’). The predic-
tion of only a single motif was allowed to be used in the comparisons for each dataset, 
using various statistical measures (nSn, nPPV, nPC, nCC, sSn, sPPV, and sASP) to 
assess the correctness of the predictions by comparing them with known binding sites 
(see [20] for more details). It was shown that the removal of the ‘real’ datasets re-
sulted in an improvement in performance for nearly all the tools, with YMF being the 
most affected, while MotifSampler was the only tool to perform relatively better on 
the ‘real’ datasets than on the others, all species combined. 

Discriminative motifs were predicted using the proposed algorithm using a set of 
background sequences generated from a third-order markov chain calculated with all 
the non-coding regions of the mouse genome as the second cluster. Three trials were 
performed for each dataset changing the background sequences. Fig. 2A summarizes 
the results obtained for all mouse data taken together and Fig. 2B compares the corre-
lation measure nCC for each data type individually. Our method outperforms all the 
other tools on ‘real’ data with an nCC value of 0.114 (with nSN = 99) compared to 
the highest values of 0.1 and 0.08 (nSN = 50 and 34) achieved by MEME and 
MEME3 respectively and MotifSampler (nSN = 9) having a low negative value, indi-
cating that it does not perform well on ‘real’ mouse data. Results on the ‘generic’ and 
‘markov’ datasets could be poor due to the fact that the number of sequences within 
which to search for motifs is too few and the markov model probabilities were based 
on all noncoding sequences from the mouse genome rather than restricting it to use a 
maximum of 3000bp upstream of genes as was used to create the data. Hence, cluster 
discrimination is a better way to find motifs rather than relative over-representation 
over background, clearly sensitive to the model used to generate background  
sequences.  
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Fig. 2. Statistical measures of accuracy of the tools on the mouse benchmark data comparing 13 
motif finding algorithms (MEME and MEME3 are considered one method with different pa-
rameters) (A) Combined measures of correctness over all 36 datasets for mouse. (B) Combined 
Correlation Coefficient (nCC) by data type. 
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3.2   Erythroid Differentiation in Mouse 

The performance of the discriminative motif finding algorithm on real data is demon-
strated using gene expression data of mouse genes studied with a late erythroid matu-
ration model using the G1E line of Gata1-null cells, which are blocked at the  
proerythroblast stage because of the absence of the Gata1 transcription factor. The 
expression levels of over 9000 genes were measured at 6 time points after the restora-
tion of Gata-1 [21], available via NCBI Gene Expression Omnibus database (acces-
sion GSE628). Genes were classified as being either up or down-regulated indicating 
that Gata-1 is important in gene repression as well as in the activation of a large num-
ber of genes. Two representative gene clusters (down and up-regulated) were picked 
after first clustering data using the kmeans algorithm with Pearson correlation dis-
tance to measure gene expression similarity. The chosen clusters are referred to as 
cluster1 and cluster2 respectively. 

Many genes known to be induced by Gata-1 were present in the up-regulated group 
such as Alas2, Fog1, Vav2, Hbb-b1 and Hbb-b2. The Gata2 gene was down-regulated 
during maturation. The discriminative motif finding algorithm was used to identify tran-
scription factors other than Gata-1, which may be responsible for the directional 
changes in expression levels. Repeat masked sequences from mm5 were used in the 
motif analysis comprised, taking as input all non-coding regions in and around genes 
(including UTRs and introns) and regions 3000bp flanking the gene upstream and 
downstream, gene positions as given by the KnownGenes table (UCSC table browser). 
Replicated genes (those for which the same Genbank Accession number was repeated in 
the KnownGenes table) were removed from the analysis and genes with overlapping 
positions were collapsed into a single gene complex. An examination of the distribution 
of sequence lengths showed a large amount of variability in the lengths of the introns, 
with the longest intron being approximately 12x104 bp in length. It is important to note 
that existing motif finding tools cannot handle such large sequences.  

The discriminative algorithm was used identify motifs specific to the up and down-
regulated clusters, and classification performance compared for varying word lengths 
(l = 4, 6, and 8bp), and maximum word count, R from 1 to 10. Fig. 3 shows results 
obtained comparing classification accuracy with and without the use of conservation 
information using all words in W. For small values of R, shorter words (length l = 4) 
produce lowest classification accuracy ranging from 56% to 65% shown in Fig. 3A. 
Since the number of tokens occurring in the sequences (a sequence of length L has L-
l+1 tokens) is large, there are many more common tokens between the sequences 
thereby producing less discrimination between the clusters. However as the word 
length increases (l=8) the number of tokens occurring in the sequences is fewer and 
classification accuracy is slightly better ranging from 60% to 65%. Although there are 
48 possible distinct tokens that can be present we typically do not see so many in prac-
tice. The special case of our model when R=1 is the Multivariate Bernoulli model 
with lowest classification performance for all word lengths – 55% to 62%. Increasing 
the maximum word occurrence count, R from 10 to 50 resulted in a steady improve-
ment in the classification performance of about 88% for any word length approximat-
ing the multinomial model, but resulting in an extremely large number of words 
|V|*(l+1). 
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Fig. 3(left) and Fig. 4 (right). Classification accuracy of genes using the entire set of words 
(W) varying word length and maximum word count. (A)Unconstrained enumeration. (B) Con-
strained using conservation score threshold 0.7. (C) Constrained using conservation score 
threshold 0.8. 

The use of multiple species sequence conservation in motif identification is evalu-
ated next. We compare results with the constrained enumeration of words using 
thresholds 0.7 and 0.8 for PhyloHMM conservation scores for word lengths 4, 6 and 8 
and varying R shown in Fig. 3B and C. A significant improvement by approximately 
5% in classification accuracy is seen for word lengths 4 and 6, and nearly 20% for 
word length 8, for the worst case accuracy case (for R=1). As R increases, the accu-
racy is 90% for only R=10 when sequence conservation is used, while without con-
servation the maximum accuracy of 88% was achieved for R=50, clearly showing the 
sensitivity and performance quality of our word occurrence model. Even for a small 
word length of 4, the use of conservation scores achieves significant accuracy as the 
maximum word count increases. For word lengths 4 and 8 we observe that there is a 
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slight improvement in performance when a higher sequence conservation score 
threshold is used, while a word length of 6 has a reduction in accuracy from 84% to 
78%. Using too few words for classification causes the reduction in accuracy. The 
same trend is observed when conservation information is used. 

The effect of dropping words using the Mutual Information feature selection score 
is examined next. Fig. 4 shows that when words are dropped from 100% of the word 
vocabulary, W to 0.01% for a few word lengths and specific values of R the general 
trend is for the classification accuracy to increase significantly by steadily dropping 
words reaching a maximum value and then with a sharp drop when the number of 
words used for classification is further reduced. For example, for word length 8 and 
R=7, dropping 90% of the words (263160 distinct words) to 0.1% of words (263 dis-
tinct words) there is an improvement in accuracy of 15% from 75.28% to 90.28%.  

Final motifs were returned for the top 50 scoring words. Typically, binding site  
sequences are variable, such that several words in the enumerative vocabulary may 
correspond to a single binding site. To consolidate the final list of motifs obtained and 
account for some of this variability, words differing in two or less positions were col-
lapsed into a single unique motif (predicted binding site). For this, the similarity  
between every pair of words is required to be calculated, introducing the concept of a 
distance between words. The Hamming distance is one such measure of similarity 
between two strings, where it is calculated as “the number of positions in which the 
two strings differ, i.e., have different characters”. This distance can be calculated only 
for strings of equal length. A more general and sophisticated measure of distance be-
tween strings is the Levenshtein distance and is defined for strings of arbitrary length. 
It counts the differences between two strings, where differences are counted not only 
when strings have different characters but also when one has a character whereas the 
other does not. The Levenshtein distance is what we use here to consolidate the final 
set of 50 words into a set of predicted motifs as listed here. Variable words are con-
solidated with other words only if they have equal word occurrence counts (described 
in the motif model). The consolidated motif is represented using the IUPAC nomen-
clature for nucleic acid representation. 

The list of consolidated motifs is then matched against a list of known sites in hu-
man promoters [22] and shown in the following series of tables. Each consolidated 
motif is listed along with the motif for the matched known sites, the transcription fac-
tor to which it is known to bind, the word occurrence count, the corresponding mutual 
information score and the cluster for which the motif is discriminative. Table 2 lists 
the “most” discriminative motifs obtained using the discriminative algorithm with 
dropping words and without the use of conservation information. Tables 3 and 4 list 
the best set of motifs predicted when conservation information is incorporated into the 
feature selection model with conservation score (phylohmm) thresholds of 0.7 and 0.8 
respectively. Conservation scores are based on mouse-centric multiple sequence 
alignments of human, mouse, rat and dog. 

Several interesting aspects of the data emerge from the results of discriminative 
analysis. GATA1, which is a known transcription factor involved in erythroid differ-
entiation and based on the experimental design, is most likely present in sequences of 
all genes irrespective of their cluster membership, is not identified. Clearly this bind-
ing site is not a candidate for discrimination between clusters and hence not detected 
by the algorithm. It can be observed that the integration of conservation information  
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Table 2. Discriminative Motifs without conservation 

Factor
Known Site in
Human

Predicted Site WordCount MI score 
Discrimative
for cluster

GABP vCCGGAAGnGCR CGGAAG 8 0.013196443 1
NCX GTAAKTnG GTAAAT 1 0.02081526 2
TBP TATAAATW GCTATAAA 5 0.0053224904 2

AREB6
WCAGGTGWnW,
AbWCAGGTRnR

TCAGGTAA 5 0.0053224904 2

BACH2 SRTGAGTCAnC TAGAGTCA 5 0.0053224904 2

NF-AT WGGAAAnW
AGGAAA,
CGGAAG

6, 8 
0.010588359,
0.013196443

2, 1 

CAC-BP GRGGSTGGG GGAGGTGG 6 0.008171844 2

LEF1 CTTTGA
CATTGA,
CGTTGA

9, 6 
0.0082450025,
0.007071697

1

MYC SCACGTG CATGTG 8 0.00951042 1
MYOD RnCAGGTG CATGTG 8 0.00951042 1
AP-4 GCAGCTGnY CATGTG 8 0.00951042 1
SREBP-1 ATCACGTGAY CATGTG 8 0.00951042 1

STAT5A,IY
AWTTCY,
AWTTTCC

ATTTAC 8 0.02081526 2

AP-1, ATF-1
CTGASTCA,
TGACGTCARRG

TAGAGTCA 5 0.0053224904 2

MAZ GGGGAGGG GGGAGGAT 4 0.0053224904 2
TAL-,
ALPHA/E47

AACAGATGKT CCAGATGT 5 0.0053224904 2
 

Table 3. Discriminative Motifs with conservation score threshold 0.7 

Factor
Known Site 
in Human

Predicted Site 
Word
Count

MI score
Discrimative
for cluster

NCX GTAAKTnG TGTAATTT 2 0.007647609 1

AP-4 GCAGCTGnY
CGAGCTGC
CAGCTG

1
2

0.0117140515
0.0024077317

1
1

PU.1 WGAGGAAG GAAGGAAG 2 0.019509021 2
FOXO1 RWAAACAA CTAAACAG 1 0.0068486626 1
SF-1 TGRCCTTG GACCTT 2 3.2390753E-6 2
MYOD RnCAGGTG GAGGTG 5 0.0024077317 1

AREB6
WCAGGTGWnW
AbWCAGGTRnR

GAGGTG 5 0.0024077317 1
 

causes a smaller number of identified putative regulatory motifs to be matched with 
the list of “known binding sites” and with fewer word occurrence counts, when com-
pared to the case where this data is not used in the analysis. It is generally believed 
that most “real” binding sites (TFBS) do not occur with high frequency within the 
gene’s non- coding sequence regions. It does appear to clearly indicate from our  
results that the addition of comparative genomics data causes a fewer number of false 
positives to be identified, keeping in mind the methods used to create the consensus 
sites and match with the “known sites” list.  
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Table 4. Discriminative Motifs with conservation score threshold 0.8 

Factor
Known Site 
in Human

Predicted Site 
Word
Count

MI score
Discrimative
 for cluster

NCX GTAAKTnG
GTAATTTT
GTAATT

1
2

0.010752671
0.004678426

1
1

TBP TATAAATW GGTATAAA 1 0.009876572 1
AML1 ACCACA ACCACA 3 0.0043065688 2
POU6F1 GCATAAWTTAT ATTTAT 10 0.0049973438 1
DBP GTdTGCT TTTGCT 5 0.0047480455 2
CAC-BP GRGGSTGGG GGGTGG 4 0.0047480455 2

AP-4 GCAGCTGnY
CGAGCTGC
CTAGCTGC

1
1

0.008132085
0.0072640753

1
1

NF-AT WGGAAAnW TGTAAA 10 0.0049973438 1
LEF1 CTTTGA CTTTGT 4 0.0049973438 1
ER RnnnTGACCT GGACCT 2 0.004978211 1
STAT5A
IY

AWTTCY
AWTTTCC

GATTTC 1 0.00625898 2

TCF-4 WTCAAAGS ACAAAG 4 0.0049973438 1
HNF-1 GGTTAATnWTTAMC GTTA 6 0.003968242 1

 

There is only one predicted motif GTAAAT that matches the site for transcription 
factor NCX that is present in the list with a word occurrence count of 1 and is dis-
criminative for the up-regulated cluster, cluster 2. Another NCX binding motif 
GTAATTTT is also identified when conservation information is used, but is however 
discriminative for the down-regulated cluster, cluster1. Literature indicates that NCX 
gene or neural crest homeobox, encodes a homeobox containing transcription factor 
that belongs to the Hox11 gene family, is involved in the activation of genes, and has 
been associated with diseases such as T-cell leukemia and Neuroblastoma. AP-4 or 
TFAP4 is another factor identified in all three results. This is a transcription factor of 
the basic helix-loop-helix-zipper (bHLH-ZIP) family contain a basic domain, which is 
used for DNA binding, and HLH and ZIP domains, which are used for oligomeriza-
tion. Transcription factor AP4 activates both viral and cellular genes by binding to the 
symmetrical DNA sequence CAGCTG. Comparing the predicted motif within the 
three tables, it can be observed that the motifs CGAGCTGC and CTAGCTGC ob-
tained when using conservation information are more similar to the known site in hu-
man with motif GCAGCTGnY when compared to that identified without the use of 
conservation scores – namely CATGTG. AP4 is also known to have functional inter-
action with AP-1 (a factor also identified by our algorithm).  

Comparing results with and without sequence conservation, we see that factors 
AREB6 and MYOD are also identified at a conservation score threshold of 0.7, while 
TBP, NA-AT, and LEF1 are identified with a threshold of 0.8 implying higher degree 
of conservation over evolution. It is also interesting to see that some motifs that are 
discovered when conservation at a threshold value of 0.8 is used, such as AML1 and 
SF-1 do not appear in the motifs when conservation is not used. AML1 or runt-related 
transcription factor 1, RUNX1 is known to be associated with leukemia or as the 
name suggests, acute myeloid leukemia. The integration of conservation into the 
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analysis predicts many other interesting binding sites such as PU1, SF-1, and AML1 
related to up-regulated genes while FOXO1, POU6F1, DBP, CAC-BP, ER, IY,  
TCF-4 and HNF-1 are associated with the down-regulated genes.  

4   Conclusion 

A new motif-finding algorithm is presented for multi-class discrimination. The motif 
model takes into account the frequency of token occurrence in individual sequences 
allowing for a very sensitive categorization of sequence clusters. Discriminative mo-
tifs are identified using an information-theoretic feature selection strategy and their 
prediction power examined with a supervised classifier. The algorithm is defined 
within a generic framework that allows the easy integration of additional genomic 
data, showing that comparative genomics information can be used to validate and 
evaluate the performance of the identified motifs. Results on benchmark and real data 
demonstrate the performance of our method in identifying true motifs. We have also 
provided strong empirical evidence to show that comparative genomics significantly 
improves the classification accuracy and achieves superior motif discovery.  
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Abstract. The detection of reliable biomarkers is a major research ac-
tivity within the field of proteomics. A biomarker can be a single molecule
or set of molecules that can be used to differentiate between normal and
diseased states. This paper describes our methods to develop a reliable,
automated method of detecting abnormal metabolite profiles from uri-
nary organic acids. These metabolic profiles are used to detect Inborn
Errors of Metabolism (IEM) in infants, which are inherited diseases re-
sulting from alterations in genes that code for enzymes. The detection of
abnormal metabolic profiles is usually accomplished through manual in-
spection of the chromatograms by medical experts. The chromatograms
are derived by a method called Gas Chromatography Mass Spectrom-
etry (GC-MS). This combined technique is used to identify presence of
different substances in a given sample. Using GC/MS analysis of the
urine sample of the patient, the medical experts are able to identify the
presence of metabolites which are a result of an IEM.

1 Introduction

The recent advances in bio-medical screening technologies has enabled the de-
velopment of the so-called “omics” fields, such as genomics (the study of genes
sequences and their regulatory mechanisms); transcriptomics (RNA and gene ex-
pression); proteomics (protein expression) and metabolomics (metabolites and
metabolic networks). In this paper we are primarily concerned with the gener-
ation and analysis of metabolomic data for the early diagnosis of disease. The
motivation to diagnose disease states through the use of a non-invasive tech-
nique (avoids the need for surgery) such as profiling blood or urine samples
for their metabolic contents is highly attractive and desirable. It is evident that
metabolomics reflects the operation of the cell since each metabolite is the result
of a bio-chemical process.

The main idea behind metabolic profiling is the identification of unique signal
peaks to differentiate between two or more groups such as normal and diseased
samples. Each peak represents the presence of a metabolite and the expectation
is that the presence/absence of certain peaks is indicative between the groups.
Although, the search for such biomarkers is highly motivated, there are many
difficulties; most studies are performed on small sample sizes (20-100 samples)
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and contain complex mixtures of metabolites common to all samples. Further-
more the small sample sizes often lead to the “curse of dimensionality” problem
so often encountered in computational statistics and machine learning [1].

The study reported in this paper is concerned with the identification of inborn
errors of metabolism in infants. The errors are due to a faulty gene that encodes
an enzyme which translates or transports a biological product into another [2]. A
given IEM (there are several) will lead to a build up of a particular product which
is invariably toxic [3]. Early detection of such conditions is critical since they
lead to a number of highly delibating conditions symptoms in babies from poor
feeding, vomiting and in older children can lead to autism, learning difficulties
and mental retardation. Many IEM’s can be treated with drugs and special diets.
Fortunately, such conditions are rare, the occurrences of each IEM vary but
perhaps they affect 1 in 5,000 individuals. GC-MS was first applied to identify
diagnostic marker for IEMs by Tanaka [4]. Since then GC-MS has been widely
used for separation of complex biological mixtures and identification of their
components, and has greatly contributed to the study and characterizations of
IEM’s [5,6,7].

The aim of this work is to develop a hybrid intelligent system using various
pattern recognition and machine learning algorithms which could potentially
identify all known IEMs and also be able to state whether a given sample is
normal i.e. all metabolite profiles present in the sample are results of a nor-
mal metabolism or if the sample has any abnormal metabolites present in it
which could then be further analysed by medical experts to see if the abnormal
metabolites are the cause of the problems in the patient.

The remainder of this is paper is structured as follows; section two discusses
GC-MS data issues and biomarker detection; section three describes the data
preprocessing issues specific to GC-MS problems and the computational tech-
niques we use; section four presents related work; section five highlights the
experimental setup and our results; finally section six presents the conclusions.

2 GC-MS Data Issues and Biomarker Detection

Metabolomics is one of the most promising technologies developed so far for the
analysis of living systems. It is essentially a two-stage process with the GC (Gas
Chromatography) stage using a capillary column to separate the molecules, this
depends on time according to the molecular weight detecting the time at which
a metabolite is released (retention time) and its relative abundance appearance).
[8]. At the next we use the MS (Mass-Spectrometer) which breaks each molecule
down into a set of fragments (peptides), each one has set of mass/charge ratios
in which the peaks correspond to the chemical composition of the metabolites,
which enables identification [9,10,11]. Combining the GC data with the MS data
prevents metabolite identification problems which can often occur when the us-
ing GC or MS separately. GC-MS equipment is now a popular choice in many labs
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Fig. 1. The stages of biomarker detection (from Smit 2008)

worldwide because their cost have fallen in recent years but their accuracy and
reliability has increased.

Irrespective of the hypernated mass spectra techniques used e.g. GC-MS,
HPLC, CE-MS, or LC-MS they all suffer from the same difficulties. The main
problem is the “curse of dimensionality” [12]. GC-MS is considered as one of the
best available methods for forensic substance identification, but the data which
is generated is one of very high dimensionality. Fortunately, there is a great deal
of redundancy which can be partly managed by data reduction methods such as
PCA and ICA. Automated analysis of this data for presence of metabolites is
difficult because of this high-dimensionality and other complexities of the data;
therefore the search for reliable biomarkers is of great importance [13,14]. A
typical workflow model is presented in figure 1, here several stages are required,
with data preprocessing playing a major part [15].

As with most data mining endeavors, the data cleansing and preprocessing
stage consumes the majority of the effort [16]. Furthermore, if mass-spectra
data are to be analysed, then considerable care must be taken to align the
spectrograms [17,18]. This was not an issue in the study described in this pa-
per, as the authors are dealing only with the GC-chromatograms, although
they are similar visually, in the sense they are peaks displayed against time
[19].

In table 1, some of the inborn errors of metabolism are presented (IEM).
The first column is the chemical abbreviation of the disorder, the second column
indicates a biomarker typically associated with its presence and the third column
describes the symptoms if the error goes unrecognised and untreated.
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Table 1. Diagnostic biomarkers for inborn errors of metabolism

IEM Diagnostic Biomarker Symptoms if untreated

PKU Phenylalanine hydroxylase - PHE mental retardation, autistic behavior

MCADD medium chain acyl CoA dehydrogenase - C8 fasting intolerance, hypoglycemia

3-MCCD 3-Methylcrotonyl CoA carboxylase deficiency metabolic acidosis and hypoglycemia

SCAD short-chain acyl-Coa dehydrogenase austic behaviour, mental retardation,
impairment of neurophysical development
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Fig. 2. GCMS Normal total chromatogram

3 Data Preprocessing and Analysis

The data were generated by a Agilent 6890N GC coupled to a mass selective
detector and an Agilent ChemStation was used. Helium was used as carrier gas
with an average linear velocity of 37cm/s. Inlet pressure was 8.44 psi. The injector
split ratio was set to 1:40. Injector and interface temperatures were set 265C and
300C respectively. Samples were analysed using temperature programming (4min
isothermal at 65C, 6C/min to 275C followed by 2min isotheraml at 275C). The
mass spectra were acquired over the range 40-550 m/z at 3scans/min. The total
run time was 38 min. The data set is composed of 22 normal samples and 13
abnormal samples and is in the netCDF le format. The data were converted from
netCDF format into Matlab structures using the SNCTools package.

Principal components analysis (PCA), is useful in high-throughput proteomics
experiments because of the intrinsic redundancy of the data. PCA involves the
transformation of the original dataset into a smaller subset with fewer variables
that are uncorrelated. The principal components identify where the maximum
variance of the data occurs, each component is an axis in multidimensional space.

Equation 1 describes the first principal component of the data, y1 is the linear
combination.

y1 = a11x1 + a12x2 + ... + a1pxp (1)
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Equation 2 describes the second principal component of the data, and the
variance is constrained by a

′
2x which ensures that y1 and y2 are uncorrelated.

y2 = a21x1 + a22x2 + ... + a2pxp = a
′
2x (2)

Prior to using PCA, we normalised the data by dividing each variable by its
standard deviation. Normalisation is usually good practice, it is essential in this
application because the variances of the raw data are considerable.

We used the princomp function from the Matlab statistics toolbox to process
the data from the original 34 (samples) x 5221 (data elements) to 34 x 20 matrix.
Figure 4 shows the Pareto chart with a scree plot of the percent variability ex-
plained by each principal component, for the first 10 principal components. The
1st component accounts for only 18% of the variance, and the next 9 components
each account for perhaps 10-6% of the remaining variation.

Plotting the two main principal components, as shown in figure 5, we obtain
the familiar horseshoe shape. The biplot function can help to visualize both the
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Fig. 7. K-means clustering with three
clusters

principal component coefficients for each variable and the principal component
scores for each observation in a unified diagram [20]. The length of the lines indi-
cates the variances of the corresponding components and the angles between them
show the size of their correlations i.e. small angles indicate high correlations.

K-means clustering was used to test the degree of discriminability between
two classes (normal and abnormal), the 34 samples with 20 principal components
were clustered as shown in figure 6. This shows the grouping for two clusters,
which is the naturally occurring partition for our data set. We were interested
in the groupings that would be formed and if each sample would be correctly
allocated to the appropriate cluster. K-means clustering is a partitioning method,
which operates by partitioning the objects into K mutually exclusive clusters,
such that objects within each cluster are as close to each other as possible, and
as far from objects in other clusters as possible.

The objective of K-means clustering is to divide the data into k groups so
that the within group sum-of-squares is minimized[21]. The number of clusters
used must be chosen in advance. We define the within-group data matrix by:

SW =
1
n

g
∑

j=1

n
∑

i=1

Iij(xi − xj)T (3)

Where: Iij is unity when xi belongs to group j and zero if not, g is the number
of clusters. The sum of the diagonal elements SW to be minimized is given by
SW =

∑

SWij .

Table 2. False Positive and True Positive rates for K-means clustering (2 clusters)

Abnormal TP Abnormal FP Normal FP Normal TP
1, 3, 4, 6, 7 15, 18, 20 21 1, 2, 5, 8 14, 16, 17, 19, 22, 23, 24, 25
9, 10, 11 12, 13 26, 27, 28, 29, 30, 31, 32, 33
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Figure 7 shows the grouping for three clusters, it was originally thought that
the misgrouped data may reside in a separate cluster. However, in both cases, a
number of samples were wrongly allocated.

In table 2, we can see that certain samples were allocated to the wrong clusters.
We tried two and three clusters, two clusters is the natural grouping for this data.

4 Model Building and Experimental Results

The initial data analysis and preprocessing appeared encouraging and confirmed
that it would be worthwhile to build a classifier model to detect the difference
between normal and abnormal samples. From a biological and data mining view-
point, the most satisfying models are produced by decision trees. The decision
tree method is to divide the available data using the class labels into mutually
disjoint sets. During the training process, hyperplanes (decision boundaries or
surfaces) are generated based upon these data-class tuples, hyperplanes (nodes)
are continually added until all of the training data is accounted for.

Structurally, the completed tree is composed of leaf nodes, which correspond
to important variables where numerical tests are made, the final terminal nodes
correspond to the class labels. The main advantage of the decision tree model
is its transparency, it is very easy to see how each class is defined in terms of
the variables used and numerical tests made. The training algorithms (there are
several) generally use information theory or some form of entropy calculation
which tests all the variables for their information bearing potential, thus the
first node (variable) is the most important, followed by tests on the remaining
variables. The tree is easily converted into rules for use in an expert system.

We developed a decision tree model using 10-fold crossover validation to com-
pute the cost vector. This process partitions the sample into 10 subsamples,
each chosen randomly, however with roughly equal size. The decision trees, also
have the subsamples in approximately the same class proportions. The Matlab
function treefit was used, and for each subsample, a tree was fitted to the

Normal

Normal

Abnormal Normal

   x1 < −8.61245

   x2 < 21.2248

   x6 < 30.9197

Fig. 8. Decision tree constructed with PC components
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remaining data and then used to predict the subsample. This information is
then pooled from all subsamples to compute the cost for the entire sample. The
final tree is shown in figure 8.

The results of the cross-validation are shown in figure 9, here the cost (mis-
classification error) is displayed against the number of nodes used within the dif-
ferent models developed. The optimum, model used three nodes and was 100%
accurate.

5 Related Work

A statistical model based on linear regression, augmented by expert rules, was
demonstrated by Baumgartner et al to have highly accurate classification rate
in terms of sensitivity (>95.2%) and a very low false positive identification rate
(0.001%) [22]. This research did show that regression could potentially be used
to identify the disorders very accurately but their method was employed on
a database of already quantified metabolites detected using Modern Tandem
Mass Spectrometry (MS/MS). Further work by Baumgartner et al involved the
development of a biomarker identification algorithm which improved the dis-
criminatory powers of their earlier regression model [23].

6 Conclusions

The exploratory analysis conducted has revealed for this particular IEM, that the
abnormal sample were extreme cases and thus easy to differentiate from the nor-
mal samples. The initial analysis using k-means clustering, had an accuracy of
77% in determing, for a two class problem how the data should be divided. The
more sophisticated decision tree model was very accurate at 100%, however, we
expect this to drop as more IEM’s are introduced into the model. Future work
will involve the collection of more data from normal and abnormal sources. The
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difficulties, for data collection arise from the rarity of the abnormal cases. The in-
tention is to build into our model more IEM’s to enable a methodology for fast,
automated screening.

Acknowledgments

We wish to thank the developers of the Matlab SNC Tools package.

References

1. Humphrey-Smith, I., Dracup, W.: The search for validated biomarkers in the face
of biosystems complexity. Drug Discovery World, 49–56 (Spring 2005)

2. Kumps, A., Duez, P., Mardens, Y.: Metabolic, nutritional, latrogenic, and arti-
factual sources of urinary organic acids: a comprehensive table. Clinical Chem-
istry 48(5), 708–717 (2002)

3. Chu, C., Xiao, X., Zhou, X., Lau, T., Rogers, M., Fok, T., Law, L., Pang, C.,
Wang, C.: Metabolomic and bioinformatic analyses in asphyxiated neonates. Clin-
ical Biochemistry 39, 203–209 (2006)

4. Tanaka, K., Budd, M., Efron, M., Isselbacher, K.: Isovaleric acidemia: a new genetic
defect of leucine metabolism. Proc. Natl. Acad. Sci. USA 56(1), 236–242 (1966)

5. Kimura, M., Yamamoto, T., Yamaguchi, S.: Automated metabolic profiling and
interpretation of GC/MS data for organic acidemia screening: a personal computer-
based system. Journal of Experimental Medicine 188, 317–334 (1999)

6. Halket, J., Przyborowska, A., Stein, S., Mallard, W., Down, S., Chalmers, R.: De-
convolution gas chromatography/mass spectrometery of urinary organic acids -
potential for pattern recognition and automated identification of metabolic disor-
ders. Rapid Communications in Mass Spectrometry 13, 279–284 (1999)

7. Ho, S., Lukacs, Z., Hoffmann, G., Linder, M., Wetter, T.: Feature construction can
improve diagnostic criteria for high-dimensional metabolic data in newborn screen-
ing for medium-chain acyl-coa dehydrogenase deficiency. Clinical Chemistry 53(7),
1330–1337 (2007)

8. Duran, A., Wang, L., Yng, J., Sumner, L.: Metabolomics spectral formatting, align-
ment and conversion tools MSFACTS. Bioinformatics 19(17), 2283–2293 (2003)

9. Hanson, M., Andersen, B., Smedsgaard, J.: Automated and unbiased classifica-
tion of chemical profiles from fungi using high performance liquid chromatograph.
Journal of Microbiological Methods 61, 295–304 (2005)

10. Guillo, C., Barlow, D., Perrett, D., Hanna-Brown, M.: Micellar electrokinetic cap-
illary chromatography and data alignment analysis: a new tool in urine profiling.
Journal of Chromatography A 1027, 203–212 (2004)

11. Baran, R., Kochi, H., Saito, N., Suematsu, M., Soga, T., Nishioka, T., Robert, M.,
Tomita, M.: MathDAMP: a package for differential analysis of metabolite profile.
BMC Bioinformatics 7, 1–9 (2006)

12. Broadhurst, D., Kell, D.: Statistical strategies for avoiding false discoveries in
metabolomics and related experiments. Metabolomics 2(4), 171–196 (2006)

13. Damian, D., Oresic, M., Verheij, E., Meulman, J., Friedman, J., Adourian, A.,
Morel, N., Smilde, A., Van Der Greef, J.: Applications of a new subspace clustering
algorithm (COSA) in medical systems biology. Metabolomics 3(1), 69–77 (2007)



358 K. McGarry, K. Bartlett, and M. Pourfarzam

14. Goodacre, R., Vaidyanathan, S., Dunn, W., Harrigan, G., Kell, D.: Metabolomics
by numbers: acquiring and understanding global metabolite data. TRENDS in
Biotechnology 22(5), 245–252 (2004)

15. Smit, S., Hoefsloot, H., Smilde, A.: Statistical data processing in clinical pro-
teomics. Journal of Chromatography B866(1-2), 77–88 (2008)

16. Obuchowshi, N., Lieber, M., Wians, F.: ROC curves in /it Clinical Chemistry:
uses, misuses, and possible solutions. Clinical Chesmitry 50(7), 118–1125 (2004)

17. Leibermeister, W., Klipp, E.: Bringing metabolic networks to life: integration of
kinetic, metabolic and proteomic data. Theoretical Biology and Medical Mod-
elling 42(3), 1–15 (2006)

18. Yeang, C., Vingron, M.: A joint model of regulatory and metabolic networks. BMC
Bioinformatics 332(7), 1–5 (2006)

19. Hilario, M., Kalousis, A., Prados, J., Binz, P.: Data mining for mass spectra-based
cancer diagnosis and biomarker discovery. Drug Discovery Today 2(5), 214–222
(2004)

20. Gower, J., Hand, D.: Biplots. Chapman and Hall, London (1996)
21. Martinez, W., Martinez, A.: Exploratory data analysis with Matlab. Chapman and

Hall, New York (2000)
22. Baumgartner, C., Bohm, C., Baumgartner, D.: Modelling of classification rules on

metabolic patterns including machine learning and expert knowledge. Journal of
Biomedical Informatics 38(2), 89–98 (2005)

23. Baumgartner, C., Baumgartner, D.: Biomarker discovery, disease classification, and
similarity query processing on high-throughput MS/MS data of inborn errors of
metabolism. Journal of Biomolecular Screening 11(1), 90–99 (2006)



M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 359–372, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Multi-relational Data Mining for Tetratricopeptide 
Repeats (TPR)-Like Superfamily Members in Leishmania 

spp.: Acting-by-Connecting Proteins 

Karen T. Girão, Fátima C.E. Oliveira, Kaio M. Farias, Italo M.C. Maia,  
Samara C. Silva, Carla R.F. Gadelha, Laura D.G. Carneiro, Ana C.L. Pacheco,  
Michel T. Kamimura, Michely C. Diniz, Maria C. Silva, and Diana M. Oliveira 

Núcleo Tarcisio Pimenta de Pesquisa Genômica e Bioinformática – NUGEN, Faculdade de 
Veterinária, Universidade Estadual do Ceara – UECE, Av. Paranjana, 1700 – Campus do 

Itaperi, Fortaleza, CE 60740-000 Brazil 
diana.magalhaes@uece.br 

Abstract. The multi-relational data mining (MRDM) approach looks for 
patterns that involve multiple tables from a relational database made of 
complex/structured objects whose normalized representation does require 
multiple tables. We have applied MRDM methods (relational association rule 
discovery and probabilistic relational models) with hidden Markov models 
(HMMs) and Viterbi algorithm (VA) to mine tetratricopeptide repeat (TPR), 
pentatricopeptide (PPR) and half-a-TPR (HAT) in genomes of pathogenic 
protozoa Leishmania. TPR is a protein-protein interaction module and TPR-
containing proteins (TPRPs) act as scaffolds for the assembly of different 
multiprotein complexes. Our aim is to build a great panel of the TPR-like 
superfamily of Leishmania. Distributed relational state representations for 
complex stochastic processes were applied to identification, clustering and 
classification of Leishmania genes and we were able to detect putative 104 
TPRPs, 36 PPRPs and 08 HATPs, comprising the TPR-like superfamily. We 
have also compared currently available resources (Pfam, SMART, SUPER-
FAMILY and TPRpred) with our approach (MRDM/HMM/VA).  

Keywords: Multi-relational data mining; hidden Markov models, Viterbi algo-
rithm, tetratricopeptide repeat motif, Leishmania proteins. 

1   Introduction 

Early efforts in bioinformatics concentrated on finding the internal structure of 
individual genome-wide data sets; with the explosion of the 'omics' technologies, 
comprehensive coverage of the multiple aspects of cellular/organellar physiology is 
progressing rapidly, generating vast amounts of data on mRNA profiles, protein/ 
metabolic abundances, and protein interactions encompassing a systems-level 
approach that requires integrating all of the known properties of a given class of 
components (e.g., protein abundance, localization, physical interactions, etc.) with 
computational methods able to combine large and heterogeneous sets of data [1]. A 
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technique for generation of unified mechanistic models of cellular/organellar 
processes (a major challenge for all who seek to discover functions of many yet 
unknown genes) is the multi-relational data mining (MRDM) approach, which looks 
for patterns that involve multiple input tables (relations) from a relational database 
(db) made of complex/structured objects whose normalized representation requires 
multiple tables [2]. MRDM extends association rule mining to search for interesting 
patterns among data in multiple tables rather than in one input table [3]. We have 
applied MRDM methods (relational association rule discovery – RARD and 
probabilistic relational models - PRMs) combined with hidden Markov models 
(HMMs) [4-5] and the Viterbi algorithm (VA) [6] to mine the tetratricopeptide repeat 
(TPR) [7-9] and related motifs (pentatricopeptide repeat (PPR) [10-11] and half-a-
TPR (HAT) [12] in pathogenic protozoa Leishmania spp.. Our aim is to build a great 
panel of the TPR-like superfamily of proteins, whose members can be further 
assigned functional roles in terms of containing motifs. TPR motifs were originally 
identified in yeast as protein-protein interaction (PPI) modules [7], but now they are 
known to occur in a wide variety of proteins (over 12,000 as included in SMART 
nrdb) present in prokaryotic and eukaryotic organisms [8], being involved in protein-
protein and protein-lipid interactions in cell cycle regulation, chaperone function and 
post-translation modifications [7-9]. TPRs exhibit a large degree of sequence diversity 
and structural conservation (two antiparallel alpha-helices separated by a turn) that 
might act as scaffolds for the assembly of different multiprotein complexes [13] 
including the peroxisomal import receptor and the NADPH oxidase [14]. Similar to 
TPR, PPR and HAT motifs also have repetitive patterns characterized by tandem 
array of repeats, where the number of motifs seems to influence the affinity and 
specificity of the repeat-containing protein for RNA [12,15-16]. PPR-containing 
proteins (PPRPs) occur predominantly in eukaryotes [10] (particularly abundant in 
plants), while it has been suggested that each of the highly variable PPRPs is a gene-
specific regulator of plant organellar RNA metabolism. HAT repeats are less 
abundant and HAT-containing proteins (HATPs) appear to be components of 
macromolecular complexes that are required for RNA processing [10-12,15-16].  

TPR-containing proteins (TPRPs) have recently attracted interest because of their 
versatility as scaffolds for the engineering of PPIs [17-18] and, since they are 
characterized by homologous, repeating structural units, which stack together to form 
an open-ended superhelical structure, such an arrangement is in contrast to the 
structure of most proteins, which fold into a compact shape [19]. The curvature created 
by the superhelical nature predetermines the target proteins that can bind to them [20]. 
TPRs, PPRs and HAT (all together referred as TPR-like motifs), form a large 
superfamily or the clan TPR-like [7-16]. Homologous structural repeat units are often 
highly divergent at the sequence level, a feature that makes their prediction 
challenging. Currently, several web-based resources are available for the detection of 
TPRs, including Pfam [21], SMART [22], and SUPERFAMILY [23], which use 
HMM profiles constructed from the repeats trusted to belong to the family (from 
closely homologous repeats); therefore, divergent repeat units often get a negative 
score and are not considered in computing the overall statistical significance, even 
though they are individually significant [18]. For this reason Pfam, SMART, and 
SUPERFAMILY perform with limited accuracy in detecting remote homologs of 
known TPRPs and in delineating the individual repeats within a protein [18]. A new 
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profile-based method [18], TPRpred, uses a P-value- dependent score offset to include 
divergent repeat units and to exploit the tendency of repeats to occur in tandem. 
Although TPRpred indeed performs significantly better in detecting divergent repeats 
in TPRPs, and finds more individual repeats than the afore mentioned methods, we 
have noticed that it still fails to detect some particular groups of members of TPR-like 
superfamily, such as now we demonstrate for Leishmania spp. Since the 
characterization of proteins of a given family often relies on the detection of regions of 
their sequences shared by all family members, while computing the consensus of such 
regions provides a motif that is used to recognize new members of the family, our 
approach of HMMs/VA with MRDM was suitable to detect 104 TPRPs, 36 PPRPs and 
08 HATPs in Leishmania spp. genomes, a greater number than Pfam, SMART, 
SUPERFAMILY are able to yield (Table 1) and slightly higher than TPRpred.  

2   Methods 

2.1   Data Sources and Bioinformatics Tools  

We have used publicly available datasets of individual or clusters of gene/protein data 
on Leishmania spp., mainly L. major, L. braziliensis, L. infantum and related 
trypanosomatids (GeneDB [24] and NCBI/Entrez - www.ncbi.nlm.nih.gov/sites/ 
gquery). Variants of BLAST [25] and GlimmerHMM [26] were widely used for 
sequence similarity searches, comparisons and gene predictions. External db searches 
were performed against numerous collections of protein motifs and families. Gene 
ontology (GO) terms were assigned, based on top matches to proteins with GO 
annotations from Swiss-Prot/trEMBL (www.expasy.org/sprot) and AMIGO after 
GeneDB (www.genedb.org/amigo/perl) access. Functional assignment of genes/gene 
products was inferred using the RPS-BLAST search against conserved domain db 
(CDD) [27]. For protein domain identification and analysis of protein domain 
architectures, Simple Modular Architecture Research Tool (SMART) [22], Pfam [21], 
SUPERFAMILY [23] and TPRpred [18] were used. For multiple alignments we used 
MUSCLE [28].  

2.2   Finding a TPR-Like Regular Expression  

TPR motif sequence is loosely based around the consensus residues -W-LG-Y-A-F-
A-P-. TPRs are minimally conserved (degenerate and variable) regions of 34-residue 
long extension (with exceptions accepted to the range of 31 residues [14]). Three-
dimensional structural data have shown that tandem arrays of 3-16 TPR motifs 
generate a right-handed helical structure with an amphipathic channel that might 
accommodate the complementary region of a target protein [7, 9, 14]. The PPR motif 
is a degenerate 35-residue sequence, closely related to the 34-residue TPR motif. On 
the basis of the solved structure of a TPR domain [9] as well as modeling approaches 
[10], each PPR domain is though to be configured also as two distinct antiparallel 
alpha-helices, helices A and B. In PRPPs, 2-26 tandem repeats of these alpha-helical 
pairs are predicted to form a superhelix that encloses a central spiral groove with a 
positively charged ligand-binding surface [10]. Although there exists no position 
characterized by an invariant residue, a consensus sequence pattern of small and large 
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hydrophobic residues has been defined: small hydrophobic residues are commonly 
observed at positions 8, 20, and 27, while large ones are at 4, 17, and 24 [14]. The 
consensus sequence for TPR-like motif is given below (1) and it has been used as a 
regular expression, which defines the most probable amino acid (aa) at each position 
within this core, to fully exploit the TPR motif finding in Leishmania spp. genomes. 
As reported in [29], we systematically solved inconsistencies in the motif annotation 

by manual expertise. Since motif occurrences are adjacent in sequences, we could 
define the motif sequence of a protein as the succession of motifs read from the N 
toward the C terminus. 

 
(1) 

2.3   Definition of a TPR-Like Protein  

We have defined a TPR-like protein as any protein sequence containing a TPR-like 
motif that fits in our regular expression (1), which also, by reference, confirms to a set 
of known bona fide domains contained in TPR-like superfamily [a.118.8] of SCOP 
(v.1.69) [18,30], SMART (v.5.0) [22], TPRpred [18] and SUPERFAMILY [23]. 
Classification criteria are supported by structural/sequence similarity, plus searches 
with remote homology prediction.  

2.4   Profile Generation After Querying TPR-Like Motifs  

Aware that performance dependence on any sequence profiles relies on either the 
selectivity or sensitivity of its regime, respectively depending on the number of close 
or remote homologs used [18], we have established a fixed threshold value to include 
a minimum number of remote homologs (to avoid having too many false positives). 
Initial profiles were generated by iterative searches against non-redundant dbs (nrdbs) 
at NCBI and GeneDB, filtered to a maximum pairwise sequence identity of 60% (nr-
60) by CD-HIT [31-32], slightly modified after [18] in a sense that we have extracted 
sequences conservatively with PSI-BLAST through multiple iterations using the TPR-
like regular expression (1) as a query sequence. We, then, performed iterative 
searches to convergence on nr-60 minus TPRPs (detected by Pfam, SMART, 
SUPERFAMILY and TPRPred) with various threshold parameters to test the 
resulting profiles on a positive (TPR-like) or negative set (non TPR-like). Best 
profiles were selected based on its performance on a predicted family assignment, as 
illustrated on Figure 1a.  

2.5   TPR-Like Superfamily Assignment  

To provide structural (and hence implied functional) assignments to TPR-like proteins 
at the superfamily level, structured sequences from available Leishmania genomes 
were randomly selected and parsed into unique 24,708 sequences. Each sequence was 
a labeled input to a multi-class motif classifier. To pick the best method to represent 
one or more of the three target motifs, we compared the results of motif classifiers 
when the sequence was presented as a (I) TPR-containing, (II) PPR-containing (III) 
HAT-containing, (IV) combination of any two or three motifs, and (V) not-containing 
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target motifs. Performance was measured by classification precision, recall and F1 
measure (a composite measure of classification precision and recall).  

2.6   Hidden Markov Models (HMMs) and the Viterbi Algorithm (VA)  

A HMM is a probabilistic network of nodes, so called states. One state qi is connected 
to another state qj by a transition probability ij. Non-silent states are able to emit an 
alphabet of symbols [4-5]. A special topology of HMMs, termed pHMM, is frequently 
used in homology detection of protein families [33]. Transition and emission 
probabilities are estimated by a maximum likelihood approach combined with a 
standard dynamic programming algorithm for decoding HMMs, the Viterbi (VA) [6]) 
to get site and path dependent probabilities for every hidden state in the posterior 
decoding. In a first validation step we used the feature of trained HMMs to emit 
domain-specific sequences according to their model parameters. Sequences were 
compared with generated state paths in the same way as described earlier [29]. The 
process of generation was repeated 10 times for every TPR-like motif. To fully 
exploit the sequential ordering of motifs in a set, we used pHMMs to label motif 
types. We have transformed the motif categorization problem into a HMM sequence 
alignment problem. The HMM states correspond to the motif types. Labeling motifs 
in a sequence is equivalent to aligning the sequences to HMM states. There are five 
states in our HMM model: (I) TPR-containing, (II) PPR-containing (II) HAT-
containing, (IV) combination of any two or all motifs, and (V) not-containing target 
motifs. Transition probabilities between these states were estimated from the training 
data by dividing the number of times each transition occurs in the training set by the 
sum of all the transitions. The state emission probabilities were calculated from the 
score output reported by the multi-class classifiers. Given the HMM model [33], state 
emission probabilities and state transition probabilities, VA was used to compute 
most-likely sequence of states that emit (any of the target) motifs in sequences. 
Subsequently, the state associated with the motif was extracted from the most-likely 
sequence of states [34].  

2.7   Multi-relational Data Mining (MRDM) Method  

Algorithms for RARD are well suited for exploratory data mining due to the 
flexibility required to experiment with examples more complex than feature vectors 
and patterns more complex than item sets [35], such as the case with TPR-like motifs. 
An adequate approach of machine learning [36] focuses on learning a complex web of 
relationships among a collection of diverse objects rather than supervised learning 
from independent and identically distributed training examples (a classifier f that 
given an object x would produce as output a classification label y = f(x)). Such 
formalism, developed as PRMs [36-37], can represent these webs of relationships and 
support learning and reasoning with them [38]. PRMs are a multi-relational form of 
Bayesian networks that allow descriptions of a template for a probability distribution. 
This, together with a set of motif objects, defines a distribution over the attributes of 
the objects. Such a model can then be used for reasoning about an entity using the 
entire rich structure of knowledge encoded by the relational representation [37,39]. 
For each PRM, we were interested in constructing a model whose trades off fit to data 
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with the TPR-like motif model complexity. This tradeoff allows us to avoid fitting the 
training data too closely, which would reduce our ability to predict unseen data.  

3   Results and Discussion 

3.1   TPR-Like Motif Localization Task 

As illustrated on Fig. 1, we have applied two MRDM methods (RARD and PRMs) 
after HMMs/VA to mine TPR, PPR and HAT repeats in protein sequences of 
Leishmania spp. Provided six variants of the data set for the TPR-like motif 
localization task (considering four TPRs, one PPR and one HAT in the TPR-like 
clan), the first version consisted of a single table with 24,708 attributes and the second 
consisted of two tables with 26 attributes in total. We used a normalized version of 
the data set with two tables. The names of the two original tables are motifs_relation 
and interactions_relation. The motifs_relation table contained 120 different motifs 
but there could be more than one row in the table for each motif. The attribute 
motif_id identifies a motif is uniquely. Since our current implementation of MRDM 
requires that the target table must have a primary key, it was necessary to normalize 
the motifs_relation table before we could use it as the target table. This normalization 
was achieved by creating the tables named motif, interaction, and composition as 
follows: Attributes in the motifs_relation table that did not have unique values for 
each motif were placed in composition table and the rest of attributes were placed in 
motif table. The motif_id attribute is a primary key in the motif table and as a foreign  
key in composition table. The interaction table is identical to the original 
interactions_relation table. This represents one of several ways of normalizing the 
original table and renormalization of the relational db has an impact on the entity-
relation diagram for the renormalized version of Motif Localization db. Thus, for  
 

 

Fig. 1. Overall schema for multi-relational data mining (MRDM) approach (C) comprising the 
search for TPR, PPR and HAT motifs in available Leishmania genomes after (A) hidden 
Markov models (HMMs) powered by (B) the Viterbi algorithm (VA), a combined method for 
superfamily assignment on searches among Leishmania fully sequenced species and 
trypanosomes [24]. The input to VA is a HMM in sequences of length L. The output is the 
highest probability path through the HMM that could generate the input sequence. 
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TPR-like motif localization task, the target table is motif and the target attribute is 
localization. From this point of view, the training set consists of 120 motifs and the 
test set 68. The experiments described here focused on building a classifier for 
predicting the localization of motif-containing proteins by assigning the 
corresponding instance to one of six possible localizations. For this motif localization 
task, we have chosen to construct a classifier using all training data and test the 
resulting classifier on the test set provided by Leishmania sequences. This task 
presents significant challenges because many attribute values in training instances 
corresponding to the 120 training motifs are missing. Initial experiments using a 
special value to encode a missing value for an attribute resulted in classifiers whose 
accuracy is around 40% on the test data. This prompted us to investigate 
incorporation of other approaches to handling missing values. Replacing missing 
values by the most common value of the attribute for the class during training resulted 
in an accuracy of around 68%. This shows that providing reasonable guesses for 
missing values can significantly enhance the performance of MRDM on our data sets. 
However, in practice, since class labels for test data are unknown, it is not possible to 
replace a missing attribute value by the most frequent value for the class during 
testing. Hence, there is a need for better ways of handling missing values (e.g., 
predicting missing values based on values of which attributes?). 

3.2   Identification of the TPR-Like Superfamily in Leishmania spp. Genomes 

The percentage of repeat-containing proteins, such as TPR-like, grows with the 
complexity of the organism, with repeat proteins being particularly abundant in 

multicellular organisms [40]. Genomes of unicellular eukaryotes, as Leishmania, 
usually possess a relatively high number of putative encoding genes (around 8,000 
genes in L. major, e.g.) [24]. Analyses of such a large number of coded proteins 
require that the characterization of a given family of proteins be dependent on 
detection of regions of their sequences shared by all family members. Computing the 
consensus of such regions provides a motif that is used to recognize new members of 
the family [41]. With the sequencing completion of 03 Leishmania and several 
trypanosomes genomes [24], we were able to search for all TPR-like genes in 
Leishmania using the defining characteristic of a TPR-like protein. As depicted by 
Tab. 1, numbers of members detected through different tools (GeneDB, Pfam and  
 

Table 1. Comparative results of TPR-like motif finding in Leishmania genes obtained with 
three standard tools (Superfamily, GeneDB and Pfam) and with our method (MRDM/ 
HMM/VA). Numbers are shown in terms of TPR, PPR and HAT-containing proteins in three 
species (L. major, L. infantum and L. braziliensis). 
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Fig. 2. Schematic diagram of TPR-containing genes in genomes of Leishmania major, L. 
infantum and L. braziliensis, detected after a multi-relational data mining and hidden Markov 
model/Viterbi algorithm approach (MRDM/HMM/VA). Shared ortologues among the three 
species are illustrated as colored circles intersections and individual identifiers (GeneDB IDs) 
for putative TPRPs are given as lateral tables. 

Superfamily) are shown in comparison to our method (MRDM/HMM/VA), which is 
able to assign a significantly larger number of TPR-like motif-containing proteins in 
Leishmania: 104 TPRs and 36 PPRs at the most and 08 HATs in total. These 
members are elements putatively involved in several key cellular processes, such as 
glycosome biogenesis (PEX5 and PEX14) and flagellar pathways (IFT subunits, 
cyclophilins, phosphatases), besides binding partners of either motor or cargo proteins 
(kidins220/ARMS and other members of the KAP family of P-loop NTPases) or those 
involved with assembly/disassembly of protein complexes. The resulting descriptions 
of the families and its members, a good example of relevant patterns found along with 
reasonable assignment of family members with our approach, should provide a solid 
and unified platform on which future genetic and functional studies regarding 
Leishmania TPRPs can be based. 

3.3   TPR-Encoding Genes in Leishmania spp. Genomes 

We first used the alignment of 275 sequences previously identified as putative strict 
TPR-containing motifs (obtained from Superfamily, SMART, Pfam and TPRpred) to 
obtain the consensus model (Fig. 3). This TPR signature matrix was subsequently 

used to search for TPR motifs in the six reading frames of whole Leishmania 
genomes. Multiple alignment of Leishmania TPRP sequences revealed that most of 
substitutions in the TPRs occur at nonconsensus positions; consensus residues are 
selectively conserved between ortologues (particularly in Trypanosoma spp). Because 
TPR motifs are highly degenerate, a fairly large number of false positive hits were 
expected. However, because TPR motifs appear usually as tandem repeats, we could 
remove most random uninteresting matches by omitting all orphan TPR motifs that  
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Fig. 3. Multiple sequence alignment of typical TPR motifs present in IFT88, CDC27 and PEX5 
proteins of Leishmania (LmjF27.1130, LmjF05.0410 and LmjF35.1420). TPR motif residues 
are shown with dark and light gray shaded boxes for small and large hydrophobic residues, 
respectively. Small hydrophobic residues are commonly observed at positions 1, 8, 20 and 27. 
Position 32 is frequently proline (bold underlined), located at the C terminus of helix B, and 
large hydrophobic residues are also located at particular positions, especially 4, 17, and 24. 
Schematic consensus for TPR is illustrated.  

were found farther than 200 nucleotides from any other TPR motif. The 465 TPR 

motifs retained formed 132 clusters, each of which comprised a putative TPR gene. 
Each TPR motif cluster was then investigated in detail by manually analyzing the 
positions and reading frames of the TPR motifs compared with available Leishmania 
genomes (1) open reading frame (ORF) models and (2) predicted protein sequences 

within potential coding sequences. From this analysis, 104 putative TPR ORF models 
were constructed (i.e., 28 motif clusters were discarded or fused with other clusters). 
TPR genes are fairly evenly distributed throughout the 36 mini-chromosomes of L. 
major, with little in the way of obvious clusters. The densest grouping of TPR genes 
lies on chromosomes 30, 32 and 36, the latter which contains 13 genes, the maximum 
number found in any isolate chromosome of L. major. 

3.4   Functional Features of TPR-Like Motifs 

The preliminary functional predictions of a range of family members performed here, 
together with the sparse data on these proteins in Leishmania published so far, allows 
us to propose putative models in which TPR-like proteins might play the role of 
sequence-specific adaptors for a variety of other RNA-associated proteins. Such 
models, yet requiring further testable hypothesis, can surround a testable prediction: 
that TPR-like proteins in Leishmania might be directly or indirectly associated with 
specific RNA sequences and with defined effector proteins, as previously suggested in 
Arabidopsis [15]. Future work needs to be directed toward the identification of these 
factors to elucidate the precise functions of one of the largest and least understood 
protein families in Leishmania, the TPR-like. For now, our MRDM approach may be 
also relevant for other families of proteins with repeated motifs, in a similar way to 
what was reported by [42]. We must recall that the L. major genome contains 708 
predicted proteins annotated with the term repeat in their descriptions [24], including 
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only 62 out of the 104 TPRPs and 12 out of the 36 PPRPs that we have identified 
here. For instance, there are 18 proteins containing repeats of the Kelch motif often 

associated to a F-box domain, 169 WD40 repeat-containing proteins and 121 proteins 
with Leu-rich repeats frequently associated to a protein kinase domain. Others cases 
are armadillo (61) and ankyrin (45) repeats-containing proteins. In some of these 
protein families, the region containing the repeats is a large part of the proteins that 
can, and should be, a valuable target for applying MRDM methods. 

3.5   PPR- and HAT-Encoding Genes in Leishmania spp. Genomes 

The name PPR was coined based on its similarity to the better-known TPR motif [10]. 
PPRPs make up a significant proportion of the unknown function proteins in many 
organisms, but only few of them have functional roles ascribed, although a putative 
RNA-binding function is widely accepted [15] and one PPRP is involved in RNA 
editing [11]. The existence of a large family of PRPPs only became apparent with the 
Arabidopsis Genome Initiative that revealed 446 PPR coding genes – 6% of its entire 
genome [15]. The PPRP family has been divided, on the basis of their motif content 

and organization, into two subfamilies: the PPRP-P and the exclusive plant 
combinatorial and modular proteins (PCMPs). PPR motifs have been found in all 
eukaryotes analyzed to date, but with an extraordinary discrepancy in numbers 
between plant and nonplant organisms (the human genome encodes only six putative 
PPRPs). Trypanosomatids and other flagellated organisms are expected to have an 
intermediate number (around one hundred PPR genes), a number still far from the 36 
PPR-encoding genes we have found here (12 of them annotated at GeneDB as 
conserved hypothetical proteins of L. major). Recent reports [43-44] mention more 
than twenty (respectively 23 and 28) PPRPs identified in Trypanosoma brucei (with 
at least 25 ortologues found in L. major) and with a predicted indication that most of 
these proteins are targeted to mitochondria. As of Release 2.1 of GeneDB [24] with 
curated annotations of Leishmania genes, 13 of the GeneDB ORFs are annotated as 
conserved hypothetical proteins that contain PPR motifs based on matches with the 
PFAM profile PF01535 or SMART profile IPR002885. None of Leishmania GeneDB 
models are annotated as homologs of known PPRPs. Of the two sets of ORF models 
(ours and GeneDB’s), 12 are identical (i.e., our analysis agreed with the GeneDB 
model). The 13th GeneDB model does not have an equivalent in our set because we 
did not consider it to be a PPRP by our criteria (lacking tandem motifs matching our 
HMM profiles) Twenty-one of our models have no GeneDB equivalent and 
correspond to genes apparently overlooked during annotation or considered to be 
pseudogenes. In all, 22 of our 34 models differ in at least some respects from the 
corresponding GeneDB model, but correspond quite well to the 28 PPRPs identified 
in T brucei [44], what reinforces how well conserved PPR genes seem to be in 
trypanosomatids. It should be noted that in very few of these cases are molecular data 
available that can be used to decide between discordant models. Our choice has been 
generally made by comparison with other genes in the family and a general familiarity 

with these proteins. A noticeable characteristic of PPR genes is that they rarely 
contain introns within coding sequences even in higher eukaryotes (more than 80% of 
known PPR genes of plants unexpectedly do not contain introns), what is also true for 
Leishmania ORF models (an obvious extension for trypanosomatid genes that usually 
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do not contain introns anyway). This characteristic might explain why PPR genes are 
relatively short (on average <2 kb) despite the fact that PPRPs are comparatively large 
proteins (680 aa on average).  

HAT repeats have three aromatic residues with a conserved spacing, being 
structurally and sequentially similar to TPRs/PPRs, although they lack the highly 
conserved alanine and glycine residues found in TPRs. The number of HAT repeats 
found in different proteins varies between 9 to 12. HATPs appear to be components of 
macromolecular complexes that are required for RNA processing and the HAT motif 
has striking structural similarities to HEAT repeats (IPR000357), being of a similar 
length and consisting of two short helices connected by a loop domain, as in HEAT 
repeats [10-12, 15-16]. Our survey identified a total of 08 putative HATPs (Table 1) 
in the three species of Leishmania analyzed, but the lack of general information on 
HATPs does not allow any further indication on their definite significance on the 
protozoan genome. The detection of such a small, but significant, presence of HATPs 
in Leishmania is certainly an issue for future investigation.  

4   Conclusions 

We have performed bioinformatics analyses of Leishmania TPR, PPR and HAT 
proteins with an integrated MRDM/HMM/VA approach that, in contrast to other 
currently available resources (PFAM, SMART, SUPERFAMILY, TPRpred), seeks to 
capture as much model information as possible in the pattern matching heuristic, 
without resorting to more standard motif discovery methods. TPR genes are 
ubiquitous, whereas PPRs and HATs are mostly found in eukaryotes, but, in common, 
they have the fact of being largely unexplored in Leishmania parasites. Diffusion of 
new developments and applications of MRDM techniques to data-driven knowledge 
discovery problems in bioinformatics is a future direction towards better power of 
biological inference after sequence and structural analyses.  
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Abstract. Microarrays are able to measure the patterns of expression of thousands 
of genes in a genome to give profiles that facilitate much faster analysis of 
biological processes for diagnosis, prognosis and tailored drug discovery. 
Microarrays, however, commonly have missing values which can result in 
erroneous downstream analysis. To impute these missing values, various 
algorithms have been proposed including Collateral Missing Value Estimation 
(CMVE), Bayesian Principal Component Analysis (BPCA), Least Square Impute 
(LSImpute), Local Least Square Impute (LLSImpute) and K-Nearest Neighbour 
(KNN). Most of these imputation algorithms exploit either the global or local 
correlation structure of the data, which normally leads to larger estimation errors. 
This paper presents an enhanced Heuristic Non Parametric Collateral Missing 
Value Imputation (HCMVI) algorithm which uses CMVE as its core estimator and 
Heuristic Non Parametric strategy to compute optimal number of estimator genes 
to exploit optimally both local and global correlations. 

1   Introduction  

Microarrays are used to measure expression levels of a myriad of genes under a 
variety of conditions and the resulting expression profiles have been utilized in a wide 
range of biological applications from diagnosis to drug discovery [1]. Depending on 
the application, this expression data may be analyzed by statistical, mathematical and 
machine learning algorithms [2-4] such as data dimension reduction, class prediction 
[5] and clustering [6]. Despite its pervasive usage, microarray data frequently contains 
at least 5% erroneous spots and in most datasets, at least 60% of genes have either one 
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or more erroneous values [7]. These spots are identified as missing values for a 
variety of reasons, including slide scratches, spotting problems, blemishes on the chip, 
hybridization error, image corruption or simply dust on the slide [8]. Sometimes for 
instance, a background colour has a higher intensity than a foreground colour due to 
hybridization failure or bleeding from neighboring spots, while background 
subtraction may also produce negative values which are subsequently marked as 
missing. These missing values can seriously impact upon subsequent data analysis 
methods such as significant gene selection and clustering algorithms [9, 10]. 

Several approaches to solving the missing data problem have been proposed, with 
the simplest being either the repetition of the experiment, though this is often not 
feasible for economic reasons or ignoring samples containing missing values, but 
again this is not recommended due to limited number of samples. Other alternatives 
include, row average/median impute (replacement by the corresponding row 
average/median) and zero impute (replacing the missing values by zero) though both 
these approaches are high variance approaches as neither takes advantage of inherent 
data correlations, so leading to higher estimation errors [11]. It has been well accepted 
that a better strategy is to attempt to accurately estimate the missing values by 
exploiting the underlying correlation structure of the data [10, 12]. This has been the 
catalyst for a number of imputation techniques including Collateral Missing Value 
Imputation (CMVE) [13], K-Nearest Neighbor (KNN), Least Square Imputation 
(LSImpute) [12], Local LSImpute (LLSImpute) [10] and Bayesian PCA (BPCA) [8]. 
The resulting estimation errors can still be high however, as some algorithms focus 
mainly on global data correlation (BPCA), while others exploit local correlations in 
the data (KNN) by using a fixed number of predictor genes. This provided the 
motivation for the development of new generic techniques that minimise prediction 
errors by optimising the number of predictor genes. Moreover, the comparative 
imputation performances of CMVE, BPCA, LSImpute, LLSImpute and KNN has 
traditionally been numerically evaluated using the Normalized Root Mean Square 
Error (NRMSE) measure, which is partial indicative of the estimation impact on any 
subsequent biological analysis. 

This paper presents a Heuristic Non Parametric Collateral Missing Value 
Imputation (HCMVI) algorithm that employs a combination of correlated genes to 
estimate missing values by multiple imputation matrices. The basis of HCMVI is 
CMVE technique that has been demonstrated both theoretically and empirically, to be 
better than established algorithms including KNN, LSImpute and BPCA [14]. 
However, like KNN and LSImpute, CMVE does not automatically determine the 
optimal number of predictor genes k from the dataset and this can lead to higher 
estimation errors. For data with a local correlation structure, if a large k value is used 
then it may include genes which have no correlation with the gene that has missing 
values. Similarly, if data has a global correlation structure, then a small value of k 
ignores correlated genes in the prediction again resulting in a higher estimation error. 
It is therefore intuitive to try and calculate the best value of k, based upon the 
underlying correlation structure of the data. LLSImpute automatically determines k 
using computational intensive exhaustive search method, hence provides improved 
results than other LS regression based methods [10], though since this approach is 
based upon LS regression, therefore, estimation error is still high because LS 
regression is sensitive to outliers [15, 16] (See Section 2). HCMVI uses CMVE as its 
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core kernel together with a heuristic non-parametric estimator, to automatically 
determine k, thereby combining the intrinsic benefits of heuristics and CMVE with a 
strategy to automatically estimate the optimal number of predictor genes. The 
estimation performance of HCMVI has been rigorously tested and compared with 
four other well-established imputation techniques, namely CMVE, KNN, LLSImpute 
(An enhanced version of LSImpute [12] ) and BPCA in predicting randomly 
introduced missing values with probabilities ranging from 0.01 to 0.2 for six different 
ovarian and breast cancer datasets [17, 18]. To cross validate the performance of the 
different imputation strategies, six separate biological and statistical (both parametric 
and non-parametric) measures have been used to eliminate any bias towards a 
particular metric for a certain imputation methodology. The study in particular 
compared the impact of estimation on significant gene selection where HCMVI 
clearly demonstrated improved capability for both the breast cancer (locally 
correlated) and ovarian cancer (globally correlated) datasets. For instance, the 
KIAA1025 gene which is expressed in breast cancer cell lines and is co-regulated 
with several cancer causing genes such as estrogen receptors [19] was not selected 
when missing values were imputed using KNN, LLSImpute, BPCA and CMVE, but 
was correctly identified across a range of missing values when gene selection was 
preceded by HCMVI imputation (See supplementary materials1). For completeness, 
results are also compared using the conventional NRMSE [20] and Wilcoxon 
Ranksum Significance Test metrics to quantitatively assess the estimation 
performance of each imputation method, with results again consistently demonstra-
ting the improved accuracy and robustness of HCMVI over the entire missing value 
range. The next Section presents an overview of the existing imputation strategies 
with their respective merits and demerits.  

2   Overview of Existing Imputation Methods 

The following nomenclature is adopted in describing different imputation methods. A 
microarray gene expression matrix Y, contains m genes and n samples. In Y, every 
gene i is represented by gi. A missing value in gene i for sample j is thus expressed 
as ( , ) ( )iY i j g j= = Ξ . A short overview is now provided of the main features of the four 

imputation methods (KNN, LLSImpute, BPCA and CMVE) which are used in this 
paper to compare the performance of HCMVI. 

KNN [11] estimates missing values by searching for the k nearest genes normally 
using a Euclidean distance function, and then taking the weighted average of the k 
nearest genes. The method however, does not consider negative correlations [21] and 
has the drawback of using a predetermined value of k regardless of the dataset being 
used. Kim et al [10], introduced an improved Least Square regression based algorithm 
called Local Least Square Impute (LLSimpute), which automatically selects the 
number of predictor genes k using computational intensive exhaustive search method 
and then regresses using LS techniques to impute the missing values, though this 
regression makes the technique highly sensitive to outliers [15, 16] which leads to 
higher estimation errors (Section 1).  BPCA [8] uses Bayesian Principal Component 

                                                           
1 Supplementary Material: http://hcmvi.wiki.sourceforge.net 
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Analysis to impute missing values, though this only exploits global correlations within 
the data structure, which can lead to erroneous estimates if data possesses a strong 
local correlation [8]. CMVE algorithm generates multiple estimation matrices using 
Non-Negative Least Squares (NNLS), Linear Programming (LP) and LS regression 
techniques to approximate missing values, however despite its enhanced estimation 
capability, it still relies upon a preset parametric value of k, which limits its 
applicability. Importantly, despite their respective merits these imputation algorithms 
have not been analyzed on a-priori biological knowledge, which is ultimately a true 
evaluation for comparing imputation performance. This was the motivation to develop 
a new strategy to automatically determine the best value of k directly from the 
correlation structure of the data, while concomitantly providing significant 
improvement on both biological and statistical grounds. The next Section presents the 
HCMVI imputation technique which combines the estimation capability of CMVE 
with a strategy for deriving the optimal value of k directly from the correlation 
structure of the data. 

3   Heuristic Non Parametric Collateral Missing Value Imputation 
Method 

The HCMVI algorithm, which is formally presented in Fig. 1, imputes missing values 
in three stages. Firstly, the number of estimator genes k is computed using a Heuristic 
Non-Parametric algorithm that exploits data correlation structures. Secondly, the k 
most correlated genes with the gene (gi) containing missing value are selected from a 
given dataset, before gi is approximated using the CMVE algorithm and finally value 
is imputed using Non Negative Least Square and Linear Programming. 

To select the number of estimator genes k, the set of sub-matrices SM is chosen 
(Step 1, Fig. 1) which has the highest correlation with the rest of data, since this best 
represents the underlying correlation structure for the entire data Y. To construct such 
correlated sub-matrix which optimally represents the correlation of the entire data Y is  
 

Pre Condition: Gene expression matrix Y(m,n) where m and n are the number of genes and samples respectively; 
actual missing value location .
STEP 1 Select a set of sub-matrices m nSM  from Y using Monte Carlo simulation with uniform distribution. 
STEP 2 FOR i 1 to Rw

2.1 Compute mean Gw of gene expression vectors in sub-matrix  SMi
2.2 Calculate mean for all corresponding gene expression vectors GY from Y selected in SMi
2.3 Determine Pearson correlation ri between Gw and GY for sub-matrix SMi using (1) 

STEP 3 Rank the sub-matrices SM based on the magnitude of the correlation coefficients r.
STEP 4 Select the sub-matrix SMc with the highest r.
STEP 5 Select the expression locations v in Y which are present in SMc
STEP 6 FOR k 1 to m

6.1 Call Estimate using expression locations v and k as parameters 
6.2 Calculate NRMS error in (5) and save the corresponding k in 

STEP 7 Sort  in ascending order and select corresponding k as kopt for actual missing value estimation. 
STEP 8 Compute missing values using CMVE using  and kopt as parameters. 
END
Post Condition: Y with no missing values.  

Fig. 1. The complete HCMVI Algorithm 
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Fig. 2. A selected Sub-Matrix SM for determining the optimal value of k 

an NP hard problem, so a pseudo-random generation strategy is adopted to select gene 
expressions from Y (Step 1, Fig. 1). A statistically conservative selection probability 
of 0.05 [22] is chosen for the objective function, such that there will be no missing 
values in the SM (See Fig. 2). In each sub-matrix SMi, genes G that are present in SMi 

(Step 2) are selected, such as 1[ ... ]T m n
nG G G ×= ∈  (Step 2). For example in Fig. 2, the 

SMI contains one gene expression value g12 from gene 1, three expression values {g21, 
g22, g2n} from gene 2, and two expression values from gene m {gm1, gm3}, while no 
expression was selected from gene 3 (which is normally very rare). All selected genes 
are represented by boxes in Fig. 2. This example highlights two key limitations for 
computing the correlation between Y and SMi: 1) The number of columns of SMi and 
Y are not equal 2) The number of rows of SMi and Y are unequal because not all the 
genes in Y are present in SMi, so in order to determine the correlation between Y and 
any sub-matrix SMi, only those genes that are selected from Y and also present in SMi, 
are chosen. Thus, in the Fig. 2 example, genes 1, 2 and m would be selected while 
gene 3 is ignored. The mean values GSM and GY of the genes vector in both Y and SMi 
are then computed (Step 2.1). The Pearson correlation of the data is calculated (Step 
2.3) to determine the maximum correlation between each selected SMi and Y from: 

2 2
2 2

( ) ( )

w y
w y

i

w y
w y

G G
G G

Nr
G G

G G
N N

−
=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑
∑ ∑

 

(1) 

The reason for selecting Pearson correlation is that it has been consistently proven 
to provide better performance for microarray data compared with other similarity 
measures [23].  

The sub-matrix SMc with the maximum absolute correlation with Y represents the 
best correlation of Y (Step 4). Each individual value of SMc is then treated as a 
missing value and iteratively estimated for a range of different k values (Step 5). 
Since, these values are already known; the NRMSE can be computed for these 
estimations, so the k value which generates the minimum Root Mean Square Error 
(RMSE) is designated as the optimal value (kopt). This is subsequently used in the 
actual estimation of missing value Yij of gene i and sample j, which involves three 
separate estimates Ф1, Ф2 and Ф3 being generated, and the final estimate χ computed 
by their fusion using CMVE [13].  The CMVE technique is explained in the context 
of HCMVI in Appendix A (See supplementary material). 

 



378 M.S.B. Sehgal et al. 

4   Analysis and Discussion of Results  

4.1   Test Data 

To analyze and compare the performance of the proposed HCMVI algorithm with 
CMVE, BPCA, LLSImpute and KNN, six microarray cancer datasets from two 
different studies on breast and ovarian cancer tissues were used. The data was log 
transformed and normalized to 0=x  and 12 =σ  to remove experimental variations. 
The rationale behind selecting these particular datasets is that in general, cancer data 
lacks molecular homogeneity in tumour tissues so missing values are hard to predict 
in cancerous data [24].  

The locally correlated breast cancer data set contained 7, 7, 8 samples of BRCA1, 
BRCA2 and Sporadic mutations (neither BRCA1 nor BRCA2) respectively [18], 
while the globally correlated ovarian cancer dataset contained 16, 16 and 18 samples 
respectively of BRCA1, BRCA2, Sporadic mutations [17]. Each breast cancer data 
sample contained microarray data of 3226 genes and there were 6445 genetic 
expressions per sample for the ovarian dataset.  

To compare the performance of the HCMVI algorithms with CMVE and KNN, 
k=10 was used throughout the experiments, since the insensitivity of KNN to values 
of k in the range from 10 to 20 was observed by Troyanskaya et al, [11] who 
confirmed that the best estimation results were achieved in this interval and using a 
similar rationale CMVE [13] employed k=10. In contrast, LLSImpute determines the 
value of k using computational intensive exhaustive search method, while HCMVI 
automatically determines the optimal value of kopt using a non-parametric heuristic 
algorithm (Fig. 1), which exploits the underlying correlation structure of the data, 
thereby reducing the computational complexity and avoiding problems of large and 
small values of k highlighted in Section 1. Following six metrics are used to evaluate 
the performance of the new HCMVI algorithm. 

4.2   Gene Regulatory Network Reconstruction 

To further evaluate the influence of missing values on GRN reconstruction, the 
ARACNe has been employed because a study in [25] demonstrated its improved 
performance compared to the commonly used algorithms, like Bayesian networks 
[26]. Moreover the method has been tested for mammalian gene network 
reconstruction and compared with other techniques that are normally applied to 
simple eukaryotes, such as Saccharomyces cerevisiae [27].  

ARACNe firstly computes gene-gene co-regulation using mutual information.  The 
method then prunes indirect regulatory relationships that are co-regulated by one or 
more intermediate genes using data processing inequality. To comparatively evaluate 
the respective imputation performances on GRN reconstruction, the number of 
Conserved Links was determined, which represents whether a particular co-regulation 
link is present in both GRNorg and GRNimputed. The gene network GRNorg was initially 
constructed from the original data Y with no missing values using ARACNe. 
Iteratively, up to 20% missing values were randomly introduced and then respectively 
estimated using imputation methods. The corresponding gene networks GRNimputed  
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Fig. 3. Comparison of original GRN and the GRN constructed after imputation where missing 
values were randomly introduced in a) BRCA2-breast cancer data b) BRCA1-ovarian cancer 
data 

were then constructed from the imputed data and GRNorg and GRNimputed compared, to 
ascertain the conserved links. 

Fig.3 shows that the ARACNe method, which was reported to be robust [28] for 
GRN construction, could not maintain its performance in the presence of missing 
values, especially for ZeroImpute. In contrast, when HCMVI was applied, ARACNe 
conserved the number of links even at higher missing value probabilities. For 
example, in BRCA1 breast cancer data, the transcriptional link between ADP-
Ribosylation Factor 3 (ARF3) and General Transcription Factor II, I, Pseudogene 
1(GTF2IP1) was overlooked when missing values were imputed by comparative 
methods (Fig. 3(a)), but was correctly inferred when values were imputed using 
HCMVI. Similarly, the link between HS1 Binding Protein and Mitogen-Activated 
Protein Kinase 3 in BRCA2 breast cancer data was reconstructed when values were 
imputed using HCMVI but was neglected by all other imputation techniques. The 
results of Sporadic breast cancer data revealed similar observations. For example, the 
interaction between ARF3 and EST, which is similar to NSAP1 protein, was found 
when data was imputed using the HCMVI method. But it was missed by the other 
imputation strategies. These results further highlight the importance of accurate 
imputation in improving GRN reconstruction performance (See supplementary 
materials for details). 

4.3   Gene Selection 

This Section provides rigorous analytic review of gene selection results. Since, 
different gene selection methods produce different sets of significant genes [29] 
therefore; we compared the performance of imputation methods using two widely 
used methods namely: standard t-test and Between Sum of Squares to Within Sum of 
Squares (BSS/WSS). 

4.3.1   Gene Selection Using t-Test 
To investigate the impact of each estimation algorithm upon significant gene 
selection, genes were selected from both breast and ovarian cancer datasets using  
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Fig. 4. False Positive Rate of Gene Selection in a) Breast and b) Ovarian Cancer Data 

t-test [30] with the established statistical P-value of 0.05 [24]. These selected genes 
were then, marked as Standard Genes. After that the values were randomly removed 
from the data with the probability range of 0.01 to 0.20 and were marked as missing. 
These missing values were then, imputed using above mentioned imputation methods 
and followed by gene selection using t-test using the same P-value of 0.05. The 
selected genes were then compared with the Standard Genes to compute False 
Positive Rate (FPR) [31] using: 

False Positive
FPR

True Positive + False Positive
=  (2) 

Fig.4 demonstrates FPR of gene selection results after imputation by the above 
mentioned estimation methods (See supplementary materials for the rest of the 
results). The results show that HCMVI had minimum FPR for both the datasets, in all 
the selected groups, while most of the imputation methods could not retain their 
performance for all the datasets. For instance, CMVE showed better FPR for Breast 
cancer data (Fig. 4(a)) but since the method doesn’t consider global correlations it 
could not hold similar performance for ovarian cancer data (Fig. 4(b)). Similarly, 
BPCA showed better performance for ovarian cancer data (Fig. 4(b)) due to its ability 
to exploit global correlation but couldn’t retain the same performance for breast 
cancer data (Fig. 4(a)). Both the LLSImpute and KNN methods also, showed mixed 
performance while not surprisingly, ZeroImpute method had highest FPR due to its 
inability to exploit latent correlation of the data. 

4.3.2   Gene Selection Using BSS/WSS 
To investigate the impact of each estimation algorithm upon significant gene 
selection, a set of p genes (Gorg) was selected from the original data Y using the 
BSS/WSS method [32], which identified those genes that concomitantly had large 
inter-class and small intra-class variations. For any gene i in m nY ×∈ , BSS/WSS is 
calculated as follows:  

2

1 1

2

1 1
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where T is the training sample size, Q the number of classes and F(•) is a Boolean 
function having value = 1 if the condition is TRUE and zero otherwise. iY denotes the 

average expression level of gene i across all samples and qiY
−

is the average expression 

level of gene i across all samples belonging to class q. Genes are then ranked from the 
highest to the lowest BSS/WSS ratio to form a significant gene expression matrix ϑ, 
where the first p genes are selected for subsequent analysis. 

To fully test the robustness of the HCMVI algorithm, experiments were performed 
for missing values up to 20%, with values being iteratively removed from the original 
gene expression matrix Y. Missing values were then estimated using KNN, 
LLSImpute, BPCA, CMVE and HCMVI to form Yest, before respective sets of p 
genes Gest were selected using BSS/WSS, for each estimated matrix. Finally, these 
selected genes were compared with Gorg to give the %Accuracy. 

To eliminate performance variations with respect to the number of selected genes in 
the BSS/WSS method, all imputation techniques were tested for 1000 and 50 
significant genes with the graphs in Fig. 5 displaying the gene selection performance 
for 50 significant genes (Supplementary materials for the results on 1000 significant 
genes). The results reveal the consistent better performance of HCMVI over the other 
imputation methodologies because of its ability to exploit both local and global 
correlations within the data. HCMVI performed equally well for both types of data 
with the average overall improvement being 60% and 48% for breast and ovarian 
cancer datasets respectively. The results also highlighted some other noteworthy 
points: even though HCMVI consistently performed better than comparative 
algorithms, its performance was better for the breast cancer dataset than ovarian cancer 
because the latter contained some actual missing values which influence gene 
selection. The CMVE algorithm using a fixed k performed better than BPCA, 
LLSImpute, KNN and ZeroImpute (Fig. 5(a)) for the locally correlated Breast cancer 
data, but was unable to maintain this performance for the ovarian cancer (globally 
correlated) data (Fig. 5(b)). Similarly, BPCA performed better than the aforementioned 
algorithms for the ovarian cancer data because of its inherent ability to exploit global 
correlations, though in contrast its performance deteriorated significantly for breast 
cancer data. The next Section focuses on non-parametric significance test results. 
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Fig. 5. Gene Selection Accuracy for 50 Significant Genes in a) Breast and b) Ovarian Cancer 
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Fig. 6. Significance Test Results for a) BRCA1-Breast and b) BRCA-2 Ovarian Cancer Data 

4.4   Wilcoxon Rank Sum Significance Test 

To evaluate the estimation performance of all the imputation algorithms on empirical 
grounds and variance stability, the two-sided Wilcoxon Rank sum statistical 
significance test was applied. The motivation for using this particular test is that 
compared to some other parametric significance tests such as t-test [33], it does not 
mandate the data has to have equal variance, which is vital given the variance of data 
can be disturbed due to erroneous estimation, especially for ZeroImpute. To test the 
hypothesis H0, Y = Yest where Y and Yest are the actual and estimated matrices 
respectively, the P-Value of the hypothesis is calculated as: 

1 )0, r rH  P-Value 2P (R y= − ≤  (4) 

where yr is the sum of the ranks of observations for Y and R is the corresponding 
random variable. Fig. 6 plots the P-Value of similarity between the actual and 
estimated matrices. The results again corroborate that HCMVI performed better than 
all the other comparative algorithms for both locally and globally correlated datasets 
because of its better estimation capability. A similar trend is observed by the 
imputation strategies in terms of the statistical significance test results as witnessed 
for significant gene selection in the above Section. It is interesting to note that 
HCMVI performed consistently better for all the datasets, as shown in Fig. 6, where 
the performance of other algorithms was highly data dependent. 

Interestingly, HCMVI proved to be robust for both cancer datasets which is 
certainly not the case for other imputation techniques who performed well for one 
data type, but failed for the other (Fig.3-6). For instance, CMVE, generally performed 
better than BPCA, KNN, ZeroImpute, and LLSImpute for breast cancer data (Figs. 
3(a) - 6(a)), but this was not sustained for ovarian cancer data (Figs. 3(b) - 6(b)), 
where BPCA proved a better choice for this globally correlated dataset. Not 
surprisingly, ZeroImpute exhibited the widest disparity on statistical grounds, so 
inculcating the importance of estimating any missing values rather than simply 
imputing zeros. 

4.5   Normalized Root Mean Square Error 

For completeness the estimation performance of HCMVI and comparative imputation 
methods was also analyzed using the traditional parametric Normalized Root Mean  
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Fig. 7. NRMSE in Sporadic-Ovarian Cancer Data 

Square Error (NRMSE) measure, despite its limitations in reflecting the true impact 
of missing values on subsequent biological analysis. NRMSE is defined as: 

( )

( )
estRMS Y Y

RMS Y

−Θ =  (5) 

where Y is the original data matrix and Yest is the estimated matrix using HCMVI, 
CMVE, BPCA, LLSImpute and KNN respectively. This particular measure has been 
used by Sehgal et al, [13], Ouyang et al, [20] and Tuikkala et al [7] for error 
estimation because Θ =1 for zero imputation.  

Fig.7 shows boxplot of NMRS Error for different imputation algorithms (See 
supplementary material for the rest of the results). It again confirms the better 
performance of HCMVI and reiterates the value of accurately exploiting information 
about the underlying correlation structure of the data instead of using a preset value. 
Interestingly LLSImpute exhibited similar performance to HCMVI so justifying the 
merit of using other metrics to dispassionately compare the performance of different 
imputation strategies. As highlighted earlier, accurate imputation plays a crucial role 
in selecting the correct set of genes for a given biological process, so an analysis of 
the biological significance of the various imputation results has been undertaken with 
the key finings presented in the next Section. 

4.6   Biological Significance  

As alluded to earlier, different analytical methods will by virtue of their underlying 
assumptions generate differing gene lists, so an attempt has been made to assess the 
significance of the results for HCMVI from a biological perspective. Any superior 
imputation technique can be reasonably expected to return genes that have been 
implicated in the biological process when independent experiments are studied. 
Indeed, as microarray experiments effectively serve as a hypothesis generation step, it 
is constructive to ascertain whether a method not only identifies known genes, but 
also novel genes including hypothetical ones, about which little is known so that 
appropriate additional experiments can be performed. This may provide not only 
valuable information for the design of basic mechanistic, diagnostic and biomarker 
studies, but also further data for use in the construction of gene networks and 
pathways involved in processes like oncogenesis and resistance to tumour induction.  
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Table 1. KIAA1025 (KIAA) and Plakophilin2 (PKP2) Selection in Breast Cancer Dataset and 
MHC Class II=DQ alpha (MHCα) and MHC Class II=DQ beta (MHCβ) Selection in Ovarian 
Cancer across the Range of Missing Values Across the Range of Missing Values  

% MV HCMVI CMVE LLSImpute BPCA KNN ZeroImpute 
1 KIAA

PKP2
MHC
MHC

KIAA
PKP2
MHC

KIAA

MHC MHC

KIAA

MHC

5 KIAA
PKP2
MHC
MHC

KIAA
PKP2

MHC

KIAA KIAA

10 KIAA
PKP2
MHC
MHC

KIAA
PKP2

    

15 KIAA
PKP2
MHC
MHC

KIAA
PKP2

   

20 KIAA
PKP2
MHC
MHC

     

 

 
While the final validation of HCMVI as an imputation strategy will only be truly 
achieved when the role of newly predicted genes are validated in biological 
experiments, it is instructive to examine the list of candidate genes to determine 
whether any are independently validated.  

In examining both the breast and ovarian cancer datasets, HCMVI identified a 
number of genes overlooked by all the other algorithms and which, independent 
experiments [34] confirm, alter expressions in tumor lines and so could be important 
in oncogenesis. This set of genes has not only been selected by BSS/WSS algorithm 
but has been revalidated using the modified t-test with greedy pairs method [35] 
which minimizes the bias of the gene selection strategy towards either a particular 
imputation technique or a set of genes. 

For example, as the results in Table 1 reveal, the KIAA1025 protein has not been 
selected when values are imputed using KNN, LLSImpute, BPCA and CMVE, but 
has been identified when gene selection is preceded by HCMVI imputation (See also 
supplementary material). This is an important protein which is co-regulated with 
estrogen receptors for both in vivo and clinical data, which are expressed in more than 
66% of human breast tumors [19]. Another gene selected by HCMVI across the range 
of missing values is plakophilin 2 (PKP2) which is a common protein and exhibits a 
dual role, appearing as both a constitutive karyoplasmic protein and a desmosomal  
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plaque component for all the desmosome-possessing tissues and cell culture lines. 
The gene is found in breast carcinoma cell lines [36] and furthermore, because of its 
significance it can serve as a marker for the identification and characterisation of 
carcinomas derived either from or corresponding, to simple or complex epithelia [37] 
(See Table 1). 

Similar observations can be made in the study of significant genes in the ovarian 
cancer dataset. For instance, MHC Class II=DQ alpha (MHCα) and MHC Class 
II=DQ beta (MHCβ) genes are linked to the immune system and have been shown to 
be down-regulated for ovary syndrome [38]. Also, the allele gene is present at a 
higher frequency in patients with malignant melanoma than in Caucasian controls. 
These genes help in particular to diagnose melanoma patients in the relatively 
advanced stages of the disease and/or patients who are more likely to have a 
recurrence [39]. The results reveal that these genes have been correctly identified by 
HCMVI while being consistently missed by other imputation methods, especially for 
higher numbers of missing values (See Table 1 and supplementary material). 

For both cancer datasets, in every case these regulated genes have been correctly 
identified when gene selection followed imputation by HCMVI for the full range of 
missing values from 1% to 20% as confirmed in Tables 1 and 2. Summarizing, these 
biological significance results demonstrate the robustness of the HCMVI algorithm in 
correctly estimating missing values for different data types by adapting to both the 
causal global and local correlation structures of the data in contrast to all other 
imputation algorithms, especially for higher numbers of missing values. 

5   Conclusions 

This paper has presented a new Heuristic Non Parametric Collateral Missing Value 
Imputation (HCMVI) algorithm based upon the concept of constructing an optimal 
sub-matrix of the most correlated genes to determine the optimal value of k predictor 
genes to be applied in the imputation process. HCMVI has demonstrated an ability to 
adapt to both the local and global correlations, with experimental results for gene 
selection, statistical significance tests, biological significance and the Normalized 
Root Mean Square Error measure proving that it provided lower estimation errors 
compared to existing missing value imputation algorithms including CMVE, KNN, 
LLSImpute, ZeroImpute and BPCA. In particular, GRN reconstruction results showed 
the improved performance of 90% and 35% for both breast and ovarian cancer data. 
Similarly, gene selection results revealed an overall improved selection performance 
of 60% and 48% respectively for breast and ovarian cancer data, while the biological 
significance results upon selected genes demonstrated that key breast cancer genes 
like plakophilin2, KIAA1025 and MHC Class II=DQ are consistently correctly 
identified by HCMVI for the full range of missing values, while being overlooked by 
other imputation methods. The HCMVI strategy of exploiting a combination of 
underlying correlations in a dataset together with the automatic selection of the 
optimal k using a Heuristic Non Parametric approach has proven to be more 
effective, less computational intensive and robust than using either a preset k value or 
determining its value by exhaustive search. 
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Abstract. Identifying cancer molecular patterns robustly from large dimen-
sional protein expression data not only has significant impacts on clinical ontol-
ogy, but also presents a challenge for statistical learning. Principal component 
analysis (PCA) is a widely used feature selection algorithm and generally inte-
grated with classic classification algorithms to conduct cancer molecular pattern 
discovery. However, its holistic mechanism prevents local data characteristics 
capture in feature selection. This may lead to the increase of misclassification 
rates and affect robustness of cancer molecular diagnostics. In this study, we 
develop a nonnegative principal component analysis (NPCA) algorithm and 
propose a NPCA-based SVM algorithm with sparse coding in the cancer mo-
lecular pattern analysis of proteomics data. We report leading classification re-
sults from this novel algorithm in predicting cancer molecular patterns of three 
benchmark proteomics datasets, under 100 trials of 50% hold-out and leave one 
out cross validations, by directly comparing its performances with those of the 
PCA-SVM, NMF-SVM, SVM, k-NN and PCA-LDA classification algorithms 
with respect to classification rates, sensitivities and specificities. Our algorithm 
also overcomes the overfitting problem in the SVM and PCA-SVM classifica-
tions and provides exceptional sensitivities and specificities.  

Keywords: Nonnegative principle component analysis, sparse coding, support 
vector machine (SVM). 

1   Introduction 

Molecular diagnostics has been challenging traditional cancer diagnostics in oncology 
by generating gene/protein expression data from a patient’s tissue, serum or plasma 
samples through the DNA and protein array technologies. In clinical oncology, the 
gene/protein expressions are molecular patterns of cancers, reflecting gene/protein 
activity patterns in different types of cancerous or precancerous cells. However, 
robustly classifying cancer molecular patterns to support clinical decision making in 
early cancer diagnostics is still a challenge because of the special characteristics of 
gene and protein expression data. In this study, we focus on the mass spectrometry 
based protein expression data (MS data).    
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Similar to general gene expression data, MS data can have large or even huge di-
mensionalities. It can be represented by a n×m matrix, each row of which represents 
the intensity values of a measured data point at a mass charge ratio (m/z) across differ-
ent biological samples; each column of which represents the intensity values of all 
measured data points at different m/z values in a sample. Generally, the total number 

of measured data points is in the order of 5 610 ~ 10 and the total number of biological 
samples is in the magnitude of hundreds, i.e., the number of variables is much greater 
than the number of biological samples. Although there are a large number of variables 
in these data, only a small set of variables have meaningful contributions to the data 
variations. Actually, these high-dimensional data are not noise-free. This is because the 
raw data contains systematic noise and the preprocessing algorithms can not remove it 
completely. 

1.1   Principal Component Analysis Is a Holistic Feature Selection Algorithm 

Many feature selection algorithms are employed to reduce protein expression data 
dimensions and decrease data noise before further classification or clustering [1,2]. 
Principal component analysis (PCA) is a commonly used approach among them [3,4]. 
It projects data in an orthogonal subspace generated by the eigenvectors of the data 
covariance or correlation matrix. The data representation in the subspace is uncorre-
lated and the maximum variance direction-based subspace spanning guarantees the 
least information loss in the feature selection. However, as a holistic feature selection 
algorithm, PCA can only capture the global characteristics of data instead of local 
characteristics of data. This leads to difficulty in interpreting each principal compo-
nent (PC) intuitively, because each PC contains some levels of global characteristics 
of data. In the cancer pattern analysis of proteomics data, the holistic mechanism will 
prevent the following supervised/unsupervised learning algorithm from capturing the 
local behaviors of proteomics data in the clustering/classification. This would lead to 
the increase of misclassification rates and finally affect the robustness of the cancer 
molecular diagnostics.  

One main reason for the holistic mechanism of the PCA is that data representation 
in the classic PCA is not ‘purely additive’, i.e. the linear combination in the PCA 
contains both positive and negative weights and each PC consists of both negative and 
positive entries. The positive and negative weights are likely to cancel each other 
partially in the data representation. In fact, it is more likely that weights contributing 
from local features are partially cancelled out because of their frequencies. This di-
rectly leads to the holistic feature selection characteristics in the PCA. 

Imposing nonnegative constraints on the PCA can remove the likelihood of the 
partial cancellation and make data representation consists of only additive compo-
nents. In addition, it also contributes to sparse data representation. In the context of 
feature selection, adding nonnegative constraints on the PCA can improve the data 
locality in feature selection and make the data latent structure explicit.  

Adding nonnegativity on the PCA is also motivated by the cancer molecular pat-
tern discovery itself, i.e., protein expression data generally are represented as positive 
or nonnegative matrices naturally or after simple preprocessing. It is reasonable to 
require their corresponding dimension reduction data to be positive or at least  
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nonnegative to maintain data locality in order to catch more subtle or local behaviors 
in the following clustering or classification-based pattern discovery. 

In this study, we present the nonnegative principal component analysis (NPCA) al-
gorithm and demonstrate the superiority of the NPCA-based SVM classification algo-
rithm (NPCA-SVM) with sparse coding, for three benchmark mass spectral serum 
datasets, by directly comparing it with five other similar classification algorithms, i.e., 
SVM, PCA-SVM, NMF-SVM, k-NN and PCA-LDA. This paper is organized as 
follows. Section 2 presents the nonnegative principal component analysis (NPCA) 
and NPCA-based SVM classification. Section 3 gives the experimental results of the 
NPCA-based SVM algorithm with sparse coding under 100 trials of 50% holdout 
cross validations for each dataset. It also compares the NPCA-SVM algorithm with 
the other five classification algorithms for the same training and test datasets. Finally, 
Section 4 concludes the paper. 

2   Nonnegative PCA-Based Classification 

Nonnegative PCA can be viewed as an extension of classic PCA by imposing PCA 
with nonnegativity constraints to capture data locality in the feature selection. 

Let 1 2( , , )nX x x x= , d
ix ∈ℜ , be a zero mean dataset, i.e.,

1
0

n

ii
x

=
=∑ . Then, the 

nonnegative PCA can be formulated as a constrained optimization problem to find 
maximum variance directions under nonnegative constraints as follows. 

                                             

21
max ( ) , . .

2

, 0

T

F

T

J U U X s t

U U I U

=

= ≥
                                         (1) 

where 1 2[ , , ]kU u u u= , k d≤ , is a set of nonnegative PCs. The square Frobenius 

norm for a matrix A is defined as
2 2

,

( )T
ijF

i j

A a trace AA= =∑ .  

In fact, the rigorous orthonormal constraint under non-negativity is too strict for the 
practical cancer molecular pattern analysis, because it requires only one nonnegative 
entry in each column of U. The quadratic programming problem with the orthonor-
mal-nonnegativity condition can be further relaxed as 

                                         
2 2

0

1
max ( , )

2
T T

F FU
J U U X I U Uα α

≥
= − −                                 (2) 

where 0α ≥ is a parameter to control the orthonormal degree of each column of U. 

After relaxation, matrix U is a near-orthonormal nonnegative matrix, i.e., ~TU U I . 
Computing the gradient of the objective function with respective toU , we have 

                                       ( 1) ( ) ( ) ( ), 0UU t U t t J t Uη+ = − ∇ ≥                                 (3)  
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where ( , ) ( ) 2 ( )T T T
U J U U X X I U U Uα α∇ = + −  and ( )tη is the iteration step size in 

the t time level iteration. For convenience, we select the step size in the iteration as 1. 
In fact, this is equivalent to finding the local maximum of a function ( )slf u under the 

conditions: 0slu ≥ , 1, 2 ; 1, 2s d l n= = , in the scalar level. 

                                          4 2
2 1 0

0
max ( )

sl
sl sl sl sl

u
f u u c u c u cα

≥
= − + + +                                (4) 

where 2c  and 1c  are the coefficients of the 2

slu and slu ; 0c is the sum of the constant 

items independent of slu . The local maximum finding of the equation (4) is actually a 

set of cubic polynomial nonnegative root finding. Computing the stationary points for 
the scalar function ( ),slf u we have a set of cubic function root finding prob-

lems: ( ) ( ) / 0sl sl slp u df u du= =  (see the appendix for details). The final U matrix is a 

set of nonnegative roots of the equation. By collecting the coefficients of slu  and 2
slu , 

we have 
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Actually, the constant term 0c kα= −  does not affect the entries of the matrix U. Only 

coefficients 1c and 2c are involved in the nonnegative root finding. The algorithm com-

plexity of NPCA is ( )O dkn N× , where N is the total iteration number used in the 

algorithm. The detailed parameter derivations about equation 5 and 6 can be found in 
the appendix. Some authors also proposed a similar approach to solve the nonlinear 
optimization problem induced by a nonnegative sparse PCA [5]. However, their re-
sults lack technical soundness in the key parameter derivations. 

2.1   NPCA-Based Classifications 

The NPCA-based cancer molecular pattern classification employs the nonnegative 
principal component analysis (NPCA) to obtain a nonnegative representation of each 
sample in a low-dimensional, purely additive subspace spanned by the meta-variables 
first. A meta-variable is a linear combination of the intensity values of the measured 
data points for the MS data. The nonnegative representation for each sample is called 
a meta-sample, which is the prototype of the original sample with small dimensional-
ities. Then, a classification algorithm aπ , which is the SVM algorithm in this study, is 

applied to the meta-samples to gain classification information. 
Theoretically, NPCA-based classification is rooted from a special nonnegative ma-

trix factorization (NMF) [6] that we propose in this study: the nonnegative principal 
component induced NMF. We brief the principle of the NPCA-induced NMF as  
follows. 
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Let ,d nX d n×∈ℜ , be a nonnegative matrix, which is a protein expression data-

set with d number of samples for n number of measured points. Let d dU ×∈ℜ be the 
nonnegative PCs, a near-orthogonal matrix for X before any further dimension selec-

tion. Projecting TX into the purely additive subspace generated by U, we obtain the 

nonnegative projection .TX U P=  Alternatively, considering the PC matrix U is a 
near-orthogonal matrix, we can view it as an orthogonal matrix to decompose the data 

matrix, i.e., ~T TX PU , where the nonnegative matrix P is equivalent to the basis 

matrix W and matrix TU is equivalent to the feature matrix H in the classic NMF: 
X~WH. Similarly, the decomposition rank r in the NMF is the corresponding selected 
dimensionality in the nonnegative principal component analysis.  

The NPCA-induced NMF can be also explained as follows. Each row of U is the 
corresponding meta-sample of each sample of X in the meta-variable space: 

~T T
i iX PU . The meta-variable space is a subspace generated by columns of the basis 

matrix P , where each column/basis is a meta-variable. The meta-variable space is a 
purely additive space where each variable can be represented as the nonnegative lin-
ear combination of meta-variables as shown below. 

                                                 
1

, 1
r

T T
i ij j

j

X U P r d
=

= ≤ ≤∑                                            (7)  

Based on the observation that proteomics data are nonnegative data or can be con-
verted to corresponding nonnegative data easily, we have the NPCA-based SVM 
classification algorithm for proteomics data, i.e., starting from the NPCA-induced 
NMF for the protein expression dataset X, we input the corresponding normalized 
meta-samples

2
/U U U= to the SVM algorithm to conduct classification. 

2.2   Sparse-Coding 

To improve the generality of the NPCA-SVM classification algorithm, we conduct a 
sparse coding for the nonnegative PC matrix U. The sparseness of a nonnegative 
vector v with n tuples is a ratio between 0 and 1, which is defined in the equation (8) 
according to the relationship of two norms [7].  

                                       1 2
/

( )
1

n v v
sparseness v

n

−
=

−
                                           (8) 

The sparse coding of the nonnegative PC matrix U finds the corresponding non-
negative vector satisfying the specified sparseness degree for each row 

, 1,2 .T
iU i k=  In other words, for each row vector 0x ≥ , the nearest vector 0v ≥  in 

the Euclidean sense is found that achieves a specified sparseness s . For convenience, 

we first normalize the nonnegative vector x such that
2

1x =  before the sparse cod-

ing. Then, we project x into the hyperplane:
1iv x=∑ and compute the nonnegative 
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intersection point with the hypersphere 2 1iv =∑  under the condition 

1
( ) / ( 1)s n x n= − −  in real time to finish its sparse coding. 

2.3   Cross Validations  

Since different training sets will affect classification results of a classification algo-
rithm, we conducted the NPCA-SVM classification under the 50% holdout cross 
validation 100 times, i.e., 100 sets of training and test datasets are generated randomly 
for each cancer dataset in the classification, to evaluate the expected classification 
performances. To improve computing efficiency, the PC matrix U in the nonnegative 
principal component analysis (NPCA) is cached from the previous trial and used as 
the initial point to compute the next principal component matrix in the computation.  

3   Experimental Results 

Our experimental data consists of three mass spectral serum profiles: Ovarian, Ovar-
ian-qaqc (quality assurance/quality control) and Liver [8,9]. These datasets include 
one low resolution dataset and two high resolution datasets. They are generated from 
the Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) and 
SELDI-QaTOF (a hybrid quadrupole time-of-flight mass spectrometry) technologies 
respectively. The detailed information about the datasets is given in the Table 1. 

Table 1. Three Mass Spectral Serum Profiles. 

Dataset Data type #M/Z #Samples 
 
Ovarian 

SELDI-TOF 
Low resolution 

 
15142 

91 controls 
162 cancers 
 

 
Ovarian-qaqc 

SELDI-TOF 
High resolution 

 
15000 

95 controls 
121 cancers 
 

Liver SELDI-QqTOF 
High resolution 

 
6710 

181 controls 
176 cancers 

3.1   Preprocessing and Basic Feature Selection  

We conducted the basic preprocessing steps for each mass spectrometry dataset: spec-
trum calibration, baseline correction, smoothing, peak identification, intensity nor-
malization, and peak alignments. In addition, we employed the two-sided t-test to 
conduct basic feature selection for the three proteomics datasets before classifications. 
After the basic feature selection, 3780, 2000 and 3000 most significant features are 
selected for the 1st, 2nd and 3rd dataset respectively, before further classifications. 

3.2   Classifications 

We compared the classification results from the NPCA-SVM algorithm under the 
sparse coding (α=10, sparseness=0.20) with the PCA-SVM and SVM algorithm under  
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Table 2. Average classification performance of three algorithms 

Average 
Sensitivity 

Average 
Specificity 

Average 
Classifying rates 

Ovarian    
npca-svm-linear 98.35±1.03 99.98±0.24 98.94±0.65 
npca-svm-rbf 100.0±0.0 99.42±0.99 99.79±0.35 
svm-linear 100.0±0.0 98.63±2.21 99.50±0.83 
svm-rbf 100.0±0.0 0.0±0.0 64.13±2.88 
pca-svm-linear 99.98±0.17 99.93±0.51 99.96±0.26 
pca-svm-rbf 100.0±0.0 0.0±0.0 64.13±2.88 
Ovarian-qaqc    
npca-svm-linear 98.01±1.94 99.27±0.90 98.70±0.89 
npca-svm-rbf 98.11±2.25 99.57±0.82 98.91±0.98 
svm-linear 96.16±3.52 96.97±2.19 96.57±1.99 
svm-rbf 97.00±17.18 3.00±17.18 54.92±44.8 
pca-svm-linear 97.14±2.16 97.94±1.57 97.12±1.17 
pca-svm-rbf 3.20±17.22 96.80±17.22 54.95±44.7 
Liver    
npca-svm-linear 97.68±1.71 94.40±2.22 96.02±1.35 
npca-svm-rbf 98.35±1.67 96.20±2.01 97.25±1.30 
svm-linear 92.57±3.84 91.04±3.76 91.78±2.27 
svm-rbf 38.00±48.78 62.00±48.78 47.92±2.00 
pca-svm-linear 90.96±3.69 89.57±3.56 90.21±1.99 
pca-svm-rbf 38.00±48.78 62.00±48.78 47.92±2.00 

 

linear and Gaussian kernels, for each proteomics dataset under the same 100 sets of 
training and test data (trials). The 100 trials of training/test data for each dataset are 
generated under the 50% holdout cross validations. The average classification rates, 
sensitivities and specificities and their corresponding standard deviations from each 
classification algorithm are given in the Table 2. 

From the classification results, we can make the following observations. 1. It is clear 
that the PCA-SVM, SVM classification algorithms suffer from overfitting under a 
Gaussian (‘rbf’) kernel. This is due to the complementary results of the sensitivities 
and specificities for the three proteomics datasets. For instance, under a ‘rbf’ kernel, 
the PCA-SVM and SVM classification for the Ovarian cancer dataset can only classify 
the positive (cancer) targets. Both of them have an average classification rate of 
64.13%, which is approximately the ratio of the positive targets among the total sam-
ples: 162/253=64.03%. 2. There is no overfitting problem under a ‘rbf’ kernel, for the 
NPCA-SVM algorithm with sparse coding. On the other hand, the NPCA-SVM has the 
best classification performance among all the algorithms for the three protein expres-
sion datasets. 3. Under a linear kernel, the PCA-SVM achieves slightly better or  
comparable results than the SVM for the two ovarian datasets. Similarly, the SVM 
classification also has slightly better average classification rates, sensitivities and 
specificities than the PCA-SVM for the Liver dataset. Thus, we can say that their clas-
sification performances for the experimental datasets are comparable. 4. The classifica-
tion results of the NPCA-SVM have leading advantages for the three datasets, com-
pared with those of the PCA-SVM and SVM classifications. Actually, the average 
specificities for the two ovarian cancer datasets reach 99%+ under the NPCA-SVM  
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Fig. 1. Comparison on the SVM classification under a linear kernel and the NPCA-SVM 
classification under a ‘rbf’ kernel. For the first dataset, NPCA-SVM (‘rbf’) has slightly better 
classification performance than the SVM (‘linear’). For the 2nd and 3rd datasets, the NPCA-
SVM (‘rbf’) classification has obvious leading advantages over the SVM (‘linear’) 
classification. 

classification. The 99%+ specificity level is the population screening requirement 
ratio in general clinical diagnostics. Figure 1 shows the performances of the SVM 
algorithm under a linear kernel and the NPCA-SVM algorithm under a ‘rbf’ kernel for 
three datasets.     

3.3   Compare Classification Results with Those of Other Algorithms  

We also compare the classification performance of the NPCA-SVM algorithm with 
those of three other classification algorithms: k-NN, PCA-LDA and NMF-SVM. For 
each dataset, we still use the previous 100 trials of training/test datasets generated 
under the 50% holdout cross validations in the classifications.  

The k-NN and PCA-LDA are widely used algorithms in proteomics data classifica-
tions. The k-NN is a simple Bayesian inference method. It determines the class type 
of a sample based on the class belonging to its nearest neighbors, which are measured 
by correlation, Euclidean or other distances. The PCA-LDA conducts the PCA proc-
essing for the training samples and projects the test samples in the subspace spanned 
by the principal components of the training data. Then, linear discriminant analysis 
(LDA) is used to classify the projections of the test data, which is equivalent to solv-
ing a generalized eigenvalue problem [10].  

The NMF-SVM algorithm is similar to the NPCA-SVM classification algorithm. It 
conducts the SVM classification for the meta-samples of a proteomics dataset, which 
are the columns of the feature matrix H in the NMF. We briefly describe the  
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NMF-SVM algorithm as follows. The NMF-SVM classification decomposes the 
nonnegative protein expression data mnX ×ℜ∈ into the product of two nonnegative 
matrices: WHX ~ , under a rank r with the least reconstruction error in the Euclidean 
sense. The matrix rnW ×ℜ∈ is termed a basis matrix. Its column space sets up a new 
coordinate system for X. The matrix mrH ×ℜ∈ is called a feature matrix. It stores the 
new coordinate values for each variable of X in the new space. Then, the SVM algo-
rithm is employed to classify the corresponding meta-sample of each sample in the 
protein expression matrix X. Each meta-sample is just the corresponding column in 
the feature matrix H. 

In the k-NN, the distance measures are chosen as the correlation and Euclidean dis-
tances. The number of nearest neighbors for each test sample is selected from 2 to 7; 
In the NMF-SVM, the matrix decomposition rank in the NMF is selected from 2 to 18 
for each dataset under the linear and Gaussian kernel. The final average classification 
rate for each dataset under the k-NN and NMF-SVM is selected as the best average 
classification rate of the 100 trials of training and test data among all cases. Table 3 
shows the expected classification rates, sensitivities and specificities of the three algo-
rithms and corresponding standard deviations for each of the three datasets, under the 
100 trials of training/test datasets generated from 50% holdout cross validations.  

Actually, we have found the k-NN algorithm achieves better classification per-
formances under the correlation distance than the Euclidean distance. The NMF-SVM 
algorithm achieves better classification performances under the correlation distance 
than the Euclidean distance. For the three protein expression datasets, the NMF-SVM 
and k-NN classification results are comparable. However, it is obvious that the PCA-
LDA algorithm achieves the best performances among the three algorithms.  

Table 3. Average classification performances of the NMF-SVM, k-NN, PCA-LDA algorithms 

 Average 
Sensitivity 

Average 
Specificity 

Average 
Classifying rates 

Ovarian    
nmf-svm-linear 99.91±0.31 92.92±2.50 97.41±0.94 
nmf-svm-rbf 96.27±3.35 90.83±4.48 94.29±2.72 
knn-correlation 99.28±1.34 91.67±3.67 96.53±1.57 
knn-euclidean 99.58±0.76 90.77±3.19 96.41±1.29 
pca-lda 99.93±0.38 99.21±2.00 99.67±0.87 
Ovarian-qaqc    
nmf-svm-linear 92.02±5.01 86.24±5.67 88.69±3.47 
nmf-svm-rbf 76.18±9.12 78.57±6.38 77.30±3.67 
knn-correlation 89.99±4.68 91.82±4.43 90.87±2.92 
knn-euclidean 82.03±6.86 87.71±5.86 85.03±3.71 
pca-lda 98.81±1.68 96.99±0.03 97.69±0.65 
Liver    
nmf-svm-linear 84.58±5.14 71.30±5.12 77.76±2.48 
nmf-svm-rbf 80.69±6.01 69.21±5.57 74.79±2.25 
knn-correlation 72.27±4.60 80.80±4.57 76.48±2.20 
knn-euclidean 77.04±5.81 75.38±5.33 76.11±2.51 
pca-lda 91.39±5.81 88.87±3.95 90.08±2.13 
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Fig. 2. Comparison on the classification performances of four algorithms for three proteomics 
datasets: ‘O1’ (Ovarian), ‘O2’ (Ovarian-qaqc), ‘L’ (Liver). The NPCA-SVM has the best 
performances among the four algorithms with respect to average classification rates, sensitivi-
ties and specificities for all three datasets, though the PCA-LDA and SVM algorithms both 
achieve comparable classification performances for the first ovarian dataset. 

Figure 2 compares the classification performances of the NPCA-SVM algorithm 
with sparse coding to those of the PCA-LDA, PCA-SVM and SVM with respect to 
average classification rates, sensitivities and specificities. For all three proteomics 
datasets, it is obvious that the NPCA-SVM algorithm with sparse coding under the 
‘rbf’ and ‘linear’ kernel has generally achieved the best or second-best classification 
results among all these algorithms respectively. The NPCA-SVM algorithm with 
sparse coding also gives the same leading results under the leave-one-out cross vali-
dation (LOOCV) according to our experimental results. 

4   Conclusion and Discussions 

In this study, we develop a novel feature selection algorithm: nonnegative principal 
component analysis (NPCA) and propose the NPCA-SVM algorithm under sparse 
coding for the cancer molecular pattern discovery of protein expression data. We also 
demonstrate the superiority of this novel algorithm over the NMF/PCA-SVM, SVM, 
k-NN and PCA-LDA classification algorithms for three benchmark proteomics data-
sets. Our algorithm also overcomes the overfitting problem of the SVM and PCA-
SVM classifications under a Gaussian kernel.  

With nonnegative principal component analysis, we can develop a family of 
NPCA-based statistical learning algorithms by applying NPCA as a feature selection 
algorithm before a classification or clustering algorithm, e.g., NPCA-based Fisher 



398 X. Han and J. Scazzero 

discriminant analysis (NPCA-FDA), NPCA-based K-means or hierarchical clustering. 
In future work, we plan to investigate the NPCA-based classifications, such as 
NPCA-FDA, NPCA-SVM in the protein folding, gene, microRNA profiles data clas-
sification and biomarker discovery.  
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Appendix: Nonnegative Principal Component Analysis Parameter 
Derivations    

In this section, we give the detailed parameter derivation for equations (5) and (6).  
Computing the stationary points for the objective function ( )slf u in equation (4), we 

have a cubic root finding problem. The final U matrix consists of a set of nonnegative 
roots of equation (9). 

                                        3
2 1( ) ( ) / 4 2 0sl sl sl sl slp u df u du u c u cα= = − + + =                                (9) 

We derive coefficients 2c , 1c in equation (9) as follows. For convenience, we rewrite 

the terms in equation (2) as 
2

1 2
T

F
I U U L L− = + , where 1L and 2L represent the con-

tributions from the diagonal elements and non-diagonal elements of the  
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matrix TI U U− to its Frobenius norm respectively, where 2
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compute the parameters 2c , 1c by checking the coefficients of slu and 2
slu  in equation 

(2). From the equation, we have following results: 
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By substituting for the coefficients of slu and 2
slu , we have  

                                 2 2 2
2

1 1, 1,

1
2 2

2
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c x u uα α α
= = ≠ = ≠

= − − +∑ ∑ ∑                                    (13) 

                          1
1 1, 1, 1,

2
n d k d

si tl ti sj tl tj

i t t s j j l t t s

c x u x u u uα
= = ≠ = ≠ = ≠

= −∑ ∑ ∑ ∑                                   (14) 

 



Gene Ontology Assisted Exploratory Microarray

Clustering and Its Application to Cancer

Geoff Macintyre1,2, James Bailey1,2, Daniel Gustafsson4, Alex Boussioutas3,
Izhak Haviv5,6, and Adam Kowalczyk2

1 Department of Computer Science and Software Engineering, University of
Melbourne, Victoria, Australia

2 National ICT Australia, Victorian Research Lab, Australia
3 Ian Potter Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum

Cancer Centre, St. Andrew’s Place, East Melbourne, Victoria, Australia
4 Department of Computer Science and Computer Engineering, La Trobe University,

Victoria, Australia
5 The Alfred Medical Research and Education Precinct, Baker Medical Research

Institute, Epigenetics Group, Melbourne, Australia
6 Department of Biochemistry and Molecular Biology, University of Melbourne,

Victoria, Australia

Abstract. Gene expression profiling provides insight into the functions of
genes at a molecular level. Clustering of gene expression profiles can facili-
tate the identification of the underlying driving biological program causing
genes’ co-expression. Standard clustering methods, grouping genes based
on similar expression values, fail to capture weak expression correlations
potentially causing genes in the samebiological process to be grouped sepa-
rately. We have developed a novel clustering algorithm which incorporates
functional gene information from the Gene Ontology into the clustering
process, resulting in more biologically meaningfull clusters. We have vali-
dated our method using a multi-cancer microarray dataset. In addition, we
show the potential of such methods for the exploration of cancer etiology.

Keywords: Microarray, Gene Ontology, Clustering, Cancer.

1 Introduction

Gene expression profiling using microarrays has become a key tool in the anal-
ysis of biological systems at a molecular level. While still producing relatively
noisy data, much improvement has been made in noise correcting normalisation
procedures and feature selection, providing rich datasets for further biological
analysis. Microarray analysis pipelines generally come in two flavours: differen-
tial expression analysis and exploratory clustering. The purpose of differential
expression analysis is to find the set of genes which are differentially expressed
between two or more experimental conditions or samples. Once the list of genes
has been determined, it can be used to classify further microarrays into sim-
ilar sample categories. Alternatively the differentially expressed genes can be
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analysed to try to unravel the underlying biology responsible for observed ex-
pression patterns. This is similar in approach to exploratory clustering. The aim
in exploratory clustering is to try to uncover groups of genes with similar ex-
pression patterns. This is useful under the assumption that genes with shared
expression patterns have similar function or are involved in similar biological
processes. Each of the clusters of genes identified provide a starting point for
further biological analysis based on gene expression.

While exploratory clustering has been shown to be successful in many cases, it
can suffer from some common problems. Clusters can be dominated by strong or
noisy expression patterns, forcing genes of similar function or those belonging to
the same process with less correlated expression, to join another cluster. There-
fore the resulting clusters may not represent a biological process in its entirety
or majority, making it hard to determine which molecular processes a particular
cluster of genes represents.

To improve the clustering process, additional information can be introduced to
ensure genes with similar function or shared pathways can be clustered together.
Sequence similarity, protein structure similarity, shared pathways and functions,
are all ways in which genes can be shown to be related. There exist tools that use
this information in trying to unravel the biology behind the observed expression
behavior.

The Gene Ontology (GO) [1] is a curated, structured vocabulary that de-
scribes genes and gene products. This provides a source for finding shared molec-
ular functions, biological processes or cellular components between two genes. In
the GO, two genes may be annotated to the same biological term, or they may
be related through a shared term higher in the GO hierarchy (see Fig. 1). From
this information a similarity metric [2,3] can be defined which measures the re-
latedness of each gene via semantic functionality. This similarity measure can
then be used as a biological prior probability measure on the clustering of genes
via expression profiles. Previous attempts have been made to utilize the GO in
clustering of gene expression profiles. Cheng et al [4] developed a clique-finding
algorithm for the GO and used the cliques to perform co-clustering analysis with
gene expression profiles. A biclustering approach which yields clusters designed
to map onto the GO structure was developed by Liu et al[5]. Huang et al [6] and
Pan [7] used GO annotations shared between genes to modify standard distance
and model based clustering algorithms, and Boratyn et al [8] proposed a gen-
eral method modifying the distance measure based on prior shared functional
information between genes.

There are however two fundamental drawbacks with these approaches. Firstly,
the GO is constructed as a directed acyclic graph, with terms lower in the tree
being specialisations, or parts of, terms higher in the tree. Genes are then anno-
tated to one or more terms in the tree, at the lowest (most specific) level possible.
Drawing a path from one gene to another through this tree to determine simi-
larity of the genes does not necessarily imply shared biology. The abstraction of
terms across each level of the ontology can be such that two genes with a single
shared parent term, may be extremely diverse in terms of their specific function.
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Fig. 1. This is a cut down example GO hierarchy for illustrative purposes. In the full
Gene Ontology there would be additional terms between each of the nodes in the graph
and the gene products would be annotated to more specialised terms lower in the tree.

For example, the two terms negative regulation of steroid metabolic process and
positive regulation of steroid metabolic process share the parent steroid metabolic
process. Genes annotated to each of these terms have the opposite effect on steroid
metabolism. Therefore it would not be correct to state they had similar function
based on their shared parent, especially in the context of their co-expression. Sec-
ondly, having genes annotated to the same term does not necessarily imply they
have similar function or share a biological pathway, in the context of their expres-
sion patterns. A single gene can act differently in various biological contexts and
thus have context specific roles.

The GO is also used by tools such as GeneMerge [9], FatiGO [10] and others
[11,12,13,14] to determine over-represented GO terms given a group of genes,
thus giving a semantic representation of the biology spanning a group of genes.
In the context of microarrays, these tools provide the ability to explore clusters
of genes and form biological hypotheses about the observed co-expression. One of
the benefits of this approach is that one is not scrutinizing the behavior of a single
gene, but rather groups of genes in the same biological context. This provides an
abstracted level of analysis, which encapsulates a single gene’s behavior, within
the complex biological system represented by the cluster.

A method is needed which looks for commonalities between genes based on
the GO that does not traverse the GO hierarchy and is relevant to the gene
set of interest (the gene’s biological context). We have developed GOMAC:
Gene Ontology assisted Microarray Clustering, a modified k-means cluster-
ing algorithm which incorporates GO information only when it is relevant to the
gene’s context, thus avoiding problems with irrelevant gene similarities. We have
validated our method on a microarray dataset [15] spanning 12 cancer types
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demonstrating that our method results in an increase in number and biological
relevance of meaningful clusters. We also discuss the biological implications of
our results with respect to future research in cancer etiology.

2 Methods

The key biological assumption of the algorithm presented in this paper is that
genes that share a particular annotation in the GO, will share a detectable
similarity in their microarray expression pattern. There are two key differences
between our approach and the previous attempts at clustering using the GO
outlined above.

– Only GO terms that are statistically over-represented within a cluster are
used to calculate the similarity between genes. This ensures that only GO
terms within the gene’s context are used.

– We iteratively calculate similarities between genes using the GO, rather than
having GO similarities as a set prior.

In order to construct a model capable of the key points outlined above, each
potential cluster of genes to be determined, requires both an expression profile
to model the genes’ expression measurements and an annotation profile to model
the genes’ GO similarities. As we are using a k-means based clustering algorithm,
the number of clusters C is a parameter set by the user.

2.1 Algorithm Overview

1. Initialise using k-means clustering, grouping genes based on expression values
using the method in Eisen et al [16] with C clusters.

2. Determine the expression profile for each cluster.
3. Determine the annotation profile for each cluster.
4. Re-cluster genes based on both expression and GO annotations.
5. Re-estimate the expression and annotation profiles.
6. Repeat steps 4 and 5 until convergence.

2.2 Expression Profile

Let κ be the number of samples; let Gc be the set of genes in a cluster c. Each gene
g can be viewed as a vector xg = (xgi)1≤i≤κ ∈ Rκ of its expression values across
all samples. The centroid of cluster c is defined as the vector Xc = (xc

1...x
c
κ) ∈ Rκ

with entries defined as:

xc
i =

∑

g∈Gc
xgi

|Gc| . (1)

where xgi is the expression measurement for a particular gene g and sample i.
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2.3 Gene Ontology Annotation Profile

To generate a Gene Ontology annotation profile for a cluster, all GO terms
annotated to the genes in a cluster which are statistically over-represented need
to be found. This means that rather than reporting all terms that are annotated
to the genes in a cluster, report only those that have sufficiently low probability
of being present if we sampled a random selection of genes. For this purpose
we are using a program called GeneMerge1.2 [9]. This uses the hypergeometric
distribution with Bonferroni correction to generate a p-value for each term which
is annotated to genes in a cluster. We use a threshold of b ≤ 0.2 of the Bonferroni
corrected score as it provides a biologically meaningful number of terms that
describe a cluster. A lower threshold yields clusters based mainly on expression
distances with little or no GO terms and a higher threshold results in many
GO terms which are less descriptive. All terms reported above the threshold are
ignored. Let τc be the number of terms below the threshold b for a given cluster
c. From this, a weight d is assigned proportional to the number of genes in the
cluster that are annotated to that term, normalised over all of a cluster’s GO
terms. The weight dt shows the degree in which a term t is associated with a
particular cluster. Then we can denote a cluster c’s annotation profile to be the
vector Tc = (dt)1≤t≤τc with entries defined as

dt =
nt

∑τc

j=1 nj

. (2)

where nt is number of genes in the cluster that are annotated to GO term t
(below the threshold b).

2.4 Algorithm

Input

– Gene list G
– For each gene g, expression measurements Eg1...Egκ for κ samples
– For all GO terms A1...Af , given a particular gene g and the tth term, Agt

takes the value true if the gene g is directly annotated to the term t, (obtained
by querying the September 2007 release of the GO).

Initialisation

– Form initial groupings of genes using k-means clustering on the expression
values.

– Calculate the cluster centroid (expression profile) Xc for each cluster.
– Calculate the annotation profile Tc for each cluster.

Optimisation

1. Gene assignment: In the gene assignment step, we re-assign a gene to a cluster
based on the current values for the expression and annotation profiles for that
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cluster. We use a gene’s match to a cluster annotation profile to scale the
Euclidean expression distance of the gene from that cluster.

For each gene g let the known expression values be Egβ where β ∈ Ng ⊂
{1....κ} are all indices of samples with known values for gene g. This is due to
imperfections in the microarray experimental procedure which may generate
data with missing or unknown expression values for a gene. Given this, we
define the Euclidean distance of each gene g from cluster c’s centroid as:

DEc
g =

1
|Ng| .

√
∑

β∈Ng

(xc
β − Egβ)2. (3)

Then, given a gene g and its GO annotations, we also determine a scaling
factor Sc

g (where 0 ≤ Sc
g ≤ 1). This is based on how many of the τc terms in

the cluster’s annotation profile match the terms annotated to a gene g:

Sc
g = 1 −

τc
∑

t=1

(dc
t · Agt). (4)

Next, the expression distance DE of gene g from cluster c is scaled by the
degree in which it’s annotated terms correlates with that of cluster c:

DESc
g = DEc

g × Sc
g. (5)

Finally, we simply use the minimum of this modified distance to assign a
gene to a particular cluster:

cg = arg min
c

(DESc
g). (6)

2. Re-estimation of cluster profiles: With the new assignment of genes, we re-
calculate the centroids of each cluster and determine the new GO terms
which are over-represented and their associated weights.

3. Repeat steps 1 and 2 until convergence (genes stop changing clusters)

Output

– A series of gene clusters with associated GO annotations, which can be used
as a starting point for further biological analysis.

3 Clustering Performance Assessment

External clustering assessment typically uses a ‘gold standard’ clustering deter-
mined by external means, to compare clusterings to. However, in the case of
exploratory clustering, there is no ‘gold standard’. Instead, a standard measure
to determine whether a new algorithm provides biologically better clusters than
a previous algorithm, is to look for statistically over-represented GO terms in
each of the clusters and show that the new algorithm has clusters of superior
biological relevancy. However because we used the GO in the clustering process,
this measure is not suitable. Two alternative means of external validation were
devised.
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3.1 Histological Enrichment Criterion

A measure was generated to try to test the biological significance of the clus-
ters output by GOMAC with respect to their usefullness in biological hypothesis
generation, in particular, uncovering differences in cancer histologies. This mea-
sure is based on the ability of the algorithm to uncover clusters which help
answer or generate a specific biological question. In the case of the multi-class
cancer dataset used, this is the ability to uncover clusters which show well de-
fined differential expression across various cancer types. The idea here is that
if the algorithm works successfully, the genes in a cluster should encapsulate a
particular biology.

As cancer types can be similar or vary significantly depending on their lo-
cation in the body, one would expect certain cancers to have similar biological
expression behaviour and others to differ. To measure this, additional hierar-
chical clustering of the samples of each cluster was performed to partition the
cancers into two groups. If successfull, one group contains all cancers that have
predominantly upregulated genes in the cluster, and the other group has all sam-
ples which have predominantly downregulated expression. In the dataset used,
the samples were sub-divided by label, into classes (cancer types). Given a good
clustering, the upregulated partition of a cluster should be saturated by all of a
particular sub-class of sample (cancer type). That is, we would expect cancers
sharing some (perhaps unknown) biology to be grouped together. To quantify
this, considering a single partition, the hypergeometric distribution was used to
determine the probability of observing a particular enrichment of sample classes
(cancer types) by chance. From this, a Bonferroni corrected p-value was gener-
ated which was used to determine the quality of a particular cluster in reference
to its biological usefullness.

3.2 Functional Annotation Enrichment Criterion

In addition, an alternative information source to the GO was used to determine
biological significance of a cluster. Each of the clusters were analysed through the
use of Ingenuity Pathway Analysis (Ingenuity R©Systems, www.ingenuity.com).
The genes were overlayed with function and disease information provided by
IPA. The overlay procedure takes a gene list as input and outputs the functions
and diseases annotated to the genes that are over-represented, similar in process
to GeneMerge mentioned above. Each of the terms has an associated p-value
and all relationships have been extracted from various literature sources curated
by experts. The IPA results were used as a comparison to assess the accuracy of
the GO annotation profiles reported for each cluster by GOMAC.

4 Cancer cDNA Microarray Test Data

For testing, a robust microarray dataset with various sample classes was chosen
to demonstrate the potential of GOMAC to uncover biological similarities across

www.ingenuity.com
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classes. We applied GOMAC to a published collection of cDNA microarray data
[15] representing 12 cancer types and their subtypes. The full dataset was filtered
retaining only genes with greater than 400 signal intensity in the test channel
(Cy5) and greater than 4 fold change (using per gene median normalised data)
in at least 5 samples. These cut-offs were suggested by the original authors in or-
der to minimise experimental noise and maximise the differential gene expression
across samples. This left 2185 genes and 165 samples: Breast(23), Colorectal(12),
Gastric(7), Lung(Adenocarcinoma 10, Large Cell Carcinoma 8, Squamous Cell
Carcinoma 9), Melanoma(11), Mesothelioma(5), Ovarian(21, Mucinous 11), Pan-
creatic(8), Prostate(5), Renal(12), Squamous Cell Carcinoma (SCC) (11), Tes-
ticular(3), Uterine(9). The test set was clustered using regular k-means and
GOMAC with the number of clusters C=10,20,30,40,50,100,200 and 300. The
value C=40 provided the best granularity of GO terms for discussion and re-
sults presented in this paper are exclusively for C=40. An added bonus of this
dataset is that novel biological hypotheses could be generated in terms of shared
behaviour between cancers through using GOMAC.

5 Results

The dataset was clustered using the k-means clustering algorithm of Eisen et al
[16] and with GOMAC. Additional hierarchical clustering was performed on the
samples within each cluster using the Bioconductor Package Heatmap.2 [17].
The resulting dendrogram was cut so that the samples were partitioned into
two groups. Table 1 contains the significance scores representing how well the
partitioning of samples into two groups splits the sample sub-classes, without
dividing the sub-classes themselves (histological enrichment criterion).

Table 1 shows that GOMAC provided 3 additional biologically significant
clusters over regular k-means clustering and improved the biological significance
of approximately 55% of the partionable clusters. In addition, GOMAC resulted
in a greater number of GO descriptors (terms) for the clusters.

Ingenuity Pathway Analysis (IPA) was carried out on each cluster of genes
to provide an external source of semantic validation (functional annotation cri-
terion). Significantly reported functions and diseases for each cluster from IPA
were grouped with the GO annotation profile of the cluster and the samples
enriched by partitioning to see if there was any correlation. Table 2 gives a sum-
mary of the diseases and functions reported by IPA associated with a selection
of the significant clusters.

6 Discussion and Future Work

Cancers from multiple sites in the body have been expression profiled in single
datasets in the past. This was mainly done in order to design tools to identify
the site of origin of Cancer of Unknown Primary [18,19,15]. In addition, meta
analysis of multiple cancers was used to identify common themes in cancer gene
expression [20]. The Gene Ontology is usually used only after the clustering of
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Table 1. The significance score reported in each instance is calculated on one of the
partitions of samples. Only significance scores generated from the same partition sample
size for the same cluster can be compared and are indicated with a *. N\A values
were cases where the dendrogram could not be cut to partition the samples into two
sizeable groups. In this case the cluster is likely to be representative of noisy data or
ubiquitously expressed genes and is therefore uninteresting in this context. Clusters
omitted from this table also fall into this category. The number of terms significantly
over-represented in the cluster are listed as an indication of the descriptive power of
the clusters.

Cluster k-means
partition
significance
/GO terms

GOMAC
partition
significance
/GO terms

Cluster k-means
partition
significance
/GO terms

GOMAC
partition
significance
/GO terms

1* 3.6E-27 2 4.7E-26 2 20* 3.6E-07 8 4.7E-06 8
2* 2.8E-08 0 5.7E-05 1 21* 1.4E-15 0 1.3E-18 1
4 1.4E-08 1 N\A 0 22 1.0E-14 1 N\A 0
5 3.9E-12 6 4.5E-16 6 24 2.6E-20 2 1.8E-17 2
10* 2.4E-01 10 1.9E-02 10 27 1.9E-10 1 N\A 0
11 N\A 3 8.9E-05 5 33* 1.4E-10 5 6.0E-10 5
12 N\A 0 1.3E-13 0 36* 3.6E-07 0 4.6E-09 1
13* 4.9E-11 0 1.9E-11 0 37 N\A 7 3.6E-10 8
14 N\A 0 3.8E-18 0 38 N\A 0 2.9E-09 2
15 8.8E-20 0 1.6E-14 0 39* 4.6E-09 2 3.6E-10 2
16 5.2E-16 0 N\A 0 40 N\A 0 3.3E-07 1
19 N\A 0 1.6E-02 1

genes and samples has been done. Here we reasoned that since multiple genes are
co-ordinately expressed by means of biological programs, such as cell types and
organs, the use of the GO in the process of clustering would focus the analysis
on the driving program rather than individual genes.

Cumulative evidence during the last 50 years argues that cancer progression
arises through accumulation of somatic changes in the cancer cell that confer
selective advantage to the mutant cell in terms of extension and unlicensed ex-
tended lifespan. As these selection pressures are different in different organs of
the body, one expects that some of the somatic changes would be organ specific.
This point would be missed in classical expression profiles as different cancer
types are not profiled on the same platform in the same instance. Therefore by
using the cancer profiles of multiple samples in combination with GO clustering,
we are positioned for the first time to address this possibility.

While Table 1 demonstrates that both regular k-means and GOMAC can re-
veal gene clusters which can be partitioned to demonstate biology specific to
certain cancer types, the improved significance and increased number of signif-
icant clusters provided by GOMAC suggests that clustering using the GO is
advantageous. The greater number of GO terms uncovered by GOMAC also
gives increased power in biological interpretation of the clusters. Therefore our
method improves the ability to uncover biological processes that are specific to
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Table 2. Three examples of the significant clusters identified by GOMAC are shown.
The cancers identified are those that were partitioned into one group for that cluster.
The genes belonging to the cluster are defined by the GO terms. The terms identified
by the independent IPA analysis with p-value less than 0.001 are also reported.

Cluster GO terms Cancers IPA Function/Disease

1 digestion Gastric metabolism of steroid
steroid metabolism Colorectal transcription of GATA site

Muc. Ovarian digestive organ tumor
Pancreatic pancreatic tumor

colon cancer

5 spleen development Breast guidance of motor axons
urogenital system development Prostate size of prostate gland
embryonic organ development breast cancer
prostate gland development cancer of mammalia
sex differentiation mammary tumor
fatty acid metabolism genital tumor

38 keratinization Lung-SCC ichthyosis
epidermis development Mesothelioma development of epidermis

SCC adhesion of cells
differentiation of keratinocytes
binding of stromal cells

certain cancer types as each of the resulting clusters have been both reduced in
noise and made more biologically informative.

It is immediately obvious from the IPA overlay in Table 2 that genes associated
with cancer processes have been identified. Moreover, many of the significant IPA
terms actually match the cancers saturating the cluster. There are also exam-
ples of the over-represented GO terms correlating with the IPA over-represented
terms. This success in linking cancer types, with gene expression profiles and a
statistically significant semantic description of the underlying biology, provides
an excellent starting point for the exploration of the similarities and dissimilar-
ities of various types of cancers. In fact, the GO terms identified for cluster 1
in Table 2, digestion and steroid metabolism, have clinical observations linked
with the cancers significantly partitioned. The cancers in this cluster are pre-
dominantly derived from gastrointestinal and ovarian epithelium. The mucinous
production of both of these cancers may be linked through steroid metabolism,
as outlined by this cluster. Interestingly, all of the tumours in this dataset may
be derived from the gastrointestinal system. There are mucinous tumours of
the ovary that have been found to be metastatic deposits from Gastric can-
cer primaries which have been termed Krukenberg tumours [21]. Furthermore,
Krukenberg tumours have been linked to virilisation and hence another link with
steroid metabolism. While this cluster was identified by standard k-means, it was
also identified by GOMAC. This suggests that as well as GOMAC being able
to identify a greater number of informative clusters than k-means (for example
cluster 38 has a major shared similarity of squamous differentiation across the
cancers in the group, with Mesothelioma being an exception), it can also retain
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initial informative clusters. Therefore, coupled with a similar analysis of normal
tissues, these results can potentially uncover a combination of tissue specific and
cancer effects which have not been identified before.

The gene ontology tool however, suffers from a substantial flaw in its potential
to assist the deciphering of genome language; the genes are curated according to
whether they belong to a pathway, without discriminating between antagonistic
to agonistic genes. Consequently, in our analysis, samples could appear to belong
in the same group, while in fact they divide into two groups, based on whether
the pathway is induced or repressed. This problem may be resolved by utilizing
more advanced gene curation algorithms, such as those collected in Gene Set
Enrichment Analysis [22], which represent genes that have been observed in
microarray experiments as those responding to defined molecular changes, such
as activating mutations or forced expression of defined genes. Interestingly, even
before using such algorithms, integrating the GO into the clustering process
improves the segregation of samples, and, in addition, it sheds new light on the
biological processes that drive specific cancer types, and organ specific biological
programs.

Summary. We have shown through our analysis, that incorporation of addi-
tional biological information into the microarray clustering process in a bio-
logically justified manner, can enhance the interpretability of microarray data.
Specifically, we have shown the potential of such a method to unravel the com-
plex nature of the biological processes involved in cancer. Ideally, our method
would be repeated multiple times, while alternating the source of the ontology,
the cancer types, and genes. Followed by ranking of the segregating lists accord-
ing to significance, then formation of an integrated summary list, that records all
possible drivers of the biological systematic variations among cancers in different
organs. A key benefit of such an exercise would be hypothesis generation, in the
field of cancer etiology with an organ specific focus.
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Abstract. Discovering toxicity biomarkers is important in drug discovery to 
safely evaluate possible toxic effects of a substance in early phases. We tried 
evolutionary classification methods for selecting the important classifier genes 
in hexachlorobenzene toxicity using microarray data. Using modified genetic 
algorithms for selection of minimum number of features for classification of 
gene expression data, we discovered a number of gene sets of size 4 that were 
able to discriminate between the control and the hexachlorobenzene (HCB) ex-
posed group of Brown-Norway rats with >99% accuracy in 5-fold cross-
validation tests, whereas classification using all of the genes with SVM and 
other methods yielded results that vary between 48.48% to 81.81%. Making use 
of this small number of genes as biomarkers may allow us to detect toxicity of 
substances with mechanisms of toxicity similar to HCB in a fast and cost effi-
cient manner when there are no emerging symptoms. 

Keywords: Feature selection, toxicogenomics, genetic algorithms, biomarker 
discovery. 

1   Introduction 

Finding reliable toxicity biomarkers is important in toxicogenomics to safely evaluate 
possible toxic effects of a substance in early phases of drug discovery. Discovering the 
important mechanisms of toxicity for known toxic substances and developing bio-
markers that detect these can lead to classification of new substances with respect to 
their toxicity in a cost-efficient manner.  

Using microarray technology to evaluate the changes in gene expression data be-
tween control and experiment data sets, the significant set of genes that indicate the 
existence of the toxicity may be obtained. Discovering these genes that are correlated 
with the substance class may point the mechanisms of toxicity and the effected path-
ways. These sets of genes may also be used for development of diagnostic kits that can 
be used to detect possible existence of toxicity of a substance on the test subjects, or on 
the early diagnosis of toxin exposure. 
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Minimizing the number of genes that are used as a biomarker, without affecting the 
accuracy of the prediction, is essential for practical purposes. Each redundant control 
will have a negative effect time-, complexity- and cost-wise, therefore finding the 
minimal set of genes with highest classification accuracy is in practical interest. Feature 
subset selection refers to this problem of selecting important set of attributes from a 
large set of redundant attributes that are uncorrelated with the class used in classification 
purposes.  

The method proposed by Kucukural et al. successfully selects the minimum number 
of features for classification of gene expression data using evolutionary methods with 
low attribute counts and very high accuracy in cancer data sets compared to other meth-
ods [1]. The viability of this method on toxicity data sets was unexplored, and if any 
changes were necessary for adapting it to toxicogenomics. To compare its performance, 
we tried this evolutionary classification method and other classifiers for selecting the 
minimum number of important set of genes in hexachlorobenzene toxicity using mi-
croarray data.  

Hexachlorobenzene (HCB) is an organochlorine fungicide with persistent environ-
mental pollution effects, and has various toxic mechanisms in man. During the period 
1955-1959, about 4000 people in southeast Anatolia in Turkey developed porphyria due 
to the ingestion of HCB that were used on wheat seedlings [2]. HCB has been also clas-
sified as a Group 2B carcinogen (possibly carcinogenic to humans) by the International 
Agency for Research on Cancer (IARC). Animal carcinogenicity data for hexachloro-
benzene show increased incidences of liver, kidney (renal tubular tumours) and thyroid 
cancers [3].  

Although HCB usage was banned in most areas, it is still generated as waste by-
products of industrial processes. The pollution of the sea coasts and groundwater per-
sists due to its stability, and HCB is still detectable in human milk and blood in some 
areas of the world.  

In this study HCB data set is used because its effects, mechanisms of toxicity, the 
pathways affected and the toxicology data such as oral and inhalation dosage in mice, 
rats and humans are well documented, therefore the obtained set of classifier genes may 
be compared with the literature. 

2   Related Work 

Studies for finding genomic markers for detection of changes in an organism are aimed 
at different reasons. One is mainly for practical diagnostic purposes, and other is for 
discovering the underlying mechanism in that change. Although both can be used for 
other purposes as well, the goal in finding diagnostic markers is to minimize the number 
of needed data without affecting accuracy. 

If the toxin causes a response in gene expression level, microarray technology is very 
powerful for biomarker discovery [4-5]. The entire human genome can be contained on 
a single microchip, enabling us to generate complete profile of the response to toxicity 
[6-8]. Representational difference analysis (RDA) of tissue- or cell-specific arrays are 
used to find candidate biomarker proteins from protein-coding genes that have a specific 
change in expression, when control and experimental values are compared [9-10]. How-
ever, using only genomic data is insufficient, since it only measure changes in mRNA 
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expression, but abundant quantities of mRNA does not necessarily equal abundant quan-
tities of  protein [5], thus semi-quantitative assays are required for checking the proteins. 
An example to this is the study from Ichimura et al. who identified the gene with most 
significant change in the postischemic rat kidney, KIM-1, and confirmed its viability for 
use as a biomarker by subsequent immunoblot, immunostaining, and RNA in situ hy-
bridization [9]. Examples to other similar studies in which analysis of microarray data is 
used to find markers and changed gene expression levels for damage due to radiation 
toxicity [11], hemolytic anemia induced by drugs [12], nephrotoxicity  induced by cis-
platin [13], identification of glutathione depletion-responsive genes in rat liver [14], and 
many more. This approach is powerful, and pharmaceutical and biotechnology compa-
nies even created panels of biomarkers that detect drugs causing hepatotoxicity upon in 
vitro exposure to rat hepatocytes or in vivo dosing in rats [15]. 

For markers of toxicity, studies are mostly in mechanistic field. The work by Ezen-
dam et al. [16], whose data set we studied, tried to find the significant changes in gene 
expression due to hexachlorobenzene exposure, and found a total of 104 genes in differ-
ent tissues that are affected by the HCB. Similar works concentrating on changes in 
expression levels in specific tissues or on the whole organism due to exposure to several 
chemicals are also numerous. 

Other works in which the biomarker discovery by feature selection is studied are also 
present. Many studies concentrate on heuristic search and randomized population based 
techniques such as genetic algorithms. Early studies used known computational proce-
dures such as greedy optimization, branch and bound, tabu search, simulated annealing, 
gibbs sampling, evolutionary programming, genetic algorithms, ant colony optimization 
and particle swarm optimization [17-24]. These perform differently in different condi-
tions due to the heuristic methods; no best solution can be found due to the practically 
non-computable number of possible solutions, making exhaustive search impossible.  

Recently, feature selection by coupling genetic algorithms with statistical classifiers 
has been studied. Alon et al. used clustering algorithms to find genes with correlated 
expression levels that can be used for diagnosis. They found a set of genes that can 
classify colon cancer by 90% accuracy [25]. On the same data set, Fröhlich et al. used 
genetic algorithms coupled with support vector machines to find minimum number of 
genes that can classify the data, which resulted in a set of 30 genes with 85% accuracy 
[26]. The work by Kucukural et al. that we used in this study concentrates on dynamic 
parent generation by fitness score of features using genetic algorithms, and was very 
efficient in finding a low number of highly accurate solutions, resulting in 98% accuracy 
using 12 genes in the same colon cancer data set and 100% accuracy with 12 genes in 
ovarian cancer data set [1]. 

3   Methodology 

To discover the minimum number of features that can classify the data, we have to find 
a way represent these sets of genes. In the genetic algorithm, each individual in the 
population represents a candidate solution to the feature subset selection problem. The 
genetic code of a parent is boolean vector of size m, where m is the number of attrib-
utes. A value of 1 means the parent has that attribute, and 0, not. Since there are 2m pos-
sible parents, exhaustive search is impossible with more than a handful of attributes, 
thus evolutionary algorithms or other heuristic methods are necessary.  
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The method is based on the selfish gene idea by Richard Dawkins, in which the indi-
viduals are only the carriers of genes, and the function of a parent is to leave the strong 
genes to next generation [27]. Thus, the main goal is the survival of the gene. If an indi-
vidual has a good fitness score with fewer genes, the gene (i.e. feature) count can be 
decreased. Basically, the algorithm uses this concept to select features. Details of the 
genetic algorithm are given below. 

The main base of the genetic algorithm uses standard mutation and cross-over algo-
rithms, using support vector machine (SVM) learning to assign a fitness score. SVM is a 
very accurate supervised learning method, widely used in computational problems in 
biology. Score of an individual is calculated by the accuracy of classification by SVM in 
5-fold cross-validation tests.  

The genetic algorithm employs elitism in which low scoring children are replaced 
with best scoring parents, if the score of the parents are higher. Also a small number of 
"bad" parents are also selected, which keeps the algorithm from being stuck in local 
minima, thus acting as simulated annealing along with the roulette wheel method. 

Used SVM parameters are given below. LibSVM library [28-29] was used in both 
the genetic algorithm and in the following tests. 

In the first generation, parents are randomly generated with each having a set number 
of features and each feature being covered a set amount, for reducing the chance of a 
good attribute being dropped due to redundant neighbours in that parent. Then, for a 
number of generations (given as non-reducing generations below) the genetic algorithm 
runs without trying to reduce the number of features. In this phase each feature is as-
signed the fitness score of its parent. After the first run for a set number of generations, 
average fitness score for each attribute is obtained by dividing the total fitness score by 
the number of times that feature was chosen in an individual. 

After this first pass is completed, the reducing phase of the genetic algorithm with 
roulette wheel based selection strategy is used in which the number of features is re-
duced for filtering the redundant attributes. In roulette wheel the probability of selecting 
a feature is its fitness score, therefore high scoring attributes are selected more often. 
Each child carries a specific gene set generated by the roulette wheel selection, cross-
over and mutation steps, and when a gene is selected more than once for a specific set, 
the duplicates will be removed, consequently decreasing the total feature count. This 
way the number of features of a child decreases if the same attribute is selected more 
than once. This parent generation scheme, which focuses on "gene" instead of parent, 
allows the dynamic selection of optimal number of features. The effectiveness of this 
approach can be clearly seen in Figures 1 and 2. 
 

The genetic algorithm uses the following parameters; 
 

Number of Features: 8799 
Feature Coverage (the number each feature is covered in the first generation): 2 
Number of features in each parent in 1st generation: 30 
Number of non-reducing generations: 50 
Number of reducing generations (see above): 500 
Population Size: 587 ((# of features)x(feature coverage) / (# of features in each  

parent)) 
Crossover Rate: 0.9, Mutation Rate: 0.1 
Elite Parent Rate: 0.2, Bad Elitist Rate: 0.01 
 



416 C. Meydan et al. 

 

Fig. 1. Min/Max/Mean errors in run of the algorithm with respect to generation in set 1. The given 
errors are the proportion of the false positives and false negatives in the whole test set. Notice that 
after 50 generations, algorithm changes its selection strategy from non-reducing to reducing (see 
text), and the min. error rate quickly converges to 0. 

 

Fig. 2. Number of features in the population with respect to generation. While the error rate 
becomes 0 at about 75 (see Figure 1 above), the feature count gradually decreases until it 
reaches a minimum of 4 in about 200th generation. Although there are some selected ones with 
3 features, they are not able to classify with 100% accuracy and are dropped against the sets 
with 4 features. 



 Discovery of Biomarkers for Hexachlorobenzene Toxicity 417 

SVM Parameters: C_SVC with kernel Radial Basis Function 
C: 100, Gamma: 1.0 / 8799 
Using normalization and shrinking. Not using probability estimates. 
 

The algorithm was repeated for 10 iterations for each 0-150, 0-450, and 150-
450mg/kg comparison (see Sections 4.1 and 4.2). Each run takes approximately 15 
minutes on a standard PC with a 2GHz CPU. After the genes are selected iteratively, 
different SVM parameters are used to find the optimal SVM score. By optimization of 
the other parameters more accurate solutions can be found [28], however the results 
obtained were ~100%, thus no optimizations were necessary. 

4   Results 

4.1   Data Set 

The microarray data used is from the study Ezendam et al. in Dutch National Institute 
for Public Health [16]. Ezendam et al. fed Brown Norway rats with diets supplemented 
with 0, 150 and 450mg/kg HCB for 4 weeks, after which spleen, mesenteric lymph 
nodes (MLN), thymus, blood, liver, and kidney were collected and analyzed using the 
Affymetrix rat RGU-34A GeneChip microarray. Using 1 microchip per tissue per ani-
mal, they obtained a total of 96 hybridizations; 35 from untreated control group, 30 
from 150mg/kg and 31 from 450mg/kg exposed group, each having 8799 genes of 
RGU-34A chip. 

The data set is available on EBI ArrayExpress [30] (accession: E-TOXM-15).  

4.2   Experiments 

HCB has relatively low acute toxicity, but it is cumulative in lipid tissues, and is persis-
tent. According to Extension toxicology network data, oral toxic dosage of HCB is 
10,000mg/kg [31] in rats. Rats exposed to 450mg/kg per day for 28 days accumulate 
about 12600mg/kg of HCB, thus showing the most toxic effects [31-33]. According to 
the previous works that studied the posology of HCB, the time of onset, severity and 
size of skin lesions, the increase in body, liver and spleen; in other words the toxic ef-
fects of HCB with respect to exposure, ideal dose of exposure in which pathological 
problems are seen in rats is 450mg/kg, so comparison between 0 and 450mg/kg is stud-
ied in most detail to find the markers of sub-chronic exposure. One rat in 450mg/kg 
exposed group even died after 25 days of exposure [16], thus we expect the changes in 
gene expression levels to differ more from the 0-150mg/kg comparison. However, for 
early prediction, the low-dose markers and studies for 0-150mg/kg and also the classifi-
cation of dosage by 150-450mg/kg are also given, though not as detailed.  

The found marker genes are then analysed and classified with other methods in the 
data mining environments WEKA (Waikato Environment for Knowledge Analysis from 
University of Waikato) [34] and Gist SVM package [35]. The genes are also searched in 
Affymetrix NetAffx Analysis Center [36] and in Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [37-39] for correlation between chip result and gene functions and 
pathways. 
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Table 1. Accuracy of the classification with different methods using both unfiltered 8799 features 
and the selected 4 features (set 3), in cases of 5-fold CV and testing on training data. Parameters 
are default values if not stated, except in SVM, which uses the parameters shown in section 3. 
N/A values were not classified due to high memory requirements. Post-selection accuracy values 
showing increase are indicated in bold/green, showing decrease in italic/red. 

Method

Accuracy

Using all 8799 Genes in
0-450mg/kg

Using the Selected 4 
Genes

5-fold 
cross-

validation

Test 
on

training 
data

5-fold 
cross-

validation

Test on 
training 

data

SVM 53,03% 100% 100% 100%
Decision Table 71,21% 96,97% 77,27% 86,36%
Naive Bayesian 65,15% 100% 77,27% 78,78%

Naive Bayes
Multinomial 54,55% 100% 93,94% 93,94%

Multi-layer
Perceptron N/A N/A 100% 100%

RBF Network 43,94% 100% 92,42% 100%
Simple Logistics 62,12% 100% 95,45% 100%
Random Forest 68,18% 100% 90,90% 100%

NBTree 75,76% 100% 78,79% 95,45%
C4.5 Decision Tree 66,67% 96,97% 93,94% 96,97%
k-nearest neighbour 81,81% 100% 96,97% 100%

K-Star N/A N/A 95,45% 100%
Classification via 
clustering (N=2) 48,48% 50% 45,45% 53,03%

 
 

4.3   Results 

We discovered a number of gene sets of size 4 that were able to discriminate between 
the control and the 450mg/kg HCB exposed group of Brown-Norway rats with >99% 
accuracy by SVM classification in 5-fold cross-validation tests, whereas classification 
using all of the genes with the same methods such as SVM, Naïve Bayesian, C4.5 deci-
sion tree, RandomForest yielded results that vary between 48,48% to 81.81% (Table 1). 
Similarly, in 0-150mg/kg 7 genes, and in 150-450mg/kg 6 genes that gave 100% accu-
racy were discovered. Since the changes in gene expressions should be more subtle due 
to exposure, it is normal for them to have more features to classify correctly. 

For 0-450mg/kg comparison, 8 of the iterations gave 4, 1 iteration gave 3 and 1 gave 
5 genes, for an average of 4 genes per set. The distributions were similar for others, with 
few less than and few more than 6 and 7.  

As seen in Table 1, since these genes are discriminative, any classifier can be used, 
not only SVM. Using multi-layer perceptron classification on selected feature set also 
gave 100%, C4.5 gave 93.94%, 1-nearest neighbour clustering gave 96.97% accuracy. 
Thus, without using SVM, even simple classifiers such as decision trees may be used 
for accurate classification by hand. 
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An important finding is that, while filtering features (and thus decreasing the infor-
mation content) mostly reduced the classification accuracy using all of the training data 
for testing, at the same time it increased the accuracy of 5-fold cross-validation dramati-
cally. We can conclude that the 100% accuracy in testing by training data is due to over-
fitting, and when the redundant features (i.e. noise) are filtered, the classifiers actually 
work much better in real world conditions. Reducing the feature count not only de-
creases the test cost and time/memory requirements, but also increases the accuracy.  

In 10 iterations, about 40 to 70 attributes are selected in total for each run. The selec-
tion of attributes shows half-normal distribution; a small number of genes appear in 
most of the sets while most of them only appear in one. It is possible that by running the 
algorithm for more iterations and selecting the most common elements may give more 
robust solutions for use in real world. 

Table 2. Details of the genes in feature set of 3rd iteration and cross selection of these genes in 
other sets 

Accession 
Number

Gene 
Symbol Description

# of times selected

0-150 0-450 150-
450

D00913_g_at Icam1 intercellular adhesion molecule 1 1 8 0

AF093139_s_at Nxf1 nuclear RNA export factor 1 
(mRNA_processing_Reactome ) 0 3 0

rc_AA892154_g_at Mxd4_predicted Max dimerization protein 4 
(predicted) 0 3 0

rc_AA892325_at Cept1 choline/ethanolamine 
phosphotransferase 1 0 2 0

 

However, while intra-class gene counts are half-normally distributed, inter-class gene 
similarity is very low. As it can be seen in Table 2, in the genes selected for 0-450 sepa-
ration are selected, just 1 of them is selected once in 0-150 and 150-450 classification. 
The results from other sets are similar. Although these occurrences are more frequent 
than  randomly selecting the same genes from a pool of 8799 genes, they are still some-
what lower considering the selected genes are effected by HCB exposure.  

Kucukural et al. compared the results on colon and ovarian cancer with other studies 
in terms of number of genes and accuracy. However, there are no studies in HCB toxic-
ity focusing on minimum number of predictive genes. Study by Ezendam et al. focused 
on microarray data for important genes in various tissues that have role or affected by 
HCB toxicity, and although feature selection was done for selecting significant ( p < 
0.001 ) expression level changes, the number was not minimized. Nevertheless, 45 
changed genes in spleen, 16 genes in MLN, 7 genes in thymus, 27 in blood and 19 in 
liver were detected. Of those, M63122, D00913, K00996, AA891209 and E00778 are 
also present in the genes we selected. 

To compare the number of features given by the algorithms, we used other feature se-
lection methods such as Sequential Floating Forward Selection (SFFS) and SVM-based 
Recursive Feature Elimination (RFE-SVM, or SVM-RFE), which are widely used for 
biomarker selection in the literature due to their good results. We also added some stan-
dard feature selection methods. Of those, feature selection using the Gain Ratio evalua-
tion, Information Gain, SVM weight evaluation and Correlation-based feature subset 
selection (CFS-Subset) are all done  in the WEKA data mining software [34]. RFE-
SVM is evaluated in the Gist software [35], and SFFS was our implementation.  
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Table 3. Comparison of different feature selection methods on the data set. The method pro-
posed by Kucukural et al. clearly surpasses other methods; it has the best accuracy among the 
tested methods with only 4 features. Even though others have more features (except SFFS), 
they still fail to reach 100% accuracy. In RFE-SVM, Gain ratio, Information gain and SVM 
weight methods, the top n elements are filtered by score. 

Methods
Feature 
Count

ROC 
Area

Accuracy Specificity Sensitivity

Our Method 4 1.0000 1.0000 1.0000 1.0000
RFE-SVM, n=4 4 0.8000 0.7727 0.7097 0.8286
RFE-SVM, n=8 8 0.9152 0.8182 0.8387 0.8000

RFE-SVM, n=17 17 0.9926 0.9697 0.9677 0.9714
Gain Ratio, n=5 5 0.8590 0.8636 0.7742 0.9429

Gain Ratio, n=10 10 0.9070 0.9091 0.8710 0.9429
Information Gain, n=10 10 0.8930 0.8939 0.8710 0.9143

SVM Weight, n=10 10 0.9700 0.9697 0.9677 0.9714
CFS-Subset 66 0.9370 0.9394 0.9032 0.9714

SFFS 2 0.8190 0.8182 0.8387 0.8000
 

 
The 5-fold cross validation results are given in table 3. These comparisons show that 

the method proposed by Kucukural et al. surpasses others in both feature count and 
accuracy. The only other method that had lower feature count was SFFS with 2 features, 
however its accuracy was only 81%, compared to 100% with 4 features on our method. 

5   Conclusions and Discussion 

The dynamic parent generation with emphasis on feature suitability for classification 
performs much better than the standard genetic algorithm in which the chance of good 
features coming together is dependent on crossover probabilities. In the standard ap-
proach heuristics are used only to decrease the search space, while this method tries to 
select the optimal features. Along with parents (i.e. sets of features), features themselves 
get a score and these features are then put into survival. With a higher fitness score, a 
feature gets selected more often while others are not selected at all and eliminated, and 
better features have a chance to get selected more than once in an individual, thus de-
creasing the number of features in the parent. 

Unlike statistical tests which examine the genes that have the most significant change 
in expression levels but lacks classification power, this algorithm finds genes with not 
critical change but with high degree of separation. For example Lipocalin 2 (extension 
AA946503), has shown about 50-folds change with p < 0.001 [16], but is not usable for 
classification with great accuracy (due to the overlaps), and was not selected by our 
algorithm, although it is definitely in the pathways affected by HCB.  

Although no prior work on biomarker detection for HCB induced toxicity was done, 
we compared the method with other well known feature selection and classifier algo-
rithms, in which the selected gene count and accuracy was better in our case. To com-
pare our accuracy, we classified the data without any feature selection. Classifying the 
data using all of the genes, without any selection, results in lower accuracy. Thus, low 
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number of genes used as biomarkers favour both accuracy and financial/computational 
costs of the tests.  

With this study, we concluded that biomarkers of toxicity can be discovered with the 
method improved upon the work proposed by Kucukural et al, and possibly with even 
better results than cancer in this case of HCB. This method resulted in only 4 features 
out of 8799 that can classify HCB exposure in Brown Norway rats with 100% accuracy, 
which is higher than the results obtained in colon cancer (12 features, 98.38% accuracy) 
and ovarian cancer (12 features, 100% accuracy) [1]. Comparison of the selected genes 
with the literature [16, 36-39] showed that most of these genes are known for their func-
tions in the pathological effects of toxicity induced by HCB. Using the low dose classi-
fiers and other markers obtained by further study, toxin exposure can be detected when 
there are no emerging symptoms, which can be used in both medicine and experimental 
drug discovery. Studying only the changes in blood cells can lead to unintrusive markers 
that can be used detect the toxicity or disease from only blood samples. 

Another point of use for these markers is that, by gathering data from various toxic 
studies and finding reliable biomarkers of toxicity pathways for different mechanisms of 
toxicity (e.g. in immunotoxicity; immunosuppression, immunostimulation, hypersensi-
tivity reactions, autoimmune reactions, etc.) can allow us to generate toxicity assays that 
are more efficient and accurate than the ones used today, which will allow detection of 
toxicity in very early stages of drug discovery, thus saving much time, effort and money. 
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Abstract. Emerging multi- and many-core computer architectures pose
new challenges with respect to efficient exploitation of parallelism. In
addition, it is currently not clear which might be the most appropri-
ate parallel programming paradigm to exploit such architectures, both
from the efficiency as well as software engineering point of view. Be-
yond that, the application of high performance computing techniques
and the use of supercomputers will be essential to deal with the ex-
plosive accumulation of sequence data. We address these issues via a
thorough performance study by example of RAxML, which is a widely
used Bioinformatics application for large-scale phylogenetic inference un-
der the Maximum Likelihood criterion. We provide an overview over the
respective parallelization strategies with MPI, Pthreads, and OpenMP
and assess performance for these approaches on a large variety of paral-
lel architectures. Results indicate that there is no universally best-suited
paradigm with respect to efficiency and portability of the ML function.
Therefore, we suggest that the ML function should be parallelized with
MPI and Pthreads based on software engineering criteria as well as to
enforce data locality.

1 Introduction

Emerging parallel multi- and many-core computer architectures pose new chal-
lenges not only for the field of Bioinformatics, since a large number of widely
used applications will have to be ported to these systems. In addition, due to
the continuous explosive accumulation of sequence data, which is driven by novel
sequencing techniques such as, e.g., pyrosequencing [1], the application of high
performance computing techniques will become crucial to the success of Bioin-
formatics. Applications will need to scale on common desktop systems with 2–8
cores for typical everyday analyses as well as on large supercomputer systems
with hundreds our thousands of CPUs for analyses of challenging large–scale
datasets. While many problems in Bioinformatics such as BLAST searches [2],
statistical tests for host-parasite co-evolution [3], or computation of Bootstrap
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replicates [4] for phylogenetic trees are embarrassingly parallel [5], they might
nonetheless, soon require the introduction of an additional layer of parallelism,
i.e., hybrid [3,6] or multi–grain [7] parallelism to handle constantly growing
dataset–sizes. Moreover, for large embarrassingly parallel problems, hybrid par-
allelizations can potentially allow for more efficient exploitation of current com-
puter architectures by achieving super-linear speedups due to increased cache
efficiency (see Section 4 and [8]). To this end, we focus on fine–grained loop–level
parallelism, which is typically harder to explore than embarrassing parallelism.
We study performance of MPI-, OpenMP-, and Pthreads-based loop–level par-
allelism by example of RAxML [9] which is a widely used program (2,400 down-
loads from distinct IPs; over 5,000 jobs submitted to the RAxML web-servers)
for Maximum Likelihood-based (ML [10]) inference of phylogenetic trees. The
program has been used to conduct some of the largest phylogenetic studies to
date [11,12].

Apart from considerable previous experience with parallelizing RAxML and
mapping the phylogenetic ML function to a vast variety of hardware architec-
tures that range from Graphics Processing Units [13], over shared memory sys-
tems [8] and the IBM Cell [7], to the SGI Altix [14] and IBM BlueGene/L [15]
supercomputers, RAxML exhibits properties that make it a well-suited candi-
date for the proposed study: Firstly, the communication to computation ratio
can easily be controlled by using input alignments of different lengths; secondly
the computation of the ML function requires irregular access of floating point
vectors that are located in a tree; thirdly the parallelization strategies described
here are generally applicable to all ML-based programs for phylogenetic infer-
ence, including Bayesian methods.

The current study represents the first comparison of MPI, Pthreads, and
OpenMP for the phylogenetic ML function, which is among the most impor-
tant statistical functions in Bioinformatics. It is important to note that, despite
a more demanding development process, MPI naturally enforces data locality,
which might significantly improve performance on NUMA architectures and en-
sures portability to systems such as the IBM BlueGene.

1.1 Related Work

A previous study on the comparison of OpenMP, MPI, and Pthreads [16] fo-
cused on performance for sparse integer codes with irregular remote memory
accesses. Other recent papers [17,18] conduct a comparison of OpenMP versus
MPI on a specific architecture, the IBM SP3 NH2, for a set of NAS benchmark
applications (FT, CG, MG). The authors show that an OpenMP-based paral-
lelization strategy, that takes into account data locality issues, i.e., requires a
higher MPI-like programming effort, yields best performance. However, such an
approach reduces portability of codes. In a parallelization of a code for analy-
sis of Positron Emission Tomography images [19] the authors conclude that a
hybrid MPI-OpenMP approach yields optimal performance.

Shan et al. [20] address scalability issues of a dynamic unstructured mesh
adaptation algorithm using three alternative parallel programming paradigms
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(MPI, SHMEM, CC-SAS) on shared and distributed memory architectures and
report medium scalability for an MPI-based parallelization which however pro-
vides a high level of portability.

Our study covers a larger diversity of current architectures than the afore-
mentioned papers, in particular with respect to multi-core systems, and assesses
performance of three common programming paradigms for the ML function. To
the best of our knowledge, this is the first comparative study, that provides a
comparison of the three programming paradigms for loop-level parallelism on
multi-core architectures, cluster, and SMP architectures.

2 General Fine–Grained Parallelization Scheme

The computation of the likelihood function consumes over 90-95% of total execu-
tion time in all current ML implementations (RAxML [9], IQPNNI [21], PHYML
[22], GARLI [23], MrBayes [24]). Due to its intrinsic fine-grained parallelism, the
ML function thus represents the natural candidate for parallelization at a low level
of granularity. Though the ML method also exhibits a source of embarrassing par-
allelism at a significantly more coarse–grained level [15], in our study, we exclu-
sively focus on fine–grained parallelism, which will become increasingly important
for multi–gene analyses (see [11,25] for examples) or even larger whole–genome
phylogenies that can have memory requirements exceeding 16–32GB.

To compute the likelihood of a fixed unrooted tree topology with given branch
lengths, initially one needs to compute the entries for all internal likelihood
vectors that essentially reflect the probabilities of observing an A,C,G, or T at
an inner node for each site of the input alignment, bottom-up towards a virtual
root that can be placed into any branch of the tree.

Note that, all computations of the partial likelihood vectors towards the vir-
tual root can be conducted independently. As outlined in Figure 1 synchro-
nization is only required before reduction operations that are conducted by the
functions that compute the overall log likelihood score of the tree or optimize
branch lengths (branch length optimization not shown in Figure 1). The compu-
tation of partial likelihood array entries consumes about 75% of total execution
time. Once the partial likelihood arrays have been computed, the log likelihood
value can then be calculated by essentially summing up over the likelihood vec-
tor values to the left and right of the virtual root. This means, that a reduction
operation is required at this point.

In order to obtain the Maximum Likelihood value all individual branch lengths
must be optimized with respect to the overall likelihood score. For a more de-
tailed description please refer to [5] and [10]. Note that, most current search
algorithms such as GARLI, RAxML, or PHYML, do not re-optimize all branch
lengths and do not re-compute all partial likelihood arrays after a change in
tree topology but rather carry out local optimizations as outlined in Figure 1
in the neighborhood of the tree region that is affected by the change. The main
bulk of all of the above computations consists of for-loops over the length m of
the multiple sequence input alignment, or more precisely over the number m′ of
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Fig. 1. Outline of the parallelization scheme used for Pthreads and MPI

distinct patterns in this alignment. The individual iterations of the for-loops of
length m′ in the functions that are used to calculate the phylogenetic likelihood
function are independent and can therefore be computed in parallel, i.e., the
maximum degree of parallelism is m′. This property is due to one of the fun-
damental assumptions of the ML model which states that individual alignment
columns evolve independently [10].

3 Parallelization with OpenMP, Pthreads, and MPI

3.1 OpenMP

The parallelization of RAxML with OpenMP, is straight–forward, since only a
few pragma’s have to be inserted into the code. Note that, in the current RAxML
release (available as open-source code at http://icwww.epfl.ch/∼stamatak/,
version 7.0.4) we only parallelized the standard GTR model of nucleotide sub-
stitution [26] under the Γ model of rate heterogeneity [27]. The parallelization
scheme is analogous to the concept presented in [8], however there is one funda-
mental difference: OpenMP might induce serious numerical problems, because
the order of additions in reduction operations is non-deterministic. Given, e.g.,
four partial likelihood scores l0, ..., l3 from 4 threads t0, ..., t3 the order of addi-
tions to compute the overall likelihood is unspecified and can change during the
inference. This behavior might cause two —otherwise exactly identical— math-
ematical operations to yield different likelihood scores. This has caused serious
problems in RAxML with 4 threads on a large multi-gene alignment, i.e., it is
not only a theoretical problem. To this end we modified the straight–forward
OpenMP parallelization of the for-loops to enforce a guaranteed addition order
for reduction operations.

While OpenMP clearly requires the lowest amount of programming overhead,
it is less straight-forward to identify and resolve issues that require a higher
degree of control over mechanisms such as thread affinity, memory locality, or
reduction operation order.
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3.2 Pthreads and MPI

The basic parallelization concept for Pthreads and MPI is analogous to the strat-
egy for the BlueGene/L as outlined in [15]. While this parallelization mainly
focused on proof–of–concept aspects and only implements the GTR+Γ model
(see above) for a single version of the RAxML search algorithm, the paralleliza-
tion presented here represents a complete re-implementation that covers the full
functionality and plethora of models provided by RAxML (please consult the
RAxML Manual for details [28]). The main goal of this re-engineering effort was
to develop a single code that will scale well on multi-core architectures, shared
memory machines, as well as massively parallel machines. Since the concepts de-
vised for the Pthreads- and MPI-based parallelizations are conceptually similar
we provide a joint description.

In a distributed memory scenario each of the p worker processes allocates a
fraction m′/p of memory space (where m′ is the number of unique columns in the
alignment) required for the likelihood array data–structures which account for ≈
90% of the overall memory footprint. Threads will just use an analogous portion
of a global data structure. Thus the memory space and computational load for
likelihood computations is equally distributed among the processes/threads and
hence the CPUs. Moreover, the vector fractions m′/p are consistently enumer-
ated in all processes, either locally (MPI) or globally (Pthreads).

The master thread/process orchestrates the distribution or assignment of data
structures at start-up and steers the search algorithm as well as the computation
of the likelihood scores. Thus, the master simply has to broadcast commands
such as, e.g., compute likelihood array entries, given certain branch lengths, for
vectors w, x, y, and z (see example in Figure 1) for the respective fraction m′/p
and compute the likelihood score. In the Pthreads-based version the master
thread also conducts an equally large part m′/p of the likelihood computations.

Global reduction operations, which in both cases (likelihood computation
& branch length optimization) are simply an addition over m′ double values,
are performed via the respective MPI collective reduction operation while jobs
are distributed with MPI_Broadcast. The Pthreads version is implemented ac-
cordingly, i.e., threads are generated only once at program start and then syn-
chronized and coordinated via a master-thread. Job distribution and reduction
operations in the Pthreads-based version are less straight-forward than with
MPI, since Pthreads lack an efficient barrier method. Therefore, we implemented
a dedicated function that uses a busy-wait strategy.

In contrast to the branch length optimization and likelihood computation
operations, the computation of partial likelihood arrays frequently consists of
a series of recursive calls, depending on how many vectors must be updated
due to (local) changes in the tree topology or model parameters (see Figure 1).
In order to reduce the communication frequency such series of recursive calls
are transformed into a single iterative sequence of operations by the master.
The master then sends the whole iterative sequence of inner likelihood vector
updates that are stored by their vector numbers in an appropriate tree traversal
data structure via a single broadcast to each worker or makes it available in
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shared memory. Note that, in contrast to the “classic” fork-join paradigm used
in OpenMP, this approach explicitly makes use of a dependency analysis of the
algorithm and reduces the number of synchronization points.

An important change with respect to the previous version is the striped as-
signment of alignment columns and hence likelihood array structures to the
individual threads of execution (see Figure 1). The rationale is that this al-
lows for better and easier load distribution, especially for partitioned analyses
of multi–gene datasets. Using a striped allocation every processor will have an
approximately balanced portion of columns for each partition. Moreover, this
also applies to mixed analyses of DNA and protein data, since the computation
of the likelihood score for a single site under AA models is significantly more
compute-intensive than for nucleotide data.

An important observation since the release of the Pthreads-based version in
January 2008 is that the parallel code is used much more frequently than the pre-
vious OpenMP–based version since it compiles “out-of-the-box” on Unix/Linux
and Macintosh platforms with gcc and allows for explicit specification of the
number of threads via the command line. Such considerations are important for
tools whose users are mainly non–experts. Development and maintenance expe-
rience over the last years has shown that potential users quickly abandon a tool
if it requires installation of additional software and compilers. The programming
effort to re-engineer RAxML and implement the Pthreads- as well as MPI-based
parallelizations amounted to approximately 6 weeks.

4 Experimental Setup and Results

4.1 Test Datasets, Experimental Setup and Platforms

In order to test scalability of the three parallel versions of RAxML we extracted
DNA datasets containing 50 taxa with 50,000 columns (d50 50000, 23,285 pat-
terns) and 500 taxa with 5,000 columns (d500 5000, 3,829 patterns) from a 2,177
taxon 68 gene mammalian dataset [29]. In addition, we extracted DNA subsets
with 50 taxa and 500,000 base-pairs (d50 500000, 216,025 patterns) as well as
250 taxa and 500,000 base-pairs (d250 500000, 403,581 patterns) from a large
haplotype map alignment [14].

We used the Intel compiler suite version 10.1 for all three program versions
on all platforms. Additionally, the platform-specific compiler optimizations flags
used where identical for each of the three versions with only one exception: On
the Altix interprocedural optimizations (IPO) caused a performance degradation
by a factor of 3 if applied to the sequential version. Therefore we disabled these
optimizations in that case. For all other compilations we enabled IPO as it
slightly improved performance.

To measure the speedup we started RAxML tree searches under the GTR+Γ
model on a fixed Maximum Parsimony starting tree (see [28] for details) on all
platforms. Note that, we only report the best speedup values for every number
of cores used on multi-core platforms with respect to the optimal thread to CPU
assignment/mapping. Due to architectural issues, an execution on two cores
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that are located on a single socket, can be much slower than an execution with
two cores, located on two distinct sockets (see [30] for a more detailed study
of thread-to-core mapping effects on performance). For instance we observed
execution time differences of around 40% on the Intel Clovertown system for
different assignments of two threads to the 8 cores of the system and over 50%
for distinct mappings of four threads.

As test platforms we used a 2-way quad-core AMD Barcelona system (8 cores),
a 2-way quad-core Intel Clovertown system (8 cores), an 8-way dual-core Sun
x4600 system (16 cores) that is based on AMD Opteron processors. We mea-
sured execution times for sequential execution as well as parallel execution on 2,
4, 8, and 16 (applies only to x4600) cores. In addition, we used a cluster of 4-way
SMP (4 single cores) 2.4 GHz AMD Opteron processors, that are interconnected
via Infiniband, to test scalability of the Pthreads-, OpenMP-, and MPI-based
versions up to 4 CPUs, and up to 128 CPUs (127 worker processes) for the MPI-
based version. Finally, we used an SGI Altix 4700 system with a total of 9,728
Intel Itanium2 Montecito cores, an aggregated peak performance of 62.3 Ter-
aflops, and 39 Terabyte of main memory (the HLRB2 supercomputer at the Leib-
niz Rechenzentrum, http://www.lrz-muenchen.de/services/compute/hlrb).
On the SGI Altix we assessed scalability of the Pthreads- and OpenMP-based
versions up to 32 CPUs and up to 256 CPUs for the MPI-based version.

As outlined above we directly compare MPI, Pthreads, and OpenMP on the
SGI Altix and AMD Opteron cluster. In addition, we provide comparisons be-
tween OpenMP and Pthreads on the Barcelona, Clovertown, and x4600 systems.

4.2 Results

In Figures 2(a) through 2(c) we indicate speedup values for the Pthreads and
OpenMP versions on datasets d50 50000 and d500 5000 on the three multi-
core systems: Barcelona, Clovertown, and x4600. We show results for these two
datasets because they differ significantly in their computation to communica-
tion ratio, i.e., this ratio is approximately 100 times less favorable for dataset
d500 5000. Note that, the memory footprint of dataset d500 5000 is about twice
as high as for d50 50000. On the Barcelona both versions scale almost linearly
up to 8 cores, while there is a significant decrease in parallel efficiency on the
Clovertown. This is due to the UMA architecture and the L2 cache which is
shared between each two cores: the memory bandwidth can be saturated by
only 4 threads and the cache available to each thread is halfed if all cores are
utilized. Both Pthreads and OpenMP scale well up to 16 cores on the x4600.
However, there is a significant decrease in parallel efficiency for the OpenMP-
based version on the more communication-intensive dataset d500 5000 above 8
cores. Thus, the Pthreads-based communication mechanisms we implemented,
yields significantly better speedups for the full 16 cores on this system.

In Figure 2(d) we provide the relative speedups (relative with respect to a run
with 31 worker processes 1) for the MPI version on the large and memory-intensive

1 A sequential execution was not possible due to run-times and memory requirements.
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Fig. 2. Scalability of Pthreads, OpenMP, and MPI versions on various architectures

d250 500000 dataset up to 128 CPUs of the AMD Opteron cluster and up to 256
cores on the SGI Altix 4700. This plot demonstrates that the entirely re-designed
MPI version for production runs achieves similar parallel efficiency as the previous
proof-of-concept implementation [14,15].

InFigures 3(a) to 3(d)weprovide a direct comparison of thePthreads,OpenMP,
and MPI versions for the AMD Opteron cluster and the SGI Altix 4700. Speedup
values for dataset d50 50000 on the Opteron cluster (Figure 3(a)) are super-linear
due to increased cache efficiency for all three programming paradigms. On the
larger d50 500000 dataset (Figure 3(b)) scalability of OpenMP and Pthreads are
similar, while the MPI-based version yields slightly sub-linear speedups on the
Opteron cluster for 7 and 15 worker processes. This is due to the fact that exe-
cution times in these cases become relatively short, such that the initial sequen-
tial portion of the code (striped data distribution) has an impact on performance.
The more communication–intensive dataset d500 5000 also scales well for all three
paradigms on the AMD Opteron system (Figure 3(c)). In general, the OpenMP
version scales best on this system. However, this is not the case on all architec-
tures, especially for more communication-intensivedatasets sizes (see Figure 2(c)).
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Fig. 3. Performance Comparison of Pthreads, OpenMP, and MPI versions

Both MPI and Pthreads also yield super-linear speedups in most cases. Finally, in
Figure 3(d) we provide performance data for all three parallel versions on the
SGI Altix for dataset 50 50000 up to 31 worker processes/threads. The MPI
and Pthreads versions scale significantly better than OpenMP for more than 7
threads/workers which is also consistent with the observations on the x4600 (see
Figure 2(c)). For more than 15 threads/workers, MPI outperforms Pthreads as
the MPI version only accesses local memory while the Pthreads version has to
access most of its data structures remotely at the master – with lower bandwidth
and higher latency.

5 Conclusion and Future Work

We have conducted a detailed performance study of parallel programming para-
digms for exploitation of fine–grained loop–level parallelism, by example of the
widely used phylogenetic ML function as implemented in RAxML on a broad
variety of current multi-core, cluster, and supercomputer architectures. Results
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indicate that none of the three paradigms outperforms the others across all
architectures. We thus conclude that the selection of programming paradigms
should be based on software engineering and portability criteria.

One important aspect is that Bioinformatics applications are typically used by
non-experts such that the easier to compile Pthreads option should be preferred
over OpenMP and MPI for shared memory architectures. The usage of MPI
on shared memory machines could lead to serious performance degradations in
the case that MPI implementations are used that have not been optimized for
communication via shared memory.

In terms of portability, we argue in favor of the usage of both Pthreads and
MPI, since programs can easily be compiled for massively parallel machines such
as the BlueGene as well as for shared memory architectures. Note that, we do
not consider hybrid parallelism here because, as already mentioned, ML-based
inferences exhibit embarrassing parallelism at a more coarse-grained level. In ad-
dition, Pthreads allow for explicit allocation of local memory, i.e., to distribute
the data structures and thus facilitate the joint development and maintenance
of the MPI and Pthreads versions. In this case, synchronization and communi-
cation can be handled via one single generic interface that can then be mapped
to appropriate MPI or Pthreads constructs and greatly reduce the complexity of
the code. Moreover, such an —in principle— distributed memory Pthreads-based
parallelization can improve performance on NUMA architectures. A striped dis-
tribution of alignment sites, which is required to achieve load–balance on con-
catenated DNA and AA (Protein) data would induce a significant programming
overhead in OpenMP as well. Our experiments show that the performance of the
Pthreads-based and OpenMP-based implementations is platform–specific, such
that one should opt for the more generic approach. Finally, the Pthreads-based
version can be further improved by removal of some synchronization points and
exploitation of data locality.

Thus, future work will cover the performance analysis and profiling of data
locality impact for a Pthreads–based version that allocates and uses local instead
of global likelihood vector data structures.
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Abstract. An enhanced version of an existing motif search algorithm
BMA is presented. Motif searching is a computationally expensive task
which is frequently performed in DNA sequence analysis. The algorithm
has been tailored to fit on the COPACOBANA architecture, which is a
massively parallel machine consisting of 120 FPGA chips. The perfor-
mance gained exceeds that of a standard PC by a factor of over 1, 650
and speeds up the time intensive search for motifs in DNA sequences. In
terms of energy consumption COPACOBANA needs 1/400 of the energy
of a PC implementation.

Keywords: Motif finding, DNA sequence analysis, FPGA, High Perfor-
mance Reconfigurable Computing (HPRC).

1 Introduction

The discovery of regulatory sequences in DNA - called motif-finding - is one of the
most challenging problems in the field of bioinformatics. In fact there are problem
instances of motif-finding which are unsolvable by current techniques. There are
two reasons that make this problem so difficult: firstly, the parameters of a given
problem instance (like sequence length, motif length, grade of mutation) can
make it impossible to identify motifs due to background noise. Secondly, it is
computationally expensive. So a precise algorithm can fail to discover a motif in
a given sequence because its execution time exceeds rational means. We address
both problems with a new approach to motif searching making use of a novel
massively parallel architecture to speed up the execution time.

Motif searching has been an issue in many publications of the last ten years. As
the most popular approaches to this topic we reference MEME [16] [17] [18] and
the similar Gibbs sampler [14] [15] which iteratively develops matrices represent-
ing motifs of the input sequence using the expectation maximization technique;
the projection algorithm [13] [20] which creates a representation of the highly
conserved region over all motif instances; and CONSENSUS [21] - a greedy ap-
proach which constructs likely motif candidates by aligning only small parts of
the genome at a time.
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The algorithm IGOM (Iterative Generation of position frequency matrices)
has been published in [22]. This method iteratively develops a set of strings
which are likely to be instances of an underlying motif by featuring two new
ideas. It makes use of the structure of position frequency matrices of already
known motifs which imply a distribution on only one or two nucleotides in each
position rather than all four of them [19]. The sp-model has been introduced
in [22] to describe this restriction. This observation is utilized to develop a very
precise description of a kernel of the motif in the first few iterations of the
algorithm. This has the advantage that the likelihood of false positives which fit
to this description although not belonging to the motif is minimized. Regulatory
sequences that match the observations of the sp-model (for example the SigmaB
regulator in Bacillus subtilis [24]) are discovered easier and more accurately by
this algorithm compared to the other methods of motif searching.

The second key feature of IGOM is the surveillance of the expected false
positives which could arise from loosening the description of the motif. The
algorithm will only make those changes to the matrix where the quotient of valid
new candidates divided by the expected number of random strings which fit this
change - and appear in any sequence of the given length without relevance - is
maximal. The authors describe this quotient with the term signal to noise ratio
(SNR) because of its correlation to signal theory where one tries to maximize
the signal opposing to the background noise of the medium.

Further improvements of the algorithm has been published in [23]. The main
idea of this publication is a Boolean representation of motif kernels. Instead of
position frequency/weight matrices we use Boolean matrices to describe a motif.
A value of “1” in a Boolean matrix (BM) considers the nucleotide to be a valid
representation for a motif instance in the corresponding position [23]. It leads to
a huge improvement of the complexity and makes this method highly applicable
for special purpose architectures. Most of the methods in Bioinformatics gain
performance when applied to special hardware because of the small alphabet
sizes when dealing with DNA or protein sequences and simple operations on
the input data. We chose to implement the IGOM/BMA algorithm in hardware
because of its ideal qualifications:

1. The input data can be represented in a very efficient way with only two bits
per nucleotide

2. The algorithm can be parallelized in an ideal way because of the independent
search operations on the data.

3. The Boolean matrices used to represent motifs can be stored very efficiently
in hardware allowing many processes working on a single FPGA chip simul-
taneously.

The amount of biological sequence information is increasing more rapidly [1]
than the exponential performance growth of general purpose microprocessor-
based computers. Due to this observation highly optimized special-purpose com-
puters have been developed. Today, the technology of Field Programmable Gate
Arrays (FPGAs) exhibit impressive performance compared to microprocessor-
based machines, among other things in the field of bioinformatics. Successful



438 J. Schröder et al.

special purpose hardware are for example SPLASH 2 [2], JBits [3], BEE2 [4],
XD1000 [5], RASC RC100 [6], and DeCypher [7]. The recent massively parallel
FPGA-based architecture COPACOBANA [8] from SCIENGINES [9] is chosen
as target for the proposed motif search algorithm. Taking advantage of the hard-
ware architecture and the highly parallel nature of the algorithm we can acceler-
ate this method with huge efficiency. Implementing the iterative development of
motif kernels on the COPACOBANA we outperform a single desktop PC by a
factor of over 1, 650. Taking into account the higher cost of the COPACOBANA,
a cost performance ratio would be fairer for comparison. This leads to a perfor-
mance per cost ratio up to five times higher compared to desktop PCs and of
course accordingly faster execution time. Additionally the power consumption
of PCs for the same task is much higher than that of COPACOBANA. We reach
an energy efficiency more than 420 times better than standard PCs.

This paper is organized as follows. In chapter 2 the COPACOBANA hardware
is specified, in chapter 3 the implemented algorithm is described. Chapter 4 will
discuss the details concerning the implementation of the algorithm in hardware.
Performance analysis, conclusion and outlook will follow in chapters 5 and 6.

2 COPACOBANA

The massively parallel computer COPACOBANA consists of 120 low cost FP-
GAs which are connected to a controller module by a bus system. It can be
integrated in any standard Local Area Network (LAN) environment and is fully
remotely controlled. Originally COPACOBANA has been developed as Cost-
Optimized PArallel COde Breaker in 2006. The goal was to break the 56-bit
Data Encryption Standard (DES) in 10 days for production and material cost
of less than $10, 000. [10] Actually it breaks DES in 7 days [8] in the mean. Due
to the universality of FPGA-chips [11] this machine is suited for all kinds of fine
grained parallel applications with low communication and memory requirements,
and with special attention to the cost/performance ratio.

The FPGAs are of the type Xilinx Spartan-3 1000 [12] (XC3S1000, speed
grade −4, FTG256 packaging). Each comes with 1 million system gates, 17, 280
equivalent logic cells, 1, 920 Configurable Logic Blocks (CLBs) equivalent to
7, 680 slices, 120 kbit distributed RAM, 432 kbit Block RAM (BRAM), 24 dedi-
cated 18x18 multipliers, and 4 digital clock managers (DCMs). Figure 1 depicts
the data path of COPACOBANA. Pluggable cards in DIMM format are hold-
ing 6 FPGAs each. Twenty of these cards are plugged into slots of a common
backplane together with a controller card. The latter is the interface to a host
computer via Ethernet LAN. It is transferring data and controlling the single
master bus system which is currently operating at up to 1 Mbit/s. The host com-
puter is executing a front-end software which uses an Application Programming
Interface (API) for accessing COPACOBANA. Additionally some parts of the
target algorithm are implemented here which for instance are sequential, per-
form a post- or preprocessing, or access a hard drive. This software represents the
highest control instance, because it initiates any action of the controller, hence
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Fig. 1. COPACOBANA Data Path

it controls the entire machine. In other words, communication can not be initial-
ized by one of the 120 slave FPGAs because COPACOBANA does not support
interrupts. Therefore a static communication scheduling has to be considered for
the host software.

The controller provides the following addressing modes. A single FPGA can
be selected for writing and reading data. Any set of FPGAs on one card up to all
6 can be written to from the controller, and finally via broadcast the controller
can write data to all 120 FPGAs. Each of the FPGAS can be configured to suit
its purpose exactly: small processing units can be implemented on the chip that
are designed only for one specific task.

3 Algorithm

In this section a description of the BMA algorithm is given. Since we aim for
a massively parallel implementation (see section 4) it will be slightly modified
with respect to the scoring function given in [22] and [23]. Given the input data
- a whole genome or a particular set of sequences - and a fixed motif length l2
the algorithm will develop motif kernels in increasing order by the likelihood
of their occurrence in a randomly distributed sequence. So assuming a normal
distribution of the input data we are interested in the least likely occurrence of
motif candidates in terms of over-representation. We will analyze the signal to
noise ratio (SNR) to find those candidates:

1. The algorithm starts with a single string of the motif length and specifies
the Boolean matrix.

2. Each iteration it will modify one column of the matrix so that two nucleotides
will represent the given position of the motif - following the conclusions of
the sp-model. The algorithm chooses the position in the matrix by analyzing
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the SNR so it minimizes the probability of false positives and finds the best
representation of the motif.

3. Beneath all the matrices generated each round (one for every start string)
the best in terms of SNR are chosen and analyzed further if they are likely
to represent a real motif in the organism represented by the input data. We
will not discuss this third step in this paper since only the development of
motif kernels is the time consuming part of the method which we apply to
hardware.

For the sake of an efficient implementation we will restrict the algorithm in
the following way. In each iteration there will be one change of the matrix -
whether it is good or not in terms of SNR - and every change will add a “1”
to a column of the matrix where there was exactly one “1” before. This has the
great benefit that every matrix in the same round of the algorithm has exactly
the same value for the expected noise. So SNR can be compared easily only by
analyzing the number of candidates from the input data matching the describing
matrices. We can take great advantage of this restriction in the implementation
because it allows much simpler and smaller units processing the matrices.

3.1 Example

To illustrate how the algorithm works, we show a short example. Let the BM
look like the first matrix illustrated in figure 2 after the first iteration of the algo-
rithm. So the strings “GAAGT” and “GCAGT” match the matrix. In the second
iteration all strings that match all but one position of the BM will contribute
to a scoring matrix. For example, the string “GCAAT” would score for an “A”
in the fourth column, whereas the string “AAAAT” would not contribute at all
because it has too many mismatches in this iteration. After scoring all substrings
of the genome in this manner a scoring matrix like the second matrix in figure 2
could arise. With the identified maximum of the scoring matrix (marked in the
figure) the two strings “GAAAT” and “GCAAT” will be taken into the motif
kernel forming a new BM, which is depicted as the third matrix in figure 2.

A 0 1 1 0 0
C 0 1 0 0 0
G 1 0 0 1 0
T 0 0 0 0 1

A 0 x x 4 1
C 1 x 1 0 2
G x 1 3 x 2
T 0 1 0 0 x

A 0 1 1 1 0
C 0 1 0 0 0
G 1 0 0 1 0
T 0 0 0 0 1

Fig. 2. Example: Boolean matrix at the beginning of an iteration, matching the strings
“GAAGT” and “GCAGT”, and a possible scoring matrix with the resulting new
boolean matrix after the iteration.

4 Hardware Implementation

4.1 Parallel Processing Scheme

Since we are starting without any knowledge about possible motif candidates, the
algorithm requires to analyze any possible position frequency matrix (PFM). For
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a motif length of 12 nucleotides there are 412 = 16, 777, 216 such PFMs. There
is no data dependency between any two of them. So, we can use a trivial par-
allelization scheme where a maximum number of PFMs is computed in parallel.
COPACOBANA contains 120 FPGA chips. Each of them can be configured to
provide 32 independent search entities. This accumulates to 3, 840 search entities
to work concurrently.

The DNA is viewed as a sequence over the alphabet {A, C, G, T }. Every char-
acter can be represented with two bits. The restricted size of the local memory of
the Spartan-3 chips does not allow to store the complete DNA sequence in every
search entity. Instead, it is provided by globally broadcasting it to all search en-
tities character by character. Each entity continuously accumulates the relevant
information to update its particular PFM using the globally broadcasted data
stream.

Since 412 is greater than 3, 840 it is necessary to compute the complete prob-
lem in 412/3, 840 = 4, 370 subsequent identical computation runs. Each run
requires a fixed number of iterations for updating the PFMs. It has turned out
that more than six iterations do not provide useful results anymore. Therefore,
the complete DNA sequence has to be broadcast to all processors a total number
of 4, 370 · 6 = 26, 220 times. In our implementation, the DNA sequence is locally
stored in the controller of COPACOBANA in order to reduce the traffic on the
TCP/IP connection.

The PFM analysis is done in four steps:

1. The host application sends a command to initialize the search entities on
the FPGAs. This command also provides the initialization matrix in form of
an index. The index is in the range from 0 to 16, 777, 215, each identifying a
unique PFM.

The following steps will be repeated six times:

2. Each search entity scores all subsequences of the broadcasted DNA sequence
against its own PFM.

3. The local results are read from the search entities. The best scores are stored
in sorted lists on the host. There is one list for each iteration after initializa-
tion, so there will finally be six lists in this case. The number of best results
saved is user defined.

4. Finally the host sends an update command to alter the position frequency
matrices in the search entities.

After all six iterations have finished the next initialization is done with new
indices, i.e. with new PFMs. The algorithm starts again with step 1. When the
application has finished the lists with the user defined amount of best results for
each of the six iterations are ready for further analysis.

4.2 FPGA Design

The main processing unit is the search entity which provides the core function-
ality of the algorithm. 32 search entities fit on a single FPGA chip and thus can
work in parallel. In the following one of those is described in detail.
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Every search entity has a unique identifier for individualization. The iden-
tifier is a natural number starting with zero. One search entity consists of an
implementation of the boolean position frequency matrix and its matching func-
tionality, a score counter and a counter for differing sequences, further called
“difference counter”.

Initially, the search entity receives an index which corresponds to a gene se-
quence of length 12, the expected motif size. By adding the identifier of the
search entity to the incoming index every entity generates its individual initial-
ization sequence. Hence, an FPGA has to be provided only one time with an
initialization index to initialize 32 search entities at once. The initialization se-
quence is easily converted to the matrix structure by using lookup tables. “A”
is “1000”, “C” is “0100” etc.

An incoming gene sequence is matched with the position frequency matrix. If
the sequence matches the score counter increments a locally stored score value.
For every matrix position a counter is provided which is increased whenever the
string under consideration has a mismatch in this position and it is the only
mismatch with the PFM. This implicates that with a motif size of 12 we need 48
counters for each search entity. Given the fact that only one counter per search
entity has to be accessed at maximum in one clock cycle, the counters can easily
be stored in the local block RAM which is available in every Spartan-3 FPGA.

The only data locally stored by the difference counter is the maximum counter
value and a corresponding gene sequence which causes this counter to increment.
This makes a matrix update fast and easy. The update command converts the
sequence to the matrix structure like for the initialization followed by a simple or-
operation on the old matrix. Every search entity provides its position frequency
matrix and score as result.

The control of the motif search operation is realized by the search control
entity. It manages the incoming control instructions and user data from the host
application. The user data is read from the bus in 64 bit blocks which equals
32 characters. It is then provided to a FIFO buffer as a data stream. The buffer
always provides a window of 12 characters as data input to the search entities.
The search control entity also provides the best result of the search entities to
the host application. Therefore the results are compared by their score. The
comparison is made by comparators which are aligned to each search entity
in a chain. Every comparator compares the result of its predecessor and one
search entity. If the best result is fetched by the host application its score is
cleared on the corresponding search entity. Hence, the second best result will be
automatically provided to the host.

Figure 3 shows a simplified overview of the FPGA design.

4.3 Data and Control Flow on the FPGA

The search entities are organized on the FPGA in two chains due to the two
rows of block RAM on the Spartan-3. All user and control data is buffered by
one entity and provided to the successor in its chain in the next clock cycle. This
keeps data paths short and permits higher frequencies. Except for the command
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Fig. 3. FPGA design overview

Fig. 4. FPGA dataflow overview

to read a result, all control instructions plus the user data from the host are
provided by the search control entity directly to the first two search entities in
the chains.

The comparators for the results are organized in two chains along the search
entities as well. Every comparator compares the result of its predecessor and
one search entity in one clock cycle. At the beginning of the chain the first
comparators compare the results of the last two search entities. So the data flow
of the results is contrary to the data flow of the sequence data. This again keeps
data paths short because the maximum result of both chains is provided back
to the search control entity after a final comparison. The signal to clear the best
results score after being fetched by the host is routed through the comparator
chain as well.

The overview of the design flow is shown in figure 4.
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5 Performance Analysis and Conclusion

5.1 C++ Implementation

For comparison the DNA motif search algorithm has been implemented in C++.
It has been compiled with the GNU Compiler Collection (GCC) v4.0.2 and
the “-O3”-flag for highest optimization. Additionally the “-march=. . .”-flag and
other optimization flags like “-msse3” were set for the corresponding target
architecture. The testing systems were a standard PC with an Intel Pentium IV
at 2.8 GHz and a PC with an AMD Thurion64 X2 dual core at 1.9 GHz running
a Linux operating system, and a Macintosh Pro with two Intel Xeon 5150 dual
cores at 2.6 GHz running Mac OS X. The implementation uses static memory
for the gene sequence, the score and the counter values for the missed matches.
So no new memory is allocated dynamically at runtime except for new results in
the lists. Since we store only 100 results for each iteration the allocations are very
scarce and do not significantly delay the process. Actually the host application
using COPACOBANA does the same. For the dual core architectures the task
was equally divided into two processes.

Because the algorithm can not be parallelized for one processing core the ap-
plication takes one initial position frequency matrix at a time. But we made one
significant improvement which could not be applied to the parallelized solution.
This application does not always perform six iterations per initialization index.
It does a further iteration only if the position frequency matrix was updated in
the preceding one. This causes a significant speedup for the iterative solution.

5.2 Performance

The applications were configured to analyze the DNA sequences of Cowpox Virus
(280k bases), Rickettsia canadensis str. McKiel (1.2M bases) and Bacillus sub-
tilis (5.9M bases) as an example. The desired motif size is 12 and the number
of iterations is set to 6. Table 1 shows the duration of the computation and
the speedup of COPACOBANA vs. the specified architectures. Figure 5 shows

Fig. 5. Computation times for Cowpox Virus, Rickettsia canadensis and Bacillus sub-
tilis
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Table 1. computation times and speedups of the DNA motif search algorithm

Xeon 5150 Thurion64 X2 Pentium IV
COPACOBANA 2.6 GHz 1.9 GHz 2.8 GHz

dual core dual core single core

Cowpox time 1h40m 144h (6 d.) 167h (7 d.) 355h (14.8 d.)
Virus speedup 1 > 86 > 100 > 210

Rickettsia time 4h10m 2, 575h (107.3 d.)1 2, 987h (124.5 d.)1 6, 350h (264.6 d.)1

canadensis speedup 1 > 615 > 715 > 1, 520

Bacillus time 16h45m 11, 236h (1.3 y.)1 13, 031h (1.5 y.)1 27, 700h (3.2 y.)1

subtilis speedup 1 > 670 > 775 > 1, 650

Fig. 6. COPACOBANA speedups vs. several processors

a graphical presentation of these computation times. To make the results more
reasonable the computation times for the PCs are adapted to match 100 ide-
ally parallelized PCs of each type in this figure. Figure 6 shows the speedups of
COPACOBANA vs. one PC of the specified architecture.

5.3 Conclusion

Although significant improvements have been made to the iterative algorithm
the parallel solution generates the same results in much shorter time. Previ-
ously nearly unreachable results due to the length of the computation time
could now be afforded in less than one day. Unfortunately the drawback is the
need of the special purpose hardware, but with the cost of e60, 000 for a CO-
PACOBANA and e200 for a standard PC the cost/performance ratio is only
(e60, 000/e200)/1, 650 = 0.18. This means COPACOBANA is more than 5
times more cost effective than a standard PC. Another advantage of COPA-
COBANA is energy efficiency. Due to the short computation time and only
600W power consumption it consumes about 10.5 kWh to calculate the motif
candidates for Bacillus subtilis. In contrast standard PCs consume about 4, 155

1 This value is computed by measuring a small part and extrapolating the duration.
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kWh for the same task at 150W per PC. Assuming energy costs of e0.20/kWh
this would be e831.00 against e2.10. This is about 400 times the energy costs
of COPACOBANA. Easy calculation shows that the hardware price of COPA-
COBANA would be payed for energy costs of a PC cluster solving only 100
problems of the size of calculating motif candidates of Bacillus subtilis. Addi-
tionally the costs to build a cluster out of several PCs to reach the performance
of one COPACOBANA are not considered. These are costs for connection cables,
switches and the place to deposit these components. Furthermore the knowledge
to get such a PC cluster working with this application has to be paid for as well.

6 Outlook

The performance analysis for COPACOBANA is made with a slow controller
having a very little bandwidth of approximately 1 Mbit/s. There is already a
new controller module under development which reaches a bandwidth of about
100 Mbit/s. First tests with this application reached 5 to 7 times the speed of the
slow controller. Hence the controller is still the bottleneck of this application and
even greater speedups could be reached easily. This leads to another improvement
of the cost performance ratio and energy efficiency.

With the speedup gained by the COPACOBANA implementation we can
intensify motif searching on real datasets. We will put it to use by analyzing
motifs in virus datasets in close collaboration with the medical institute of the
Free University of Berlin.
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Abstract. Discovery of motifs that are repeated in groups of biological se-
quences is a major task in bioinformatics. Iterative methods such as expectation 
maximization (EM) are used as a common approach to find such patterns. How-
ever, corresponding algorithms are highly compute-intensive due to the small 
size and degenerate nature of biological motifs. Runtime requirements are likely 
to become even more severe due to the rapid growth of available gene transcrip-
tion data. In this paper we present a novel approach to accelerate motif discovery 
based on commodity graphics hardware (GPUs). To derive an efficient mapping 
onto this type of architecture, we have formulated the compute-intensive parts of 
the popular MEME tool as streaming algorithms. Our experimental results show 
that a single GPU allows speedups of one order of magnitude with respect to the 
sequential MEME implementation. Furthermore, parallelization on a GPU-
cluster even improves the speedup to two orders of magnitude.  

1   Introduction 

A major challenge in computational genomics nowadays is to find patterns (or motifs) 
in a set of sequences. In particular, discovering motifs that are crucial for the regula-
tion of gene transcription in DNA (such as Transcription Factor Binding Sites) are of 
growing importance to biological research. With the production of vast quantities of 
data, genomic researchers want to perform this analysis on a larger scale, which in 
turn leads to massive compute requirements. In this paper we show how modern 
streaming architectures can be used to accelerate this highly compute-intensive task 
by one to two orders of magnitude.     

Algorithmic approaches to motif discovery can be classified into two main catego-
ries: iterative and combinatorial. Iterative methods are based on local stochastic 
search techniques such as expectation maximization (EM) [1, 2] or Gibbs sampling 
[5], while combinatorial algorithms use deterministic methods like dictionary building 
[8] or word enumeration [11]. Iterative methods are often preferred since they are 
using PSSMs (Position Specific Scoring Matrices) instead of a simple Hamming dis-
tance to describe the matching between a motif instance and a sequence. Among the 
iterative approaches, MEME (Multiple EM for Motif Elicitation) [2, 3] is a popular 
and well established method. However, its complexity is O(N2⋅L2), where N is the 
number of input sequence and L is the length of each sequence. Therefore, this  
approach is time consuming for applications involving large data sets such as whole-
genome motif discovery. Corresponding runtime requirements are likely to become 
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even more severe due to the rapid growth in the size of available genomic sequence 
and transcription data. An approach to get results in a shorter time is to use high per-
formance computing. Previous approaches to accelerate the motif finding process are 
based on expensive compute clusters [3] and specialized hardware [9].  

This paper presents a proof-of-concept parallelization of motif discovery with 
MEME on commodity graphics hardware (GPUs) to achieve high performance at low 
cost. Our software currently supports the OOPS (one occurrence per sequence) and 
ZOOPS (zero or one occurrence per sequence) search models for DNA sequences. Our 
future work includes integrating the more complex TCM (two-component mixture) 
model and making the software available for public use. We are also planning to port 
the presented GLSL code to the newly released CUDA programming interface for 
GPU programming, which was not was not available at the time of writing the GPU-
MEME code. Our achieved speedups on an NVIDIA GeForce 8800 GTX compared to 
the sequential MEME implementation are between 9 (for small data sets) and 12 (for 
large data sets). The runtime on a single GPU also compares favourably to the MPI-
based ParaMEME running on a cluster with 12 CPUs. Furthermore, we have combined 
the fine-grained GPU parallelization with a coarse-grained parallel approach. This 
hybrid approach improves the speedup on a cluster of six GPUs to over 60.   

The rest of this paper is organized as follows. In Section 2, we provide necessary 
background on motif discovery and general-purpose computing on GPUs. Section 3 
presents our parallel streaming algorithm for motif finding. Performance is evaluated 
in Section 4. Finally, Section 5 concludes the paper. 

2   Background 

2.1   Motif Discovery  

Iterative methods like EM search for motifs by building statistical motif models. A 
motif model is typically represented by a matrix (θ). For a motif of width W and an 
alphabet Σ = {x0,…,xA−1} of size A the matrix θ is of size A × (W+1). The value at 
position (i,j),  for 0 ≤ i ≤ A−1, 0 ≤ j ≤ W, of the matrix is defined as follows:  

⎩
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0 ifmotif  theoutside positionsat  appearing  ofy Probabilit

1 ifmotif  theof position at  appearing  ofy Probabilit
, jx

Wjjx

i

i
jiθ  

The overall goal of the EM approach is to find a matrix with maximal posterior 
probability given a set of input sequences.  

The outline of the MEME (Multiple EM for Motif Elicitation) [2] algorithm is 
shown in Figure 1. The search for a motif at each possible motif width W consists of 
two phases. Since EM is easily trapped in local minima, the first phase iterates over a 
large number of possible starting points to identify a good initial model θ (0).  In the 
second phase, the algorithm then performs the full EM algorithm until convergence 
using θ (0). Profiling of the MEME algorithm (see Table 1) reveals that over 96% of 
the overall running time is usually spent on the first phase (called “starting point 
search”). We therefore describe the starting point search algorithm in more detail in 
the following. 
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procedure MEME(X:set of sequences)
for pass = 1 to num_motifs do

for W = W_min to W_max do
for all starting points (i,j) in X do

estimate score of the initial motif model which includes the 
W-length substring starting at position j in sequence i;

end
choose initial model (0) from starting position with maximal 
estimated score;
run EM to convergence starting with model (0);

end
print converged model with highest likelihood;
“erase” appearance of discovered shared motif in X;

end
end  

Fig. 1. Outline of the MEME algorithm 

Given is the input dataset X = {S1, S2,…, Sn} consisting of n sequences over the al-
phabet Σ = {x0,…,xA−1} and the motif width W. Let sequence Si be of length L(i) for 

1≤i≤n. Then, the total number of substrings of length W in X is )1()(
1

−⋅−⎟
⎠

⎞
⎜
⎝
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=

WNiL
n

i
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Let Si,j denote the substring of length W starting at position j in sequence Si for all 1 ≤ 
i ≤ n, 1 ≤ j ≤ L(i), The starting point search algorithm considers all these substrings as 
possible starting points using the three steps shown in Figure 2. 

for each length-W substring Si,j in X do
[Step 1] Compare Si,j to all other length-W substrings Sk,l to 

calculate the score P(Sk,l,Si,j);
[Step 2] For each sequence k determine the substring Sk,maxk where 

maxk = argmax1 l<=L(k)-W+1{P(Sk,l,Si,j)};
[Step 3] Sort and align the identified N substrings in Step 2 to 

determine the estimated score of starting point (i,j);
end  

Fig. 2. Starting point search algorithm 

Table 1. Percentage of MEME (version 3.5.4) execution time spent on starting point search for 
data sets of various sizes 

Dataset Number of 
sequences 

Average 
sequence 

length 

Runtime using 
default 

parameters

Percentage spent 
on “starting point 

search” 
Mini-

drosoph 
4 124,824 15,642 sec 99.4% 

Hs_100 100 5000 16,017 sec 96.3% 
Hs_200 200 5000 60,142 sec 97.5% 
Hs_400 400 5000 233,228 sec 98.7% 
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In practice, W can be considered to be much smaller than the sequence lengths. 
Therefore, we assume that W is a constant and determine the time complexities of the 
three steps in Figure 2 as shown in Table 2. The score between two substrings of length 
W in Step 1 is calculated using Equation (1). In Equation (1) Si[j] denotes the letter 
occurring at position j of sequence i and map is a letter frequency matrix of size A×A.  
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Table 2. Time complexities of the three steps in Figure 2 

Step Computational requirement Time complexity 
1 Requires an all-against-all comparison of length-W

substrings in X
2

1

)(
n

i

iLO

2 Requires a linear search of all scores computed in 
Step 1 

2

1

)(
n

i

iLO

3 Only deals with the n maximum scores identified in 
Step 2 and therefore has a lower overall complexity 

n

i

iLnO
1

)(
 

2.2   General Purpose Computations on GPUs 

In the past few years, the fast increasing power of the GPU (Graphics Processing 
Unit) has made it a compelling platform for computationally demanding tasks in a 
wide variety of application domains. Currently, the peak performance of state-of-the-
art consumer graphics cards is more than ten times faster than that of comparable 
CPUs. Furthermore, GPU performance has been increasing from two to two-and-a-
half times a year. This growth rate is faster than Moore's law as it applies to CPUs, 
which corresponds to about one-and-half times a year. The high price/performance 
ratio, rapid increase in performance, and widespread availability of GPUs has pro-
pelled them to the forefront of high performance computing.  

Recently, NVIDIA has released the multi-threaded CUDA programming interface 
for GPU programming. However, CUDA was not available at the time of writing our 
GPU-MEME code. Therefore, the presented GPU-MEME algorithm is implemented 
using the graphics-based GLSL language [4]. Computation using GLSL on a GPU 
follows a fixed order of processing stages, called the graphics pipeline (see Figure 3). 
The streaming pipeline consists of three stages: vertex processing, rasterization and 
fragment processing. The vertex processing stage transforms three-dimensional vertex 
world coordinates into two-dimensional vertex screen coordinates. The rasterizer then 
converts the geometric vertex representation into an image fragment representation. 
Finally, the fragment processor forms a color for each pixel by reading texels from the 
texture memory. In order to meet the ever-increasing performance requirements set by 
the gaming industry, modern GPUs support programmability of the vertex and frag-
ment processors using two types of parallelism. Firstly, multiple processors work on 
the vertex and fragment processing stage, i.e. they operate on different vertices and 
fragments in parallel. Secondly, operations on 4-dimensional vectors (the four channels 
Red/Green/Blue/Alpha (RGBA)) are natively supported without performance loss. 
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Fig. 3. Graphics pipeline 

3   GPU-Accelerated Motif Discovery 

3.1   Parallel Streaming Algorithm 

The GPU analog of arrays on the CPU are textures. GPUs treat objects as polygon 
meshes, textures can then be attached to the polygon. Each vertex of the polygon 
contains texture location information in the form of (x,y) coordinates and the 
requested texture is interpolated across the polygon surface. This process is called 
texture mapping. 

From Step 1 in Figure 2, we can see that for a given length-W substring Si,j the 
scores P(Sk,l,Si,j) need to be calculated independently from each other for all 1 ≤ k ≤ n 
and 1 ≤ l ≤ L(k)–W +1. Our method takes advantage of the fact that all n⋅(L(k)–W +1) 
scores can be computed independent of each other. Therefore, we map the sequence 
dataset (X), the letter frequency matrix (map) and the score matrix (i.e. all scores for a 
fixed (i,j), denoted as: [P(Sk,l,Si, j)]1≤k≤n,1≤l≤L(k)–W +1) onto the following three textures: 

1) Sequence dataset texture (Texseq). We are using one row of the texture memory 
to store one sequence. If the sequence length is longer than the row width of the 
texture, several rows of texture memory will be used. Since the maximum texture 
size of modern GPUs is 4096×4096 and one texture element can store up to four 
values (RGBA), a sequence of length L requires ⎡L /16384⎤ rows of texture 
memory. In this section, we assume that one sequence fits into one row of texture 
memory. The partitioning of a sequence onto multiple rows is discussed in Sec-
tion 3.2. 

2) Letter frequency matrix texture (Texfreq). This is a relatively small matrix of 
size A×A. The utilized alphabet for DNA sequences in MEME is Σ = {A, C, G, T, 
X}, where X represents an unknown nucleotide. Hence, the letter frequency ma-
trix for DNA can be stored in a 5×5 texture. 

3) Score texture (Texscore). The output of each rendering pass will be written to 
graphics memory directly, which can then be fed back in as a new stream of tex-
ture data for further processing. The dimension of the score matrix texture is 
equal to the dimension of Texseq. This allows reusing the coordinates of Texseq to 
do lookup operations for Texscore, thus reducing extra coordinate computations. If 
multiple sequence dataset textures have to be used, the same number of score tex-
tures is required to store the rendering results. 
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Fragment programs are used to implement the arithmetic operations on the above 
textures specified by Equation (1). Equation (1) requires W table lookups and W−1 
additions to calculate P(Sk,l,Si,j). The number of operations can be reduced to two 
lookups and two additions/subtractions by using P(Sk,l,Si,j) to calculate P(Sk,l−1,Si,j+1) as 
follows: 

    ])1[],1[(])1[],[(),(),( ,1,,, −−−−+++= − lSjSmapWlSWjSmapSSPSSP kikijilkjilk
 (2) 

As shown in Equation (2), during each rendering pass the newly computed score 
matrix [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 is stored in the texture memory as a texture. The 
subsequent rendering pass reads the previous score matrix from the texture memory. 
Since the calculation of the score matrix [P(Sk,l,Si,j+1)]1≤k≤n,1≤l≤L(k)–W+1 depends on the 
score matrix [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1, two score matrices have to be stored as 
separate texture buffers. We are using a cyclic method to swap the buffer function as 
follows: First, the score matrix [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 is in the form of a texture 
input, and [P(Sk,l,Si,j+1)]1≤k≤n,1≤l≤L(k)–W+1 is the render target. In the subsequent iteration, 
[P(Sk,l,Si,j+1)]1≤k≤n,1≤l≤L(k)–W+1 is treated as the input texture and [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 

is the render target.  
Once [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1  is calculated, the maximum score for each 

sequence sample has to be found (Step 2 in Figure 2). In order to collect the 
maximum score for each sequence in texture memory, a preprocessing step eliminates 
invalid scores in Texscore. These scores will be zeroed in the preprocess step. Thus, 
they will not influence the final maximum comparison results. This step requires a 
new texture called Texlength, which stores information about the length of each 
sequence. After a preprocessing operation, a series of parallel reduction steps are 
performed on Texscore. Each parallel reduction step consists of two operations. Firstly, 
 

{p1,p2,p3,p4} Invalid data

0 0 0

{max(p), idx(max(p)), 0, 0}

 
(a) 

 

p1 p2 p2i-1 p2i

{max(p1,p2),idx(max(p1,p2), 0,0}  
(b) 

Fig. 4. (a) Preprocessing step; (b) Parallel reduction 
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all elements with odd indices in the score texture will be compared to their 
corresponding following elements with even indices. Secondly, an adjustment of 
texture coordinates is performed. These two operations iterate until the maximum 
score of each is calculated (see Figure 4(b)). Note that the operations in the first 
reduction step are slightly different from the following steps. In the first step, each 
fragment processor compares the four scores in the R, G, B and A-channels of a single 
texture pixel and then outputs the maximum score together with its index into the R 
and G channels respectively (see Figure 4(a)). Assuming a maximal sequence length 
of Lmax, the number of reduction passes for the maximum computation procedure is 
therefore 1+log2⎡Lmax/4⎤.  

activate, enable and create texture Texseq and load sequence data into it;
activate, enable and create texture Texfreq and load letter frequency 

matrix into it;
activate, enable and create texture Texlength and load sequence length 

information into it;
enable and create textures Texscore_j and Texscore_j+1;
create and initialize a render buffer rBuffer;
for each sequence sample i do

for each substring j in sequence i do
set Texscore_j as render buffer and Texscore_j+1 as read buffer;
set texture coordinates Texseq[4], Texfreq[4], Texlength[4];
set vertex coordinates vertex[4];
DrawQuad(Texseq, Texfreq, Texlength, vertex); /*call kernel program */
do parallel reduction operation on the score matrix texture to   
get the maximum score for each sequence sample;
change the functions of Texscore_j and Texscore_j+1 in a cyclic way;
Read back the maximum scores to CPU for further processing;

end
end  

Fig. 5. Pseudocode of our streaming algorithm for starting point search 

As mentioned in Section 2.1, Step (3) in the starting point search algorithm has a 
lower time complexity than Steps (1) and (2). Therefore, the produced maximum 
scores are read back from texture memory to the CPU. The CPU then performs Step 
(3) sequentially. We will show in Section 4 that the runtime for Step (3) on the CPU 
is dominated by the runtime for Steps (1) and (2) on the GPU. The pseudocode of our 
streaming algorithm for starting point search is shown in Figure 5.  

3.2   Partitioning and Implementation 

So far, we have assumed that each sequence fits into one row of texture memory. In 
practice, the length of the sequences may be larger and the computation must be parti-
tioned onto several rows.  This is incorporated into our streaming algorithm as fol-
lows. 

1) Multi-row storage in the sequence dataset texture. As mentioned in Section 
3.1, we are using one row of texture memory to store one sequence. If the se-
quence length is longer than the row width of the texture, several rows of texture 
memory will be used. Since the maximum texture size of modern GPUs is 
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4096×4096 and one texture element can store up to four values (RGBA), a se-
quence of length L requires ⎡L /16384⎤ rows of texture memory. Assume Lmax is 
the length of the longest sequence in the dataset, in practice we let all long se-
quences take the same Rmax = ⎡Lmax /16384⎤ rows in the texture memory for sim-
plicity. In this case, a texture can contain Nmax = ⎣4096/Rmax⎦ long sequences. 
Overall, we need ⎡n/Nmax⎤ textures to store the complete sequence dataset. Corre-
spondingly, ⎡n/Nmax⎤ score textures will be used to store the rendering results. 

2) Multi-row indexing for texture lookups. If Lmax > 16384, there exist cases 
where the letters Si[j] and Si[j+1] are stored in different texture rows. In order to 
handle these cases correctly, we use (i%Nmax + ⎡j/16384⎤, j%16384) instead of (i, 
j) to do texture lookups for (i, j+1). 

3) Multi-row parallel reduction. According to Section 3.1, 1+log2⎡16384/4⎤ 
parallel reduction steps are required to get the maximum in each texture row. 
Additional log2Rmax passes are required to get the maximum scores for sequences 
occupying Rmax texture rows. 

In order to make full use of the computing power in a PC, we have designed and im-
plemented a multi-threaded CPU-GPU collaborative architecture for our streaming 
algorithm. Figure 6 illustrates the structure of this architecture. It contains three kinds 
of threads: 

1) Daemon thread: This thread runs in the background and takes care of the execu-
tion of the whole process. It will respond to the data readback operations between 
the CPU and GPU threads.  

Sequence dataset

Texture mapping

Calculate P(Sk,l,Si,j)

Determine maximum scores
for each sequence sample

Store the maximum scores into one
row of a the texture memory

Readback a batch of scores to CPU
for alignment and generating

starting point operations

D
aem

on thread

Multi-pass
rendering
stream on

GPU thread

CPU thread

 

Fig. 6. The structure of our multi-threaded collaborative CPU-GPU architecture 
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2) GPU thread: Because of the implicit data-parallelism processing power of the 
GPU, it is used to process the compute-intensive calculations. Tasks such as the 
calculation of [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 and parallel reduction operations on 
[P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 are all done by the GPU thread. In order to increase the 
readback efficiency, the parallel reduction scores during each rendering pass will 
be first stored in one row of a texture Texmax. After a constant number of 
rendering passes, a batch of data in Texmax are read back to the CPU for further 
processing. 

3) CPU thread: Because of the sequential computing characteristics and the lower 
time complexity of Step 3 in Figure 2, we let the CPU process this step. When the 
CPU gets a batch of rendering data from the GPU, it will do the global maximum 
alignment and starting point generation operations on the data sequentially.  

According to our experiments (see Section 4), the GPU thread dominates the runtime. 
Thus, the runtime of the CPU thread does not influence the overall runtime, since it 
runs concurrently to the GPU thread. 

4   Performance Evaluation 

We have implemented the proposed algorithm using C and the GPU programming 
language GLSL (OpenGL Shading Language) [4] and evaluated it on the following 
graphics card: 

− Nvidia GeForce 8800 GTX: 1.35 GHz engine clock speed, 900 MHz memory 
clock speed, 128 stream processors, 768 MB device memory. Tests have been 
conducted with this card installed in a PC with an Intel Petium4 3.0GHz, 1 
GByte RAM running Fedora Core 6 Linux. 

A set of performance evaluation tests have been conducted using different numbers 
of DNA sequences to evaluate the processing time of the GPU implementation versus 
that of the original MEME implementation. The sequential MEME application is 
benchmarked on an Intel Pentium4 3GHz processor with 1 Gbyte RAM running Fe-
dora Core 6 Linux. We have used MEME Version 3.5.4, which is available online at 
http://meme.nbcr.net/meme/intro.html for our evaluation. 

The evaluated datasets are the largest dataset supplied by MEME (called mini-
drosoph) and three datasets of human promoter regions consisting of 100, 200, and 
400 sequences of lengths 5,000 base-pairs each (called HS_5000_100, HS_5000_200, 
HS_5000_400). We have used MEME’s default parameters for evaluation.  The re-
sults for our experiments are shown in Table 3. The CPU alignment part (rows shaded 
in gray) and the computations on the GPU run concurrently. Since the CPU alignment 
requires less time, its runtime does not influence the overall runtime. From Table 3 
we can see that our GPU implementation achieves speedups of almost fourteen com-
pared to the starting point search stage in MEME and twelve compared to the overall 
runtime. 
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Table 3. Comparison of runtimes (in seconds) and speedups of MEME running on a single 
Pentium4 3GHz to our GPU-accelerated version running on a Pentium4 3GHz with an Nvidia 
GeForce 8800 GTX for different datasets. The time and percentage spend on different parts of 
the algorithm are also reported. 

Dataset Name, Number of sequences 
(average length) 

HS_5000_100, 
100 (5,000) 

HS_5000_200, 
200 (5,000) 

Overall 16017 [100.0%] 60142 [100.0%] 
Starting Point Search 15428 [96.3%] 58656 [97.5%] 

MEME  
(P4, 3GHz) 

EM 589 [3.7%] 1486 [2.5%] 
Overall 1755 [100.0%] 5894 [100.0%] 

Score Comp. 
(GPU) 

923 [52.6%] 3565 [60.5%] 

Parallel Red. 
(GPU) 

182 [10.4%] 707 [12.0%] 

Result Readb. 
(GPU) 

61 [3.5%] 136 [2.3%] 

Starting 
Point

Search 

Alignment 
(CPU) 

1042 [59.4%] 2045 [34.7%] 

GPU-MEME 
(GeForce 

8800 GTX) 

EM (CPU) 589 [33.6%] 1486 [25.2%] 
Overall 9.1 10.2 Speedup 

Starting Point Search 13.2 13.3 

Dataset Name, 
Number of sequences (average length) 

HS_5000_400, 
400 (5,000) 

Mini-drosoph, 
4 (124,824) 

Overall 233228 [100.0%] 15642 [100.0%] 
Starting Point Search 230283 [98.7%] 15545 [99.4%] 

MEME  
(P4, 3GHz) 

EM 2945 [1.3%] 97 [0.6%] 
Overall 19895 [100.0%] 1375 [100.0%] 

Score Comp. 
(GPU) 

13818 [69.5%] 1061 [77.2%] 

Parallel Red. 
(GPU) 

2764 [13.9%] 209 [15.2%] 

Result Readb. 
(GPU) 

368 [1.8%] 8 [0.6%] 

Starting
Point 

Search 

Alignment
(CPU) 

4067 [20.4%] 244 [17.7%] 

GPU-MEME
(GeForce 

8800 GTX) 

EM 2945 [14.8%] 97 [7.1%] 
Overall 11.7 11.4 Speedup 

Starting Point Search 13.6 12.6  

We have also compared our speedups to the MPI-based ParaMEME implementa-
tion ([3], available online at http://meme.nbcr.net/meme/intro.html) on a CPU cluster. 
The utilized cluster is a 6-node Intel Xeon Dual-Processor cluster with a 1GBit/sec 
Myrinet switch running Red Hat Linux 3.2.3-24. Table 4 shows a comparison of 
speedups achieved with ParaMEME compared to our GPU-MEME implementation. 
As can be seen, our implementation on a single GPU is comparable to the MPI ap-
proach on a cluster with 12 CPUs. 
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Table 4. Speedups of GPU-MEME on a single GPU and ParaMEME on a 12-CPU cluster 

Dataset Name Speedup GPU-MEME Speedup ParaMEME 
Mini-drosoph 11.4 12.6 
HS_5000_100 9.1 11.4 
HS_5000_200 10.2 11.2 
HS_5000_400 11.7 11.1 

 

Table 5. Comparison of the runtime and speedup of MEME running on a P4 3GHz to GPU-
MEME running on a cluster with GeForce 8800 GTX cards. Speedup is compared to the se-
quential MEME code and denoted as “speedup CPU”. Efficiency with respect to the number of 
utilized GPUs is denoted as “efficiency GPU”. 

Mini-drosoph HS_5000_100 
 runtime 

(sec.)
speedup 

CPU
efficiency 

GPU
runtime
(sec.) 

speedup 
CPU

efficiency 
GPU 

Seq. MEME  15,642 1.0 N.A. 16,017 1 N.A. 
GPU-MEME 
(1 8800GTX) 

1,375 11.4 100.0% 1,755 9.1 100.0% 

GPU-MEME-MPI 
(2 8800GTX) 

760 20.6 90.5% 1,065 15.0 82.5% 

GPU-MEME-MPI 
(4 8800GTX) 

383 40.8 89.8% 538 29.8 81.5% 

GPU-MEME-MPI 
(6 8800GTX) 

260 60.2 88.2% 368 43.5 79.5% 

HS_5000_200 HS_5000_400 
 runtime 

(sec.)
speedup 

CPU 
efficiency 

GPU 
runtime 
(sec.) 

speedup 
CPU

efficiency 
GPU 

Seq. MEME 60,142 1.0 N.A. 233,228 1 N.A. 
GPU-MEME 
(1 8800GTX) 

5,894 10.2 100.0% 19,895 11.7 100.0% 

GPU-MEME-MPI 
(2 8800GTX) 

3,394 17.7 87.0% 11,107 20.1 89.5% 

GPU-MEME-MPI 
(4 8800GTX) 

1,699 35.4 86.8% 5,521 42.2 90.0% 

GPU-MEME-MPI 
(6 8800GTX) 

1,168 51.5 84.0% 3,817 61.1 86.8% 

 

In order to achieve an even higher speedup, we have extended our GPU-MEME 
approach to a GPU cluster using MPI. The coarse-grained MPI parallelization assigns 
to each processor an approximately equal number of starting points to be compared to 
the input sequence dataset. Table 5 shows a comparison of runtime and speedups of 
the GPU-MEME cluster version for up to six GPUs compared to the sequential 
MEME implementation and to our GPU-MEME implementation on a single GPU.  

5   Conclusion 

In this paper, we have introduced a streaming algorithm for motif finding in biologi-
cal sequences that can be efficiently implemented on modern graphics hardware. The 
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design is based on data-parallel computing characteristics in the motif finding process 
and makes full use of the available computing power in a PC. Our implementation 
achieves speedups of over an order of magnitude compared to the widely used MEME 
tool. At least the same number of CPUs connected by a fast switch is required to 
achieve a similar speedup using the MPI-based ParaMEME code. A comparison of 
these two parallelization approaches shows that graphics hardware acceleration is 
superior in terms of price/performance. The presented GPU software is a proof-of-
concept parallelization and can be used for the OOPS and ZOOPS search models. Our 
future work will include integrating the TCM model into our GPU framework and 
making the software available for public use. We are also planning to port the pre-
sented GLSL code to the newly released CUDA programming interface for GPU 
programming. 
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Abstract. The enormous growth of biological sequence databases has caused 
bioinformatics to be rapidly moving towards a data-intensive, computational 
science. As a result, the computational power needed by bioinformatics 
applications is growing rapidly as well. The recent emergence of low cost 
parallel accelerator technologies has made it possible to reduce execution times 
of many bioinformatics applications. In this paper, we demonstrate how the 
PlayStation®3, powered by the Cell Broadband Engine, can be used as an 
efficient computational platform to accelerate the popular BLASTP algorithm.  

1   Introduction 

Scanning genomic sequence databases is a common and often repeated task in 
molecular biology. The scan operation consists of finding similarities between a 
particular query sequence and all sequences of a bank. Dynamic programming (DP) 
based alignment algorithms whose complexities are quadratic with respect to the 
length of the sequences can detect similarities between the query sequence and a 
subject sequence [13]. One frequently used approach to speed up this prohibitively 
time consuming operation is to introduce heuristics in the search algorithm [2, 7, 9]. 
Among these heuristics, BLAST (the Basic Local Alignment Search Tool [1, 2]) is the 
most popular software. It is used to run millions of queries each day. However, 
evaluating a single query to a large database with BLAST usually takes several 
minutes on a modern workstation. These scan time requirements are likely to become 
even more severe due to the rapid growth in the size of these databases. Hence, 
finding fast solutions is of highest importance to research.   

In this paper we present a new approach to accelerate BLASTP for scanning 
protein databases on the Cell Broadband Engine (Cell BE). The Cell BE [6, 8, 11] is a 
recently introduced single-chip heterogeneous multi-core processor, which has been 
jointly developed by Sony, Toshiba and IBM. Previous work on parallelizing 
sequence analysis applications on the Cell BE focused on DP-based algorithms such 
as Smith-Waterman and HMMer [12,14]. Compared to these highly regular 
applications, parallelization of BLASTP is more challenging since it consists of a 
pipeline of computations with different memory and processing requirements. 

The rest of the paper is organized as follows. Section 2 highlights features of the 
Cell BE architecture. An overview of the BLASTP algorithm is given in Section 3. 
Section 4 presents our parallelization approach on the Cell BE. Performance is 
evaluated in Section 5. Section 6 concludes the paper.   
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2   Cell Broadband Engine 

The Cell BE [6] is a single-chip heterogeneous multi-core processor. It contains two 
types of processors: a PowerPC Processor Element (PPE) and eight Synergistic 
Processor Elements (SPEs) [8,11]. An integrated high-bandwidth bus called the 
Element Interconnect Bus (EIB) connects the processors and their ports to external 
memory and I/O devices. A block diagram of the Cell BE is shown in Figure 1. The 
PPE is a 64-bit PowerPC architecture. It is fully compliant with the 64-bit Power 
Architecture specification and can run 32-bit and 64-bit operating systems and 
applications. Each SPE is able to run its own individual application program. It 
consists of a processor designed for streaming workloads, a local memory, and a 
globally coherent DMA engine. The SPE implements a Cell-specific set of SIMD 
instructions. With all eight SPEs active, the Cell BE is capable of a peak performance 
of around 200 GFlops using single precision floating point arithmetic. 

 

Fig. 1. Block diagram of the Cell BE architecture 

Although it is a multiprocessor system on a chip, the Cell BE processor is not a 
traditional shared-memory multiprocessor. One of the major characteristics is that an 
SPE can execute programs and directly load and store data only from and to its private 
Local Store (LS). Since SPEs lack shared memory, they must communicate explicitly 
with the PPE or other SPEs using one of three available communication mechanisms: 
DMA transfers, mailbox messages, or signal-notification messages. All three 
communication mechanisms are controlled by the SPE’s MFC (Memory Flow 
Controller). 

The design of a parallel algorithm on the Cell BE requires an efficient partitioning 
of the computation between PPE and SPEs. A general approach is to perform as much 
as possible computations on the SPEs while the PPE is used for coordinating the 
control flow. Furthermore, the local memory (LS) of a PPE is very limited (only 256 
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KB for storing both instructions and data). Therefore, DMA data transfers between 
main memory and SPEs is often a bottleneck in Cell BE applications and should 
therefore be minimized.  

3   BLASTP Algorithm 

The basic idea for fast sequence database search is filtration. Filtration assumes that 
good alignments usually contain short exact matches. Such matches can be quickly 
computed by using data structures such as lookup tables. Identified matches are then 
used as seeds for further detailed analysis. The analysis pipeline of the BLASTP 
algorithm is shown in Figure 2. It consists of four stages. Each stage progressively 
reduces the search space in the database for significant alignment. We briefly describe 
each step in the following. More details can be found in [1, 2]. 

Word
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HSPs Gapped
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Traceback
& Display
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Fig. 2. The BLASTP processing pipeline 

Stage 1: This stage identifies hits. Each hit is defined as an offset pair (i,j) for which 
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query sequence and D is the database. BLASTP implements this stage by 
preprocessing Q as follows. For each position i of Q the neighborhood 
N(Q[i…i+w−1],T) is computed consisting of all w-mers p for which 
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in an efficient data structure such as a lookup table or a finite-state automaton. The 
default parameter values are w=3 and T=11. 

Stage 2: Stage 2 outputs HSPs (high-scoring segment pairs) between Q and D. HSPs 
are identified by performing an ungapped extensions on a diagonal d which contains a 
non-overlapping hit pair (i1,j1), (i2,j2) within a window A; i.e. d = i1 − j1 = i2 − j2 and w 
≤ i2 − i1 ≤ A. If the resulting ungapped alignment scores above a certain threshold it is 
passed to Stage 3.  

Stage 3: This stage outputs HSAs (high scoring alignments) between Q and D. HSAs 
are identified by performing a seeded banded gapped dynamic programming based 
alignment algorithm using the previously identified HSPs as seeds. Alignments that 
score above a certain threshold are then passed to the final stage.   

Stage 4: The final alignments of the highest scoring sequences are calculated and 
displayed to the user. This requires the computation of the traceback path using the 
Smith-Waterman algorithm. 
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An execution profiling of the BLASTP algorithm for scanning the Genbank non-
redundant protein database shows the following breakdown of execution time:  

Stage 1: 37%, Stage 2: 31%, Stage 3: 30%, Stage 4: 2%. 

Hence, in order to efficiently map BLASTP on the Cell BE all stages except Stage 
4 need to be parallelized. Previous work on parallelizing BLASTP has focused on 
distributed memory architectures such as clusters [10] and reconfigurable hardware 
[12]. This paper is to our knowledge the first ever reported parallelization of BLASTP 
on the Cell BE. 

4   Parallelizing the BLASTP Algorithm on the Cell BE 

In order to achieve an efficient parallelization of map the BLASTP algorithm on the 
Cell BE we need to address the following challenges. 

1. Limited local storage of the SPE. A major limitation when designing SPE kernels 
is that their local memory is only 256 KByte for both instructions and data. Using 
default parameter for w and T the size of the lookup table used for Stage 1 by 
NCBI BLASTP is already around 400KByte for 100 randomly selected query 
sequences. Therefore, we need to use an alternative data structure which requires 
significantly less memory.  

2. Data transfer and coordination between PPE and SPEs. The different stages of 
the BLASTP algorithm constitute a processing pipeline where the throughput of 
each stage in the pipeline depends on the filtration efficiency of the previous 
stage. Therefore, an efficient and flexible mechanism to transfer sequences from 
the database to the SPEs needs to be implemented. The PPE needs to coordinates 
this data transfer. 

Figure 3 shows our mapping of the different stages of the BLASTP algorithm onto 
the Cell BE. Stage 4 includes a ranking procedure on all database sequences that have 
passed Stages 1-3: The top 500 or less matching sequences whose scores exceed a 
certain threshold are displayed in descending order. Thus, this stage is performed by 
PPE. SPE kernels filter the database as follows. Information about all subject 
sequences from the database that have passed Stages 1-3 on an SPE are sent to the 
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Fig. 3. Mapping of the different stages of the BLASTP algorithm onto the Cell BE 
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PPE. Upon receiving this information, the PPE completes Stages 1-4 for these subject 
sequences. The reason why not only Stage 4 is performed on the PPE is that this stage 
requires additional information from the previous stages and storing this on the SPEs 
would be too memory-intensive. However, since this redundant computation is 
merely performed for very few subject sequences the additional runtime is negligible 
(see Section 5 for details).  

As mentioned above, the size of the codeword lookup data structure used by 
NCBI BLAST is too large for the local store of the SPEs. Therefore, we are using a 
more memory-efficient data structure for Stage 1. The utilized data structure is a 
compressed deterministic finite-state automaton (DFA), which is similar to the 
approach used by FSA-BLAST [3, 4]. The compressed DFA for w=3 is illustrated in 
Figure 4. 

 

YY…YA……CY…CAAY…AA

i=0 i=399i

DFA[i].nextWords = CurrentBlock;

DFA[i].next = DFA[(20*i)%(20^(w-1))] 

nil

Y……DCA

char * CurrentBlock[0…19]

0

13

0

7

16

33

0

26

 

Fig. 4. Illustration of the compressed FSA data structure for w=3 

Each possible prefix of lengths w−1 is represented by a state; i.e. for w=3 there are 
400 states representing the prefixes AA to YY, which are stored in the array DFA[i] 
in Figure 4. Each state has two transitions: one to the next state (DFA[i].next) and one 
to a list of 20 words (DFA[i].nextWords). Each entry in this list (currentBlock[0..19]) 
contains a pointer to an array of query positions. These query positions represent the 
neighborhood N(w,T) of the associated w-mer. This data structure allows the 
compression of frequently used query positions that are in neighborhoods of similar 
w-mers. For example in Figure 4, N(‘CYC’,T) = {33, 16, 7} and N={‘CYA’,T} = {16, 
7}. By storing these positions in subsequent order terminated by “0” it is possible to 
re-use memory for both neighborhoods. Our experiments have shown that the size the 
compressed DFA is only 43.8 KByte on average. Hence, it is possible to store the 
complete data structure on each SPE for most queries. 
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Fig. 5. Buffering scheme 

The DFA is transferred into each SPE. The PPE then reads sequences from the 
database and transfers them to the SPEs by Direct Memory Access (DMA). In order to 
hide latencies and achieve good load balancing, we have implemented four buffers on the 
PPE per SPE and two buffers on each SPE (see Figure 5). Our double buffering scheme 
allows SPEs to receive a new subject sequence through DMA while processing another 
previously received sequence. The PPE continuously prepares sequence data for free 
buffers. Once a buffer is filled, the PPE sends a mailbox notification to the corresponding 
SPE. The number of buffer in the PPE for each SPE is therefore restricted by the size of 
the SPE’s Read Inbound Mailbox (which is four). Furthermore, the PPE dynamically 
assigns protein sequences to buffers depending on their lengths and the available 
memory. The maximum number of sequences inside a buffer is 32.   

All sequences inside a buffer are filtered by Stages 1-3 on one of the SPEs. If a 
sequence passes all these stages, the corresponding bit in the matching signal (32 bits) 
is set. After all sequences are processed, this matching signal is sent back to the PPE 
via a mailbox. The PPE then identifies all sequences that have passed Stages 1-3 on 
SPE and perform Stages 1-4 on them. 

Pseudocodes of the programs running on the PPE and each SPE are shown in 
Figures 6 and 7. Because of the limited storage of each SPE (256 KBytes) it is 
important to analyze the associated memory consumption. The size of SPE program is 
100KByte. Thus, we have at most 156KByte for storing the DFA data structure, the 
two buffers as well as other parameters and intermediate results. Hence, we have 
assigned 10KByte to each buffer and up to 80KByte to the DFA. 80KByte is 
sufficient for DFAs for query sequences of up to 2000 base-pairs (bps). In our 
experiment, the average DFA size is 43.8KByte. If the length of a subject sequence is 
over 10Kbps, it will be put directly into the sequence queue of the PPE without 
sending it to an SPE. Furthermore, some database sequences exceed a certain memory 
threshold during they are processed on the SPE. Such sequences will be marked and 
passed to the PPE for further processing. Although, this creates additional work, the 
number of such sequences is usually negligible. It is also another reason why the PPE 
performs all stages of the BLASTP algorithm instead of only Stage 4. Further note, 
that we do not return results of matching sequences from SPEs because we do not 
want to increase SPE code size by increasing program complexity to return the search 
results. 
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1. Initialization 
2. Create DFA 
3. Start SPEs and send parameters and DFA lookup table to SPEs 
4. Check whether there is mail from SPEs 
    If there is a mail 
        Collect information of sequences that passed stages 1-3 and keep in a queue 
        Mark the corresponding buffer as free 
5. Check whether there is a free buffer 
    If a free buffer is found 
         Prepare data into it and mark it as occupied 
    Else 
         Do BLASTP searching stages 1-2 for sequences in the queue 
6. Repeat 4-5 until there is no sequence in database 
7. Send commands to SPEs to complete last buffered sequences 
8. Wait until all buffers are marked as free 
9. Do BLASTP stages 3-4 

 

Fig. 6. Pseudocode of the program running on the PPE 

1. Initialization 
2. Receiving parameters and DFA from PPE 
3. Receiving mail with command from PPE 
4. If command is new-data-available 
       DMA the new data 
       If this is the 1st data 
           Goto 3 
       Else 
4.5       Wait for last data to be completely DMA transferred 
            Do Stages 1-3 for sequences in the last data 
4.7       Return matching signal to PPE through SPU Write Outbound Mailbox 
            Goto 3 
5. If command is finish-last-sequence 
       Do Stages 1-3 for sequences in the last data 
       Return matching signal to PPE through SPE Write Outbound Mailbox 
       Exit         

 

Fig. 7. Pseudocode of the program running on the SPE 

5   Performance Evaluation 

We have implemented the described Cell BE BLASTP program using CELL BE SDK 
3.0 and evaluated it on a PlayStation®3 (PS3), which contains a Cell BE as its main 
processor. In order to evaluate the performance on a PS3, we have installed LINUX 
version 2.6.23-rc3 (gcc version 4.1.1 20061011 (Red Hat 4.1.1-30)). Please note that 
on the PS3 two of eight SPEs are used by the operating system running. Therefore, 
our experiments can only use up to six SPEs.  
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Fig. 8. Runtime comparison between FSA-BLASTP on a dual-core P4 3GHz and Cell BE 
BLASTP on a PS3 for varying query sequence lengths 

We have compared the performance of our Cell BE BLASTP program to FSA-
BLASTP (available form www.fsa-blast.org) and NCBI-BLASTP (www.ncbi.nlm. 
nih.gov/BLAST/developer.shtml). FSA-BLAST uses an optimized sequential algorithm 
and is around 15% faster than NCBI-BLASTP with no loss in accuracy [3, 4]. FSA-
BLASTP and NCBI-BLASTP are tested on a HP workstation xw4200 with Dual-core 
Pentium®4 (P4) CPU 3GHz, 2GB of RAM. Two-hit model [2] is used for all BLASTP 
programs. Default values of W=3 and T=11 are adopted. The produced matching results 
by FSA-BLASTP and Cell BE BLASTP are exactly the same. 

The protein sequence database we used in our experiments is the GenBank Non-
Redundant Protein Database (downloaded from ftp://ftp.ncbi.nih.gov/blast/db/FASTA 
/nr.gz), which contains 6,375,605 protein sequences. We have chosen 100 random 
sequences from the database as queries. The lengths of the query sequences are 
distributed uniformly between 1 and 2000bps.  

A performance comparison of the presented parallel Cell BE BLASTP program to 
the sequential FSA-BLASTP and NCBI-BLASTP programs are shown in Figure 8. It 
can be seen that Cell BE BLASTP is faster than FSA-BLAST in most cases. The 
average searching times are 217.5s for FSA-BLASTP, 244.75s for NCBI-BLASTP, 
and 67.97s for Cell BE BLASTP. This corresponds to an average speedup of 3.2 and 
3.6 respectively. 

More detailed statistics are shown in Table 1. From Table 1, we can see that Cell 
BE BLASTP spends more time on Stage 4. This is because the PPE is a less powerful 
processor than a P4. The speedup of Cell BE BLASTP mostly comes from stage 1-3 
which are running on six PPEs of the PS3 in parallel.  
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Table 1. More detailed runtime comparison (in seconds) between FSA-BLASTP and Cell BE 
BALSTP 

FSA-BLASTP Cell BE BLASTP 
Query length 

range Stages 
1-2 

Stage3 Stage4 Total 
Stages 

1-2 
Stage

3
Stage

4
Total Speedup 

1-300 40.1 5.66 0.30 46.5 28.9 1.77 0.74 32.9 1.41 
301-500 74.0 23.09 0.32 97.8 35.4 3.10 0.81 40.9 2.39 
501-800 110.3 46.57 0.50 157.8 44.5 4.30 1.10 51.5 3.06 

801-1100 151.0 50.98 0.92 203.4 52.8 4.74 1.83 61.1 3.33 
1101-1400 183.0 76.32 1.80 261.6 61.8 10.25 4.18 79.0 3.31 
1401-1700 216.9 109.01 3.22 329.6 67.2 15.19 7.98 92.4 3.57 
1701-2000 241.8 141.53 2.02 385.9 83.9 18.77 4.57 109.0 3.54 

 

Table 2. Average number of sequences processed by each stage of FSA-BLASTP on a P4 and 
by the PPE in Cell BE BLASTP 

FSA-BLASTP Cell BE BLASTP (only on PPE) 
Stage3 Stage3 

Query
length Stages1-2 

semi gapped 
Stages1-2 

semi Gapped 

Matching 
output 

1-300 96954 9443 2113 2062 1731 328 
301-500 334494 13749 2591 2570 1462 324 
501-800 617225 19602 5480 5471 3713 443 

801-
1100 586139 24163 5408 5402 3569 471 
1101-
1400 761097 34028 7193 7189 5178 443 
1401-
1700 1096186 43616.1 15404 15402 12901 438 
1701-
2000 

6,375,605 

1206705 38761 6734 6733 4126 428 
 

The numbers of sequences that are processed in each stage by FSA-BLASTP and 
in the PPE by Cell BE BLASTP are shown in Table 2. In FSA-BLASTP, every 
database sequence is processed by Stages 1-2. The PPE in Cell BE BLASTP only 
processes a very small faction of database sequences since most sequences have been 
filtered by SPEs in parallel. This reduced number of sequences contributes to the less 
total runtime of Cell BE BLASTP. However, the ideal speedup of around six is not 
reached since the parallel SPE filters add some data transfer and coordination 
overhead and the PPU is less powerful than a P4. It should also be noted that the 
speedup for shorter query sequences is generally lower since the runtime is too short 
to effectively compensate for the associated overheads. 

Also note that for Cell BE BLASTP in Table 2, the number of database sequences 
is larger than the number of found matching sequences. This can be explained as 
follows. Firstly, if a sequence is too long to be sent to the SPE, it will be processed by 
the PPE directly. In the experiment, 72 sequences are longer than the maximum buffer 
length (10KByte). Secondly, some sequences in Stages 1-3 in the SPE exceed the 
maximum available memory space. These sequences are returned as matches and 
need further processing on the PPE. 
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Table 3. Runtime statistics (in seconds) of three exceptional sequences 

Time 
Stage3 

Query
length 

Method 
Stages 1-2 

semi gapped 
Stage4 Total 

FSA-BLAST 63.55 160.89 6.40 0.80 232.13 605 
Cell BE 58.65 11.63 1.85 1.88 75.61 

FSA-BLAST 138.97 348.58 0.38 24.96 513.43 
1455 

Cell BE 84.48 65.49 1.28 66.17 219.43 
FSA-BLAST 225.87 316.33 1.02 2.63 546.35 

1945 
CELL 132.11 109.53 1.36 6.98 251.52 

Number of sequences 
Stage3 

Query
length 

Method 
Stages 1-2 

semi gapped 

Matching 
output 

FSA-BLAST 6,375,605 1,890,358 33,061 500 605 
Cell BE 5,536 5,536 2,288 500 

FSA-BLAST 6,375,605 2,981,242 23,895 500 
1455 

Cell BE 8,344 8,344 4,115 500 
FSA-BLAST 6,375,605 1,555,474 170,541 500 

1945 
Cell BE 27,681 27,677 25,473 500  

Figure 8 also shows that some query sequences require more processing time by 
both FSA-BLASTP and Cell BE BLASTP than queries of similar lengths. The 
statistics of the three such exceptional sequences is shown in Table 3. It can be seen 
that for these three queries, a bigger number of database sequences need to be 
processed than average. This increases both CPU and PPE workload. 

6   Conclusion 

In this paper, we have presented a parallel algorithm for accelerating BLASTP on a 
heterogeneous multi-core system. In order to exploit the characteristics of this type of 
architecture we have used a compressed deterministic finite state automaton for hit 
detection in order to reduce memory consumption and a double-buffered communication 
scheme. Our implementation achieves an average speedup of 3.2 compared to the 
optimized FSA-BLASTP and 3.6 compared to NCBI-BLASTP on a PS3, which is 
available for less than US$500 at most local computer outlets. The very rapid growth of 
biological sequence databases demands even more powerful high-performance solutions 
in the near future. Hence, our results are especially encouraging since high performance 
computer architectures are developing towards heterogeneous multi-core systems. 
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